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Abstract

As tumors outgrow their blood supply and become oxygen deprived, they switch to less energetically efficient but oxygen-
independent anaerobic glucose metabolism. However, cancer cells maintain glycolytic phenotype even in the areas of
ample oxygen supply (Warburg effect). It has been hypothesized that the competitive advantage that glycolytic cells get
over aerobic cells is achieved through secretion of lactic acid, which is a by-product of glycolysis. It creates acidic
microenvironment around the tumor that can be toxic to normal somatic cells. This interaction can be seen as a prisoner’s
dilemma: from the point of view of metabolic payoffs, it is better for cells to cooperate and become better competitors but
neither cell has an incentive to unilaterally change its metabolic strategy. In this paper a novel mathematical technique,
which allows reducing an otherwise infinitely dimensional system to low dimensionality, is used to demonstrate that
changing the environment can take the cells out of this equilibrium and that it is cooperation that can in fact lead to the cell
population committing evolutionary suicide.
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Introduction

Cancer can be viewed as a long evolutionary process within one

person. Even in the cases of most severe DNA damage, such as

was experienced by the survivors of atomic bombing in Hiroshima

and Nagasaki, it is not until the 50 s that one could observe

dramatically increased cancer incidence [1]. Damaged cells,

whatever properties they may have acquired, need to survive

and proliferate in the tissue, competing with somatic cells for space

and nutrients.

As the primary tumor increases in size, the cells outgrow their

blood supply, thus also losing access to oxygen. This leads to cells

in hypoxic areas switching from aerobic metabolism to glycolysis, a

mode of glucose metabolism that is less energetically efficient,

yielding 2 ATPs instead of approximately 30, but that is faster and,

most importantly, unrestricted by oxygen. However, tumor cells

often continue metabolizing carbon glycolytically even in the areas

of ample oxygen supply [2–4]. This has become known as

Warburg effect, named after a German biochemist Otto Warburg,

who was the first to observe it over fifty years ago [5]. This choice

of metabolic strategy does not come from loss of function of

mitochondria – it has been verified that a vast majority of tumor

cells have completely functional mitochondria [6], and the damage

that might be occurring is reversible [7].

From the point of view of natural selection, it has been

hypothesized that, although glycolysis is energetically inefficient,

lactic acid that is secreted as its by-product becomes toxic to

healthy tissues, thus making glycolytic cells better competitors at a

cost of being efficient consumers [8,9]. However, a single cell is not

likely to secrete enough lactic acid to cause significant changes in

its microenvironment, i.e., it cannot provide enough ‘‘public

goods’’ to benefit everyone [10]. The core population of glycolytic

cells needs to be large enough to gain this competitive advantage.

Proposed here is a game-theoretical approach for addressing the

question of how such a population could arise.

Game theory in cell metabolism
As advantageous as glycolysis may be to cancer cells as a group,

one glycolytic cell is not enough to generate enough lactic acid to

become a successful competitor. Enough cells need to choose this

metabolic strategy in order for the group as a whole to receive the

competitive advantage. However, it is not in the interest of each

individual cell to metabolize carbon glycolytically if all other cells

metabolize it aerobically. It would not secrete enough lactic acid to

successfully compete with them and at the same time, it would get

nearly 15 times less energy.

In this framework, the problem becomes a version of multi-

player prisoner’s dilemma. There are two metabolic strategies:

aerobic, which yields 30 ATPs per glucose and no lactic acid, and

glycolytic, which yields 2 ATPs per glucose but yields some lactic

acid. The amount of lactic acid generated by just one glycolytic

cell is insignificant to cause any damage to somatic cells. Lactic

acid secreted by several cells is enough to shift energetic payoffs,

which could in part be due to not only decrease in competition but

also to the fact that intracellular stores of nutrients of the cells can

be recycled and thus used up by neighboring cells [11,12]. For

illustration we currently assume 2 players but in fact many more

would need to cooperate to get this ‘‘public goods’’ effect [10].

