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Abstract

Using stable isotope mixing models (SIMMs) as a tool to investigate the foraging ecology of animals is gaining popularity
among researchers. As a result, statistical methods are rapidly evolving and numerous models have been produced to
estimate the diets of animals—each with their benefits and their limitations. Deciding which SIMM to use is contingent on
factors such as the consumer of interest, its food sources, sample size, the familiarity a user has with a particular framework
for statistical analysis, or the level of inference the researcher desires to make (e.g., population- or individual-level). In this
paper, we provide a review of commonly used SIMM models and describe a comprehensive SIMM that includes all features
commonly used in SIMM analysis and two new features. We used data collected in Yosemite National Park to demonstrate
IsotopeR’s ability to estimate dietary parameters. We then examined the importance of each feature in the model and
compared our results to inferences from commonly used SIMMs. IsotopeR’s user interface (in R) will provide researchers a
user-friendly tool for SIMM analysis. The model is also applicable for use in paleontology, archaeology, and forensic studies
as well as estimating pollution inputs.
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Introduction

Stable isotopes were first used to investigate the foraging ecology

of animals in the 1970s [1–5]. Early studies used stable isotope

analysis (SIA) to determine the relative importance of food sources

to animals by comparing distributions of isotope ratios (expressed

as isotope values; derived below) for animal tissues to the foods

they consume after corrected for fractionation (the sorting of

isotopes during natural biochemical processes)—a technique

primarily used when food sources had distinctly different isotope

values (e.g., C3 and C4 plants, or prey that differ in trophic level)

[2,6]. Isotope values (e.g., TMX, TMY) are expressed in delta (TM)

notation as per mil (%) units (or parts per thousand):

dX~
Rsample

Rs tan dard

{1

� �
� 1000

where R is the ratio of heavy to light isotopes (e.g., 13C/12C or
15N/14N) in the sample and the standard [7]. Samples with a

lower ratio of heavy isotopes relative to the standard will yield a

negative value and samples with higher ratios will have a positive

value.

For the past few decades, SIA has gained popularity among

ecologists (e.g., [8–13]). In particular, stable isotope mixture

models (often called mixing models; hereinafter SIMMs) are

commonly used to estimate the relative contribution of assimilated

dietary sources to the tissues of animals (i.e., the conversion of food

nutrients into tissues by the processes of digestion and absorption),

and if certain assumptions are met (Table 1), the diets of animals.

Euclidian distance formulas were used in some early studies (e.g.,

[14–18]); however, these methods did not provide correct solutions

for observed and simulated data [19]. Specifically, these Euclidean

distance models failed to preserve mass balance, an application of

the law of conservation of mass which states that the proportional

assimilated dietary contributions (mass) flowing into an organism

or population are constrained to sum to one. Recently, variants of

mass-balance models have developed rapidly [19,20]. Although

the profusion of SIMMs (many of which are discussed in this

paper) indicates the importance of this field to ecologists, current

models require researchers to make tradeoffs (Table 1) when

choosing one model over another.

All models discussed in this paper use the same basic

methodology for estimating proportional source contributions to

the diets of animals. For example, a duel element (X, Y), three-

source, mass-balance, linear mixing model is described by the

following equations [20]:

dXm~f1dX1zf2dX2zf3dX3

dYm~f1dY1zf2dY2zf3dY3

1~f1zf2zf3

ð1Þ

This system of three equations yields three unknown proportional

source contributions (e1, e2, e3) for a mixture (m) when TMX and
TMY values are known for mixtures and sources (the latter adjusted

to account for isotopic discrimination; described below).
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Table 1. A comparison of SIMM assumptions and features among commonly used SIMMs.