This becomes a game of prisoner’s dilemma if the payoff for both

cells is greater when they both choose the glycolytic strategy, i.e., if

[30 ATP,2+toxicity+reduced competition]. In this case, the

aerobic-aerobic equilibrium is in fact a stable equilibrium of this

game, i.e., no cell has an incentive to unilaterally change its
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metabolic strategy [13,14]. So, from the point of view of metabolic

activity, one can argue that aerobic cells are in fact at an

evolutionarily steady state [15], and so the tissue cannot be

‘‘invaded’’ by glycolytic clones.

Nevertheless, ‘‘glycolytic invasions’’ do happen as the Warburg

cells migrate out of the primary tumor into the new environment

composed primarily of aerobic cells, where they theoretically

should have no advantage in persisting to metabolize glucose

glycolytically. One explanation for this effect could be that they in

fact migrate out in groups large enough to generate enough lactic

acid for everyone to receive sufficient ‘‘public goods’’ benefit.

Another (perhaps complementary) explanation comes from

invasion ecology, and particularly from the work of David Tilman,

who argued that invasions of exotic species are largely facilitated

when there are excess resources available in the target habitat for

the invaders to utilize [16,17]. In the case of aerobic and glycolytic

cells, if there are enough resources in the environment into which

the cell migrates out to, then a glycolytic cell will no longer have to

care about its metabolic inefficiency. That is, from the point of

view of payoffs of each metabolic strategy, if the environment, in

which the players interact, changes sufficiently, glycolytic invasion

becomes possible.

To test this hypothesis, a mathematical model is proposed. The

change in the composition of the population of cells that differ by

their choice of metabolic strategy (glycolysis vs oxidative

phosphorylation) in response to increased carbon inflow is tracked

using a system of ordinary differential equations. In the model, the

growth of aerobic cells is restricted both by carbon and oxygen,

while glycolytic cells are restrained only by carbon. The effects of

changes in oxygen availability, glucose uptake rates, natural cell

death rates, cell growth rates, as well as the initial composition of

the cell population are evaluated.

Materials and Methods

Model Description
Suppose that each cell is characterized by a value of parameter

a, which represents the proportion of total carbon that is used

aerobically, thus effectively leaving (1{a) proportion of total

carbon for consumption through glycolysis; xa then denotes a set

of all cells that are characterized by a fixed heritable value of

parameter a. The total population size is then taken to be

N(t)~
P

A xa if the number of possible values of a is finite and

N(t)~
Ð

A
xada if it is infinite.

Glycolysis is less metabolically efficient and is limited only by

glucose supply, denoted by Cin; aerobic metabolism is more

efficient but is limited both by carbon availability Cin and by

oxygen supply, which is accounted for with parameter b. Each cell

xa is thus characterized by its own intrinsic value of a, allowing to

model population heterogeneity with respect to metabolic strategy.

There are two types of carbon that are taken into account in the

model: extracellular carbon and intracellular carbon. Extracellular

carbon Cex is replenished in the tissue microenvironment through

blood inflow and also is recycled from intracellular stores of cells

that have died [11,12]. It is consumed by the cells, becoming

intracellular carbon, based on differences in concentration

between Cin and Cex. Different cells can consume carbon at

different rates: glycolytic cells get less energy per one molecule of

glucose, but their rate of carbon uptake is much greater due to

upregulation of glucose transporters in the cell membrane [18].

This is accounted for by the parameter p~pa(1{Et½a�)zpgEt½a�.
The consumed extracellular carbon is then metabolized by the

cells; the higher efficiency of metabolism by aerobic cells is

accounted for by the parameter j.

Taking into account all of these assumptions, the model

becomes System

dxa

dt
~xa( ra(1{a)

bCin

bzCin|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Cin and O2lmited aerobic growth

z rgaCin

|fflfflffl{zfflfflffl}
Cin limited glycolytic growth

{ d|{z}
death rate

),

dCex

dt
~ g1(

C0{Cex

N
)

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Cex inflow from blood

{( pgEt½a�|fflfflffl{zfflfflffl}
glycolytic cells

z pa(1{Et ½a�)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
aerobic cells

)
Cex{Cin

k1z(Cex{Cin)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
total Cex uptake based on concentration differences

z Cind|ffl{zffl}
natural cell death|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Cexrecycled from cell death

dCin

dt
~ (pgEt½a�zpa(1{Et½a�)) Cex{Cin

k1z(Cex{Cin)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
total Cin inflow based on concentration differences

{sCin( raj(1{Et ½a�)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Cinused aerobically

z rgEt½a�|fflfflffl{zfflfflffl}
Cinused glycolitically

):

0
BBBBBBBBBBBBBBBBBB@

ð1Þ

A detailed model derivation is given in Appendix S1. The

summary and description of all parameters is given in Table 1, and

the general overview of the proposed mechanism is given in

Figure 1.