Models IsotopeR SIAR
Semmens
et al. 2009 MixSIR IsoConc IsoError IsoSource

SIMM assumptions:

Elemental concentration (e.g., [C] and [N])
of all dietary items are equal

N Different source concentrations
for dietary sources

X X X

Elements are assimilated with
the same efficiency

N Different assimilation efficiencies
for dietary sources

X Y Y

No tissue-diet discrimination

N Variation associated with predicted
discrimination factors

X X X X

N Includes a fixed ‘‘discrimination error’’
term (calculated a priori): error associated
with the regression model used to predict
discrimination factors

X

No isotopic routing

N Differential allocation of isotopically
distinct dietary sources to different tissues

Other SIMM features:

Uses a Bayesian analytical framework X X X X

Uses a fully Bayesian approach bX

Sampling procedure used to
estimate parameters

MCMC MCMC MCMC SIR ML ML ML

Uses raw data (not parameter estimates
of raw data) to simultaneously estimate
parameters (random variables): dietary
sources (including isotopic correlation,
variation), measurement error,
proportional source contributions at
the population- and individual-level

bX

Measurement error: variation associated
with SIA: sample preparation error and
error during mass spectrometry; applied
to each observation in the study

X Y

Source process error: inherent
isotopic variation of the sampled source
(i.e., within and between individual plants
and animals of the same species or taxa)

X X X X X

Mixture process error: inherent isotopic
variation in a sub-sampled tissue (e.g.,
non-homogenized hairs, feathers, claws
from the same individual) and/or sample
of mixtures (e.g., population)

X X X X X X

Correlation of isotope values in sources:
accounts for the linear relationship among
isotope values for different elements

X X

A residual error term X X X

Individual-level source estimation using
hierarchical design

X X

Prior information associated with sources
(e.g., source proportions, distribution of
isotope values, elemental concentrations)
and mixtures (e.g., measurement error)

X X X X

Calculates proportional dietary source
estimates when .n+1 sources

X X X X aX

Four mixing model assumptions (italics) commonly violated when estimating the proportional dietary contribution of sources to the diets of animals, and the model
feature that addresses each violated assumption. A list of other features included in SIMMs and their definitions. X denotes the model addresses the assumption or
includes the feature and Y indicates the feature is not explicitly included (e.g., model may account for error using an arbitrary tolerance measure). MCMC (Markov chain
Monte Carlo), SIR (sequential importance resampling), and ML (maximum likelihood) denotes sampling method used when estimating parameters.

Isotopes to Estimate Diet: Review and Model
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In the following sections, we discuss the SIMMs commonly used

to estimate dietary parameters and follow this review with details

about our comprehensive SIMM, IsotopeR.

Frequentist SIMMs
IsoError. Phillips and Gregg [21] refined the application of

linear mass-balance procedures (equation set 1) with IsoError.

This SIMM can be applied to systems where the number of

sources do not exceed n+1 (n = number of isotope systems);

however, when sources do exceed n+1, the system of equations is

underdetermined and the model cannot be used. IsoError

calculates deterministic solutions and allows a user the ability to

incorporate the process error and the isotopic correlation in

sources and mixtures (Table 1).

Isoerror does not address many of the assumptions (Table 1)

that may be violated when estimating diets using SIMMs

[19,22,23]. In addition, neither IsoError nor the mass balance

equations (equation set 1) are constrained to yield proportional

source contributions ( f variables in equation set 1) in the interval

(0,1). Therefore, when data fall outside the isotopic mixing space

(the area or volume contained in the space formed by lines

connecting the sources in multivariate isotope space) because an

important food source was overlooked, the wrong discrimination

factor was applied to a source, or a mixing model assumption was

violated [24], nonsensical negative proportions are calculated for

dietary contributions.

IsoConc. Most stable isotope mixing models assume that the

elemental concentrations of dietary items are equal. Although this

assumption is valid for many carnivore and herbivores, it is often

violated for omnivores who feed on a variety of dietary sources at

different trophic levels [24]. IsoConc was developed to estimate

the contribution of each source to the diets of animals by assuming

a source contribution is proportional to the assimilated biomass of

the source multiplied by the elemental concentration (e.g., %C,

%N) of the source [24]. This model was the first to transform a

polygonal mixing space to a curved mixing space [24].

Standard linear mixing models and the examples presented in

Phillips and Koch [24] assumed that all sources are equally

digestible. In response, Robbins et al. [25] pointed out the need to

consider digestibility when determining the elemental concentra-

tions of sources. In reply, Koch and Phillips [26] calculated the

digestibility of macronutrients in food sources and included the

corrected elemental contributions of these sources in their diet

estimation. By incorporating ‘‘concentration dependence’’ and

explicitly including the digestibility of sources in their calculation,

this SIMM made a significant stride towards estimating more

accurate dietary parameters [26]. However, unlike IsoError,

IsoConc does not allow the user to incorporate various sources

of error inherent to SIMM analysis.

IsoSource. IsoSource was developed to calculate the frequency

and range of potential source contributions in situations where the

number of sources exceeds n+1 [27]. Using the standard linear

mixing model, IsoSource systematically creates each combination of

possible source contributions (that sum to 1.0) by a certain

increment (e.g., 0.01). Next, the model predicts mixture isotope

values for each combination using source isotope values (means). If

these predicted values fall within a certain designated mass balance

tolerance (e.g., 60.1%; which accounts for the error associated with

measurement and source variability) then the combination is

considered a feasible solution; Phillips and Gregg [27] suggested

reporting the distribution of feasible solutions.

This model can be helpful at inferring possible diet compositions

when a unique solution cannot be calculated, but it has limits

when investigating many ecological questions [28]. In particular,

each feasible solution is no more probable than another; therefore,

the results are difficult to interpret—especially when the range of

certain source proportions (minimum and maximum values

selected from the solution set for a particular source) is wide

(e.g., 0.1–0.9).

Bayesian SIMMs
Bayesian SIMMs allow ecologists to fit probability models to

isotopic data. These models can include various sources of

uncertainty, greater than n+1 sources, prior information, and a

hierarchical structure in a flexible and intuitive estimation

framework. Specifically, these Bayesian models allow users to

efficiently estimate numerous parameters while avoiding calcula-

tion of multidimensional derivatives, as in likelihood methods.

Several Bayesian SIMMs have been used to estimate propor-

tional dietary contributions at the population- [29,30] and

individual-level [31]. The earliest model, MixSIR (v.1.0.4) [29],

estimates the joint posterior probability of sources used by animals

(reported as marginal distributions for each dietary source

contribution) by importance sampling (less efficient sampling

method than Markov chain Monte Carlo sampling) and

incorporates the following isotopic information in the model: (1)

source mean and standard deviation, (2) tissue-diet discrimination

factor mean and standard deviation, (3) mixture data (single

consumer or sampled population), and (4) a Dirichlet prior on the

proportional estimators (recommended by Jackson et al. [32] and

incorporated in Semmens et al. [31]). Although MixSIR may

calculate reasonable dietary estimates in some cases, its credible

intervals may be too narrow because the model does not account

for variation among individuals and other sources of error

(Table 1).

Currently, two other Bayesian SIMMs are commonly used

[30,31]. Semmens et al. [31] built the first hierarchical Bayesian

model to account for intra-population variability in resource use

when estimating the diet of a population (hereinafter Semmens et

al. model). This model is very useful because it allows researchers

to estimate diets at both the population- and individual-level. In

general, hierarchical models are used to make such individual-level

inference possible; however, difficulties may persist when estimat-

ing individual diets. Specifically, these hierarchical models use

information from the population-level to estimate individual diets;

therefore, when the population sample size is large, individual

estimates will be pulled to the population mean [33]. Currently, it

is unknown what the ideal sample size is for individuals when

making individual-level inference. However, it is certain that the

population has a major influence on individual diet estimates and

repeated measures for individuals will improve inference [33].

aX denotes that the model provides solutions when sources exceed n+1, but solutions are not comparable to other models (i.e., output lists ranges of potential
solutions, not parameter estimates).

bX indicates Ward et al. (35) was the first study to use this approach. However, this model (35) has recently been introduced; therefore, it has not been commonly used.
doi:10.1371/journal.pone.0028478.t001

Table 1. Cont.