Each cell clone xa tries to maximize its fitness by metabolizing

glucose either aerobically or glycolytically. Depending on initial

population composition, on intrinsic growth and death rates, and

the amount of carbon available, the clones are selected depending

on which metabolic strategy maximizes their overall growth rate

per cell, reflected through the value of dxa
xa

=xa. Relative positions

of the two growth curves with respect to resource availability are

shown in Figure 2.

Modeling population heterogeneity
In a heterogeneous population, where each cell is characterized

by its own value of parameter a, the mean number of glycolytic

clones Et½a� is a dynamic variable that can change over time.

Therefore, the composition of a heterogeneous population of cells

will also change as a result of the dynamics of other variables and

will be different depending on initial conditions, parameter values,

as well as the initial distribution of the clones within the

population. (Note: in the current formulation, System (1) is an

infinitely-dimensional system of ODEs. However, it can be

reduced to a finitely-dimensional system of equations through

addition of two keystone equations. The details of the transfor-

mation are described in Appendix S2; further references on the

method can be found in [19])

System (1) was solved numerically using Matlab R2010a in such

a way as to evaluate, how the composition of the population,

tracked through Et½a�, changes over time in response to increasing

inflow of extracellular carbon, achieved through systematic

increase of parameter C0 (external carbon inflow). The changes

in Et½a� in carbon-rich environments were also evaluated with

respect to changes in oxygen levels (parameter b), glucose uptake

rates (changing relationship between parameters pa and pg),

growth rates (ra and rg ) and natural death rates (parameter d ).

Results

The initial distribution of clones within the population was

taken to be truncated exponential with parameter a restricted to

the interval a[½0,1�, and skewed towards a?0, i.e., such that the

vast majority of cells in the initial population are aerobic. This is to

account for the differences in access to the oxygen and nutrients as

a result of slight variations in distance from the blood vessels.

Initial conditions and parameter values used for calculating

numerical solutions are summarized in Table 2, unless indicated

otherwise.

(1)

Prisoner’s Dilemma in Cancer Metabolism
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The results of all the calculations are presented using four types

of graphs. The first type of graph depicts the changes in the

proportion of glycolytic cells in the population Et½a� over time

under variation of parameters that represent intrinsic properties of

cells (proliferation, death, resource uptake rates, etc). On the

second type of graph, external carbon inflow C0 is varied and the

value of Et½a� is recorded at t~4000 as the values of intrinsic

parameters are varied. This is done to uniformly measure the

effects of changes in external factors (nutrient availability) on

glycolytic expansion; time point t~4000 is chosen arbitrarily. The

third type of graph is a 3-dimensional representation of how Et½a�
changes over time under different values of C0. Finally, the fourth

type of graph depicts the change in the distribution of clones with

respect to strategy choice, over time.

At first the effects of changes in intrinsic growth rates were

evaluated (see Figure 3). It can be observed that while, naturally,

higher growth rates of anaerobic cells will always lead to increased

proportion of glycolytic cells in the population (Figure 3a),

increases in the rates of external carbon inflow C0 accelerate this

process dramatically (Figure 3b–d).

The effects of oxygen availability, accounted for with parameter

b, were evaluated in Figure 4, and in particular, the question of

whether oxygen deprivation will have more or less effect on

glycolytic expansion than increased carbon inflow. As anticipated,

lower b resulted in faster growth of glycolytic cells (Figure 4a).

However, increases in carbon inflow resulted in nearly as much of

glycolytic expansion as was caused by oxygen deprivation

(Figure 4b–d), which suggests that under nutritionally favorable

conditions benefits of glycolysis do indeed outweigh its drawbacks.