Isotopes to Estimate Diet: Review and Model
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Another model, the SIAR model [30]—originally developed as

an R package [34] and first described by Jackson et al. [32]—

allows a user to incorporate unequal elemental concentrations in

sources when estimating the diets of animals at the population-

level. Although these new Bayesian models provide reasonable

estimates for proportional dietary contributions, they lack the

ability perform an analysis that incorporates both concentration

dependence and individual-level estimation simultaneously.

Here, we explore the assumptions associated with SIMM analysis,

combine SIMM features (i.e., components of the model expressed

in mathematical terms), and develop two new features for our

comprehensive SIMM model called IsotopeR. We use the

hierarchical model structure of Semmens et al. [31] and the

concentration dependence formulation originally developed by

Phillips & Koch [24] as the foundation for our model, while

incorporating all other SIMM features to more accurately infer

proportional diet compositions (Table 1). In addition, we use a fully

Bayesian approach similar to Ward et al. (35) to jointly estimate

parameters. Joint estimation is useful when estimating multiple

dependent quantities because it accounts for the inherent uncertainty

associated with the joint estimation process. Not accounting for this

uncertainty can lead to overly precise credible intervals.

We validated IsotopeR by estimating the relative contribution of

sources to the diets of male food-conditioned (FC; [36]) black bears

(Ursus americanus) sampled in Yosemite National Park (YNP). Our

purpose was to use real data to estimate dietary parameters using

IsotopeR, not to accurately estimate the real diets of YNP black

bears. We also examined the effect of each feature on inference by

systematically removing them from the model independently.

Lastly, we compared IsotopeR estimates to those from other

frequently used models.

Methods

Sampling
Mixtures. Yosemite National Park Wildlife Management

staff live-captured FC black bears primarily in Yosemite Valley

for management purposes from August 2005 through September

2007 (Table S1). They captured and immobilized bears in culvert

traps according to Park Service protocol. They collected bear

tissues in accordance to Wildlife Management protocol. For hair,

they collected ten or more full-length guard hairs from along the

spines or upper limbs of bears during spring and early summer or

from the lower limbs or flanks in late summer and fall. We

assumed hairs collected during spring and early summer months

were grown the previous year, whereas hairs collected in the fall

were grown the current year [37].

Sources. We collected the following bear foods oppor-

tunistically in 2007 because they were identified by previous diet

studies (i.e., fecal analysis) as being important natural food sources for

bears throughout YNP [38,39]: acorns (Quercus kelloggii, Quercus

wislizenii), manzanita berries (Arctostaphylos spp.), grass (Agrostis

spp.), forbs (Trifolium spp., Lupinus spp., Montia spp.), and animals

[ants (Formicida), wasps (Vespidae), bees (Apidae), termites

(Isoptera), and mule deer (Odocoileus hemionus)](Table S2). We

used the isotope values for these foods to estimate the isotopic

signature of natural sources (100% plant diet, 100% animal diet).

We collected human hair samples in 2009 from floor clippings

at two salons and one barbershop in St. Louis, MO (n = 20; Table

S3); collecting these samples from the garbage did not require an

ethics permit. We compared isotopic results from 2009 to results

from a 2004 nation-wide survey of human hair (n = 52) [40]. We

found that the two samples were isotopically indistinguishable

(2004: d13C (�xx) = 216.960.8, d15N (�xx) = 8.860.5; 2009: Table S3;

t = 20.79, df = 71.62, P = 0.43); therefore, we pooled samples to

form the human food aggregate (i.e., 100% human food diet;

Fig. 1, Tables 2A & C). We assumed that bears on 100% human

food diet would be isotopically similar to humans because both

humans and bears are monogastric omnivores; thus, it is likely that

they discriminate against 14N and 12C by a similar magnitude.

We estimated the elemental concentration ([C] and [N]) of the

average human diet in the United States by analyzing nutrient data

from the USDA National Nutrient Database (NDB: http://www.

nal.usda.gov/fnic/foodcomp/search/; Table S4). First, we deter-

mined amount of digestible C and N in samples from each food

group (n$3 food items). Then we weighed the food group based on

the fractional contributions of these food groups to the diets of

humans [41]. Lastly, we used the weighted values to estimate the

average digestible [C] and [N] for human foods (Table S4). We used

these estimates to construct the isotopic mixing space used in our

example diet analysis, and unlike the plant and animal aggregate,

this aggregate was not estimated using Bayesian methods.

Sample preparation, analysis, and Suess effect correction
We rinsed guard hairs with a 2:1 chloroform-methanol solution

to remove surface oils. We oven-dried plants and homogenized

each sample. We then weighed all samples into tin cups

(466 mm). The Stable Isotope Laboratory at University of

California, Santa Cruz, CA analyzed samples for their carbon

(d13C) and nitrogen (d15N) stable isotopic composition by

continuous flow methods using a Carlo-Erba elemental analyzer

interfaced with an Optima gas source mass spectrometer.

We corrected all tissues for the Suess effect, which is defined as

the global decrease of 13C in Earth’s atmospheric CO2, primarily

due to fossil fuel burning over the past 150 years [42–44]. Based

on ice core records [45], we applied a time-dependent correction

of 20.022% per year [46] (to 2009) to all sample isotope values,

except 2009 human hair.

IsotopeR’s model features
Unlike other SIMM models we incorporate all features

currently used in SIMM analysis as well as other important

features (Table 1). Appendix S1 describes IsotopeR features,

illustrates how features interrelate, and defines prior distributions.

For those interested, we also provide the model likelihood

(Appendix S2). IsotopeR’s structure is hierarchical (similar to the

Semmens et al. model), such that an individual estimate is

conditional on the group or population’s distribution. The

hierarchical structure of the model allows us to make statistical

inference on each individual in the population, even though we

only have one observation for each individual. Although we

calculate individual estimates using only one observation, the

structure of our model allows for repeated observations of the

same individual. Including repeated measures for each individual

consumer would result in less influence from the population-level

and more accurate individual-level estimates.

Whereas current SIMMs consider input parameters as known

quantities, IsotopeR considers them random variables. Similar to

Ward et al. (35), these variables are estimated using a fully

Bayesian approach, which incorporates all the uncertainty

associated with the joint estimation process. In our analysis, we

jointly estimated 75 parameters using the full IsotopeR model.

Incorporating the uncertainty associated with estimating multiple

parameters leads to more accurate intervals [47] for sources and

their concentrations. We reported 95% credible intervals, as well as

means and standard deviations to illustrate (Fig. 1) and statistically

summarize (Table 2B) our isotopic mixing space. In addition to

defining our mixing space, we simultaneously estimated the joint

Isotopes to Estimate Diet: Review and Model
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posterior probability distribution of the sampled population’s

dietary source contributions. In the end, we reported marginal

posterior distributions for each dietary source at the population-

(Fig. 2, Table S5) and individual-level (Fig. 3, Table S6).

We follow the transformational procedure described by Semmens

et al. [31] to estimate proportional diet contributions using Markov

chain Monte Carlo (MCMC). This approach assumes that the

observed isotopic distribution of an individual i and element e is a

mixture distribution (Mi,e) where the isotopic distribution of each

source s (Xs,e) is weighted by the individual’s assimilated diet

proportion(fs,e,i) of each element. For a study with n food sources,

the individual’s observed isotopic distribution is given by

Mi,e~
Xn

s~1

fs,e,iXs,e, ð2Þ

where the vector of diet proportions for each element sums to 1,

such that

Xn

s~1

fs,e,ij j~1: ð3Þ

Specifically, we assume that the vector of fs’s in equation 2 are

random variables distributed using the centered log-ratio (CLR)

transformation described by Semmens et al. [31]. This transforma-

tion allows us to use MCMC on the proportions in equation 3 on the

continuous real line, and then transform results to the interval [0,1],

resulting in estimators of proportions. Due to low acceptance rates,

approaches such as importance sampling are difficult to apply when

estimating numerous parameters. Therefore, we used a Gibbs

sampler (a MCMC algorithm).