Next, the effects in changes of natural cell death rates were

evaluated. Interestingly, decreasing the value of parameter d
actually slowed down glycolytic expansion (Figure 5). That is,

lower death rates are in fact less advantageous for glycolytic cells at

this stage of tumor development. This effect could be due to the

fact that higher cell death rates imply higher cell turnover within

the population, thus actually speeding up the selective process.

Lower death rates on the contrary cause a delay in the progression

of the evolutionary process.

The effects of differences in nutrient uptake rates were

evaluated, since cancer cells have been observed to consume

extracellular carbon much quicker than aerobic cells, with uptake

Figure 1. Schematic diagram of the process described in System (1).
doi:10.1371/journal.pone.0028576.g001

Table 1. Summary of variables and parameters used
throughout the paper.

Variable/
Parameter Meaning Range

a proportion of glycolytic cells a[½0,1�
ra growth rate of aerobic cells ra§0

rg growth rate of glycolytic cells rg§0

j scaling constant to account for higher
efficiency of aerobic metabolism
(2 ATP vs &30 ATP)

j&0

b oxygen availablity (normal blood oxygen
is 20%, hypoxia occurs around 2–5%)

bw10

d natural cell death rate d§0

g1 rate of resource consumption g1§0

C0 rate of external carbon inflow
(normal carbon concentration in
the blood is &100mg=100ml)

C0w0

k1 saturation constant for carbon
uptake by the cells

k1§0

s scaling constant for how much
carbon is metabolized by cells

s[(0,1�

pa rate of carbon uptake by aerobic cells pa§0

pg rate of carbon uptake by glycolytic cells pg§0

p~pg(a)zpa(1{a) lower boundary value of parameter c p§0

ba~B{b1a toxicity induced cell mortality baw0,b1v
B
a

doi:10.1371/journal.pone.0028576.t001
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rates between the two types differing as much as 10–20 times [18].

The question here was whether upregulation of glucose trans-

porters would be enough to give cancer cells significantly greater

selective advantage, everything else being equal. It can be

observed in Figure 6 that even thirty-fold increase in the rates of

glucose uptake by the glycolytic cells does not make much of a

difference in terms of when exactly the rapid increase in the mean

of a will occur. However, it does raise the maximum value that is

reached at higher glucose concentrations. This suggests that

upregulation of glucose transporters in glycolytic cells is an

adaptation rather than the driving force behind Warburg effect,

and therefore therapies targeting glucose transporters would

probably not be very effective.

Modeling evolutionary suicide
Until now we have been focusing only on the question of

whether the increased availability of nutrients can in fact allow the

population of glycolytic cells to expand despite the metabolic

inefficiency of glycolysis. Now, we would like to consider a case

when the increased number of glycolytic cells in the population

yields enough lactic acid to be toxic to aerobic cells. This is

accounted for through adding an extra death term to the equation

that describes the dynamics of the cell population, as well as an

additional inflow term in the equation for the changes in the

concentration of extracellular carbon, accounting for carbon that

is recycled through cell death. On Figure 7 one can see that under

given parameter values, the population initially increases in size,

but as the proportion of glycolytic cells reaches Et½a�&0:1, the

toxicity from lactic acid becomes higher than cell growth rates.

This can be interpreted as the cells committing evolutionary

suicide through being overly efficient competitors.

Discussion

From the point of view of game theory, tumor cells are playing a

game of prisoner’s dilemma both with somatic cells and with each

other. If there are no limitations on oxygen availability, i.e., no

severe pressure to choose one metabolic strategy over the other,

then the payoffs for aerobic and glycolytic cells are measured in

terms of efficiency of metabolism (getting more energy per same

amount of glucose) and competitive ability (creating a microen-

vironment that will be toxic to competitors). It two cells are playing

the game of prisoner’s dilemma, then one can see using aerobic

metabolism as ‘‘defecting’’ and glycolytic as ‘‘cooperating’’ – the

cells will get the competitive advantage only if enough of them

cooperate. However, the stable equilibrium for the game of

prisoner’s dilemma is for both players to defect, i.e., for all cells to

use aerobic metabolism.

In this particular case one cannot change intrinsic payoffs for

the players, i.e., the amount of ATP that each cell receives when it

metabolizes glucose aerobically or glycolytically. However, one

can change the environment in which they interact in such a way

as to minimize the drawbacks of using the ‘‘cooperative’’ strategy.

One such way is to supply enough resources for the anaerobic cells

to not be held back by the inefficiency of glycolysis.

In order to investigate whether increasing the amount of

available nutrients can in fact push the cells out of the stable

equilibrium, a mathematical model is proposed to track the

change in composition of a parametrically heterogeneous

population with respect to the choice of metabolic strategy, i.e.,

aerobic or glycolytic metabolism. The model is a three

dimensional system of ordinary differential equations based on a

mathematical model of a chemostat system [20]. There are three

Table 2. Sample parameter values.

N(0) Cex(0) Cin(0) d ra rg pa pg b Et~0½a� s kk1 g1

10.0 10.6 1.3 0.03 0.2 0.22 0.1 0.2 15 0.056 0.2 1.1 1.0

doi:10.1371/journal.pone.0028576.t002

Figure 2. Relative positions of growth rates for aerobic and glycolytic cell clones. Growth rates for aerobic (xa
0~raCin b

bzCin, solid blue

line) and glycolytic (xa
0~rgCin, dashed lines) cell clones are compared for different initial states of the microenvironment (amount of resource Cin

and amount of oxygen b) and different relative intrinsic growth rates raand rg . One can see that different clone types have higher fitness relative to

each other depending on carbon (Cin) and oxygen (b) availability and the values of intrinsic parameters ra and rg .
doi:10.1371/journal.pone.0028576.g002

Prisoner’s Dilemma in Cancer Metabolism

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28576



state variables that are being kept track of: concentration of

extracellular carbon, which is constantly replenished from some

external source and is consumed based on difference of con-

centrations between extra and intracellular concentrations;

concentration of intracellular carbon, which is metabolized more

efficiently by aerobic cells; and a heterogeneous cell population

composed of aerobic and glycolytic cells. The growth of aerobic

cells is modeled in such a way as to be constrained both by carbon

and oxygen availability. The growth of glycolytic cells is restrained

solely by carbon. Parametric heterogeneity within the system is

captured by assuming that each cell clone is characterized by an

intrinsic value of parameter a, which can range from 0 to 1. The

initial distribution of cell clones is assumed to be truncated

exponential on the interval ½0,1�, skewed towards a?0 such that a

vast majority of clones in the initial cell population are aerobic.

The change in population composition is tracked through the

change in the mean value of the parameter a, which in this

formulation becomes a function of time and thus changes as the

system evolves.

Through computation of numerical solutions one could observe

that increased inflow of extracellular carbon did indeed cause

dramatic changes in the composition of cell population over time

(Matlab code is available upon request). However, in order to see

any changes in the composition of cell population, glycolytic cells

had to have higher growth rates, even if only slightly. This suggests

that while increased nutrient availability cannot induce glycolytic

switch, it can accelerate disease progression. Decreases in oxygen

availability in nutrient-limited environment caused as much of a

glycolytic expansion as did dramatic increases in external carbon

inflow in normoxic conditions (Figure 4). It was also demonstrated

that lower death rates actually slowed down tumor progression at

this stage of tumorogenesis because of slower cell turnover rates;

increases in death rates caused dramatic increases in the rate of

glycolytic expansion because of increased cell turnover (Figure 5),

which suggests that cytotoxic therapies would in fact speed up

cancer progression. Finally, the effects of differences in resource

uptake rates were evaluated, revealing that even 30-fold increases

in carbon uptake rates by glycolytic clones do not have nearly as

much effect on the rate of glycolytic expansion as do increases in

external nutrient inflow.