Isotopic correlation. Isotope ratios for different elements are

often assumed to be independent because independent biochemical

and ecological processes are ultimately responsible for their

fractionation [24]. Although the processes explaining most of the

variation in different elements may be different (e.g., photosynthetic

pathway for carbon vs. trophic enrichment for nitrogen), secondary

factors can lead to coupling between isotopic ratios of different

elements [27,40,48,49]. For example, several bear (Ursidae) studies

that used SIA provided evidence that the nutritional pathways of

carbon and nitrogen may be linked and the strength of correlation

may increase with trophic level [13,50,51].

Ignoring correlations in a model’s covariance structure can have

effects on both point estimates [52] and their intervals [53].

Besides IsotopeR, IsoError is the only model that considers

isotopic correlation in mixing model calculations [21]; however,

we use a different approach to include this information in our

estimation process. IsoError calculates the correlation coefficient

(r) of the sources and the mixture and applies these values to

Figure 1. Isotopic mixing space for FC black bears sampled in Yosemite National Park. Isotope values (d13C and d15N) for male bears
(open circles) captured in YNP and their estimated food sources. Estimated means for source aggregates (100% plant diet [green circle], 100% animal
diet [orange circle], 100% human food diet [blue circle]) and process error (1 SD; dashed ovals) were estimated by IsotopeR and defined the vertices
of the dietary mixing triangle; the shape of each source aggregate illustrates the degree of estimated isotopic correlation of observations used to
define each source (see Fig. 4). Variations in dietary contributions (%) of plants (P), animals (A), and human food (HF) are shown along the edge of the
mixing triangle (solid gray line) that connects estimated source means; labels denote the contribution of diet when consumers lie at the intersection
of the mixing triangle edge and gray dashed iso-diet lines (within the triangle). The black dashed triangle illustrates the approximate total mixing
space at 1 SD. Measurement error (not shown) was also estimated by IsotopeR and applied to each source observation when estimating source
aggregates and to each bear in the mixing space. The inset illustrates the isotopic mixing space if concentration dependence was not included in the
analysis.
doi:10.1371/journal.pone.0028478.g001

Isotopes to Estimate Diet: Review and Model
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correct the variance estimates. In contrast, we estimated r for all

sources using Bayesian methods and included these estimates as

terms in the covariance matrix (Appendix S1, #9).

Measurement Error. We estimated measurement error and

applied it to each observation. Specifically, we measured this error

from calibration runs used to ensure the mass spectrometer’s

accuracy. Because these calibrations are run on standards, we

jointly estimated the measurement error (Appendix S1, #1, 2, 3)

of the instrument along with the remaining model parameters.

Residual Error. We included a residual error term in our

model to account for the error otherwise unaccounted for in the

mixture. Our use of an error term (Appendix S1, #15,#25,#26) is

consistent with standard linear regression models and is similar to

other SIMMs (e.g., [30,31]). This term takes into account

unexplained variation, that is, variation not included in sources,

discrimination processes, sub-sampling error, or measurement error.

Process and discrimination error. Differences between the

isotope ratios in tissues of consumers and their dietary sources result

from fractionation and stoichiometric effects (i.e., isotopic routing)

[54]. In general, animal tissues are 15N- and 13C-enriched relative to

their diets because lighter isotopes (14N, 12C) are preferentially

eliminated via waste [6] and respiration [2], respectively, allowing

heavier isotopes (15N, 13C) to be assimilated into animal tissues.

These differences are commonly called ‘‘discrimination factors’’ and

will vary depending on factors such as the taxon and tissue analyzed

[55], a consumer’s nutritional status (e.g., [56,57]), sex [58], and the

macromolecular composition of diet (e.g., [12,23,59–61]).

Discrimination factors are often estimated (mean and SD) from

results from controlled diet studies, and are used to shift food sources

to consumers in an isotopic mixing space. These corrections are

critical to accurately estimating proportional dietary contributions

using SIMMs [23].