The two games
Staying within the aerobic-aerobic equilibrium of the metabolic

prisoner’s dilemma keeps the tumor (at least temporarily) from

Figure 3. Quantifying the effects of differences in growth rates of aerobic and glycolytic cell clones. (a) Changes in the mean number of
glycolytic cells Et½a� over time for ra~0:2, rg~0:21,0:22,0:23,0:24 (b) Et½a� at t~4000 for C0 varied from 5 to 600, evaluated for
ra~0:2,rg~0:21,0:22,0:23,0:24 (c) Changes in Et½a� over time with respect to differences in C0 for ra~0:2,rg~0:21 (d) Changes in Et½a� over
time with respect to differences in C0 for ra~0:2,rg~0:24.
doi:10.1371/journal.pone.0028576.g003
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switching preferentially to glycolysis, which would lead to creating

toxic microenvironment and facilitating metastatic invasion [9,21].

However, if the environment is changed enough, cells can push

away towards glycolytic-glycolytic strategy (everything else being

equal), eventually entering the domain of attraction of the stable

equilibrium of another, larger game, which can lead to

evolutionary suicide [22]. Now glycolytic cells that have become

numerous enough are cooperating, jointly increasing the toxicity

of the surrounding microenvironment, and becoming more effi-

cient competitors as a group, eventually killing the host and con-

sequently killing themselves.

In the model, this is captured through introduction of the

additional toxicity term that captures increased mortality of aerobic

cells proportional to the amount of lactic acid secreted by glycolytic

cells. Indeed, one can observe that the cell population initially grows,

peaks and then eventually collapses, going to extinction (see Figure 7).

So, the either equilibrium within the same game of prisoner’s

dilemma can become attracting not because of the changes in payoffs

for each cell but due to different initial composition of the population

of players, which happens solely through natural selection.

Tumors as complex adaptive systems
One way to look at tumors is through the lens of complexity

science. Complex systems are diverse and adaptive, and all parts

within them are interconnected and interdependent [23]. Tumors

fit this definition: they are composed of genetically heterogeneous

cells; they are interconnected and interdependent, competing for

resources and space with each other and with somatic cells; and

they are very adaptable to changes in their microenvironment.

Complex systems are not nearly as predictable as just

complicated systems (the ones that have all the characteristics of

complex systems except adaptability). They are robust, and they

can generate such phenomena as tipping points, which are

thresholds of rapid phase transitions [23]. For instance, in the

proposed system, changes in the cell microenvironment induced

selection for the ‘‘cooperative’’ glycolytic metabolic strategy, which

can be viewed as an example of such a tipping point. This can lead

to a rapid increase in the amount of lactic acid produced, which in

turn can lead to a sudden increase in metastatic spread of the

disease due to increased degradation of the extracellular

membrane [9]. On a larger scale, one can think of cachexia,

nutritionally irreversible loss of body mass, which is often observed

in terminal cancer patients, as an example of such a tipping point.

Complex systems cannot be controlled but they can be

harnessed, that is, even if one cannot change the intrinsic

properties (or in case of game theory, payoffs) of the individual

clones, or agents, in the complex systems, one can sometimes

change the microenvironment in such a way as to direct system

Figure 4. Quantifying the effects of oxygen availability on the growth of aerobic and glycolytic cell clones. (a) Changes in the mean
number of glycolytic cells Et½a� over time for b~2,10,15 (b) Et½a� at t~4000 for C0 varied from 5 to 600, evaluated for b~2,10,15 (c) Changes in Et½a�
over time with respect to differences in C0 for b~2 (d) Changes in Et½a� over time with respect to differences in C0 for b~15.
doi:10.1371/journal.pone.0028576.g004
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evolution in the desired direction (create an environment, where

the players will ‘‘want’’ to choose the strategy that we want them

to choose rather than try to force them to do so). For instance, in

the metabolism experiment described here, it is the changes in the

nutrient availability that enabled the shift within the system

towards an otherwise unstable equilibrium (persistence of

glycolytic metabolism) by decreasing the negative effect of

glycolysis, i.e. low ATP yield, but keeping all of its benefits, i.e.,

better competitive ability (Figure 8).

Reversing the changes that occurred as a result of surpassing a

tipping point in complex systems is usually not possible because of

the changes that will have already occurred to the population

composition. That is, it is no longer the same ‘‘set of players’’ that

is interacting, and therefore their threshold is most probably

different. However, tipping points can be anticipated and

sometimes even delayed. For instance, several prospective studies

have shown that mortality from cancer was much lower in those

individuals that had higher muscle mass, regardless of their body

mass index (BMI), even though the incidence of cancer was the

same (see, for instance, [24,25]). From the point of view of cell

metabolism, this could be due to the fact that muscle cells have

higher energy demands than other somatic cells, thus ‘‘beating’’

the glycolytic cells to the nutrients, delaying progression of the

disease. So, while exercising will not affect the probability of the

person getting cancer in the first place, it may reduce the risk of

dying from it by pushing off the metabolic tipping point,

surpassing which leads to cancer progression.

Conclusions
Tumors are complex adaptive systems that consist of a large

number of diverse, interconnected and interdependent cells that

compete for space and nutrients both with the somatic cells and

with each other. One of the measures of tumor diversity could be

the type of metabolic strategy that the cell uses for converting

glucose to energy: aerobic metabolism has a higher ATP yield and

can be seen as an evolutionarily stable metabolic strategy, while

glycolysis has a lower ATP yield but it increases the cells’

competitive abilities through creating a toxic microenvironment.

Tumor cells upregulate glycolysis even in the areas of ample

oxygen supply (Warburg effect). It is hypothesized that the benefits

of increased acidity of the microenvironment give a large enough

payoff to glycolytic cancer cells to overcome the inefficiency of

glycolysis. However, glycolytic cells can get this advantage only if

enough of them simultaneously use this strategy.

While it is not possible to change the intrinsic energetic payoffs

for these cells, changing the microenvironment through providing

Figure 5. Quantifying the effects of natural death rates on the changes in proportion of glycolytic cell clones in the population. (a)
Changes in the mean number of glycolytic cells Et½a� over time for (b) Et½a� at t~4000 for C0 varied from 5 to 600, evaluated for
d~0:04,0:03,0:02,0:01 (c) Changes in Et½a� over time with respect to differences in C0 for d~0:02 (d) Changes in Et½a� over time with respect to
differences in C0 for d~0:04.
doi:10.1371/journal.pone.0028576.g005
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Figure 6. Quantifying the effects of differences in resource uptake rates on the changes in proportion of glycolytic cell clones in the
population. (a) Changes in the mean number of glycolytic cells Et½a� over time for pa~0:1, pg~3,1,0:5,0:1 (note the scale on y-axis) (b) Et½a� at
t~4000 for C0 varied from 5 to 600, evaluated for pa~0:1,pg~3,1,0:5,0:1(note the scale on y-axis) (c) Changes in Et½a� over time with respect to
differences in C0 for pa~0:1, pg~0:2 (d) Changes in Et½a� over time with respect to differences in C0 for pa~0:1,pg~3.
doi:10.1371/journal.pone.0028576.g006

Figure 7. Evolutionary suicide can occur when the proportion of glycolytic cells Et½a� within the total cell population reaches
approximately 10% under given parameter values. Trajectories depict (a) the changes in the mean value of glycolytic cells in the population
Et½a� (b) extracellular carbon Cex, (c) intracellular carbon Cin , (d) total population size N(t) over time and (e) the distribution of cell clones Pt½a�
changing over time.
doi:10.1371/journal.pone.0028576.g007
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increased amounts of nutrients can achieve this by decreasing the

negative effects of glycolysis (compensating for low ATP yield by

providing more carbon) without affecting the benefits (increased

competitive ability through elevated lactic acid production). Here

we demonstrate that while availability of excess nutrients cannot

induce the glycolytic switch, it facilitates disease progression when

some glycolytic cancer cells are already present in the population.

It is a common viewpoint that somatic cells always cooperate

and cancer cells are the ones that defect, rebelling against cell

cooperation within the tissue. However, from the point of view of

game theory, choosing aerobic metabolism is in fact a stable

‘‘defect-defect’’ equilibrium in the multi-player game of prisoner’s

dilemma. And it is the dominance of the defecting strategy that

stabilizes the tissue, preventing (as long as possible) occasional

glycolytic cooperators from committing evolutionary suicide.
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