Discrimination factors extracted from the literature are assumed

to be true and predicted correctly from regression models fitted to

controlled diet data [55]. Using these fixed values can result in

erroneous results when estimating mixed diets of free-ranging

animals using SIMMs [62]. Recent research suggests that some

controlled studies have used invalid procedures to predict

discrimination factors [58,61,63]. For example, studies that fed

captive bears controlled diets [50,64] regressed tissue isotope

values on food isotope values. The predicted discrimination factor

for each natural food source was the difference between the

isotope value of the food source and the predicted isotope value for

the tissue; the latter calculated from entering the food isotope value

into the regression model. Robbins et al. [61] note that regression

coefficients calculated by such methods are biased at estimating

discrimination factors because tissue isotope values (diet isotope

value+discrimination factor) and diet isotope values (tissue isotope

value – discrimination factor) are autocorrelated. Predicting

discrimination factors using these covariates (in regression

equations) yield spurious results; therefore, discrimination factors

obtained by such methods should not be used to estimate the diets

of animals using SIMM analysis. Furthermore, results from recent

controlled diet studies using Sprague-Dawley rats suggest that

correlations between discrimination factors and dietary isotope

values are artifacts of the association between discrimination and

biologically significant characteristics of diet (e.g., %N, % protein)

that correlate with dietary isotope values. Therefore, if a regression

approach is used, discrimination factors should be regressed on

biologically significant characteristics of food, rather than food

isotope values.

We used regression models developed by Kurle [58] to predict

the tissue-diet discrimination factors of each sampled bear food. In

this study, we defined discrimination factors as the differences

between isotope values (d13C and d15N) for bear hair and sampled

bear foods (expressed using D notation: DXtissue-diet = dXtissue2dXdiet).

Kurle [58] fitted regression models to data collected from a

controlled diet study where omnivorous rats were fed various diets

that equilibrated to their tissues. Because rats are often used as

proxies for wild omnivores, we used the regression equations

developed in Kurle [58] to predict discrimination factors for the hair

of male bears on different % protein diets. Specifically, we entered

the estimated % protein (x) of plant and animal foods—determined

by multiplying %N of sampled foods by 6.25, or calculated from the

NDB# (acorns only)—into the regression equations (D13C =

20.14x+7.43; D15N = 0.14x22.10) provided by Kurle [58] to

Table 2. Bear food sources.

Aggregate d13C (%) d15N (%) r D13C (%) D15N (%) %C %N Digest [C] Digest [N]

A. Frequentist models Discrimination included:

Plants 221.47 (2.83) 21.48 (1.61) 20.29 45.41 (3.92) 1.57 (1.03) 47.29 (3.43) 3.51 (3.09)

Animal 227.44 (1.82) 11.71 (1.74) 20.83 48.26 (3.81) 12.17 (1.69) 51.50 (0) 12.17 (1.69)

Human 216.94 (0.79) 8.78 (0.47) 0.58 52.83 (2.54) 6.88 (1.10)

Bear 221.60 (0.88) 4.37 (0.68) 0.17

B. IsotopeR estimates

Plants 221.72 (2.66) 21.42 (1.61) 20.28 45.45 (3.94) 1.57 (1.03) 47.28 (3.91) 3.42 (2.28)

Animal 227.43 (1.61) 11.69 (0.29) 20.91 48.28 (3.86) 12.14 (1.70) 51.50 (0.06) 12.18 (1.63)

Human 216.95 (0.29) 8.78 (0.27) 0.69 Fixed estimates (same as A)

C. Other Bayesian
models

Discrimination separate:

Plants 227.53 (2.25) 20.75 (1.19) 6.06 (0.90) 20.73 (0.90) 45.41 (3.92) 1.57 (1.03) 47.29 (3.43) 3.51 (3.09)

Animal 224.23 (0.71) 3.16 (1.00) 23.22 (1.48) 8.55 (1.48) 48.26 (3.81) 12.17 (1.69) 51.50 (0) 12.17 (1.69)

Human 216.94 (0.79) 8.78 (0.47) Discrimination included Fixed estimates (same as A)

A) Discrimination-corrected plant (n = 48), animal (n = 29), and human food (n = 72) sources (aggregates) calculated from the sample data. (B) Plant and animal sources
estimated by IsotopeR. Human food concentrations are fixed as in A and C (see Table S4). (C) Raw isotope values and discrimination factors used in IsoSource and other
Bayesian models. Mean and (1 SD) reported.
doi:10.1371/journal.pone.0028478.t002
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Figure 2. Model comparisons. Means and 95% credible intervals (denoted by error bars) calculated by IsotopeR (blue circles) and other Bayesian
(orange circles) models. The blue dashed line and gray bar indicates the estimated mean and 95% credible interval for the full IsotopeR model,
respectively. Frequentist (open black circles with confidence intervals) and data cloning estimates (open green circles) are also illustrated.
doi:10.1371/journal.pone.0028478.g002
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predict D13C and D15N values for each sampled bear food. We then

added each sample’s D value to each sample’s measured isotope

value. Ultimately, the process error of the aggregate includes the

inherent error associated with the isotopic variation of the samples

in the aggregate and the variation of discrimination factors

associated with each sample in the aggregate.

Current Bayesian models and some frequentist models allow

users to apply fixed discrimination factors (predicted from

regression equations, or extracted or inferred from the literature)

and the associated uncertainty of each source to estimate dietary

parameters. It is common for researchers to use discrimination

factors from the literature instead of performing a complemen-

tary controlled experiment on their species of interest. Often

researchers either use discrimination factors from a single

controlled study that investigated discrimination in the same

taxon or researchers use an average discrimination factor

calculated from multiple studies (e.g., a waterfowl study calculated

the mean discrimination factor from various controlled studies on

birds). In addition to calculating the predicted discrimination

factor for each plant and animal sample, we calculated the error

(i.e., applied as a discrimination error term in the model; Appendix

S1, #4) associated with the regression models used to predict these

discrimination factors. Therefore, all known error associated with

the discrimination process is accounted for in our model structure.

Concentration dependence. SIMMs that fail to account for

stoichiometry in dietary sources may distort dietary estimates [26].

Including unequal elemental concentrations of sources when

calculating dietary estimates using SIMMs will alter the polygonal

Figure 3. Dietary estimates generated by IsotopeR and the Semmens et al. model. Proportional dietary estimates (marginal posterior
probability distributions) for individual bears (n = 11) estimated by IsotopeR (blue lines) and the Semmens et al. model (orange lines). Dotted lines
denote population-level dietary estimates.
doi:10.1371/journal.pone.0028478.g003
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isotopic mixing space, and in some cases, include mixtures that may

have been previously outside the mixing space [24]. Similar to

IsoConc [24] and SIAR [30], we strayed from the assumption that

concentrations are equal among sources. Specifically, IsotopeR

jointly estimated the concentrations (C and N) for each source

(Table 2B) and incorporated the assimilation efficiency (i.e.,

digestibility) of different foods (Appendix S1, #10, 11, 12, 13, 14).

We included the digestibility of each food source because previous

studies [25,26] suggest it is important to consider when incorporating

concentration dependence in mixing model calculations. In

particular, we estimated digestible [C] and [N] of human and bear

foods by analyzing nutritional data from the NDB (Table S4) and

sampled bear foods (Table S2), respectively. Calculations are

described in Koch and Phillips [26] and in Table S2 and S4.

Aggregating plants and animals. We aggregated sampled

bear foods into 3 sources: 100% plant diet, 100% animal diet, and

100% human food diet. We grouped acorns (n = 15), berries

(n = 9), grass (n = 9), and forbs (n = 15) into a plant aggregate

(n = 48), and deer (n = 5) and insects (n = 24) into an animal

aggregate (n = 29) (Tables 2 & S3). We aggregated these natural

food sources [38,39] because they were biologically similar [65]

and isotopically different (Table S2).

We used the three aggregated sources to estimate a joint

probability distribution of proportional dietary source contribu-

tions for the sampled population and each individual bear. These

distributions only provide inference to the foods we included in the

model and will likely be biased, considering the omnivorous diets

(i.e., they eat other plant and animal foods besides the species

included in the analysis) of YNP black bears.

Prior distributions. The prior distribution can have an effect

on inferences in Bayesian analysis. In particular, the prior can be

especially influential when sample sizes are low; in such cases, using

prior distributions derived from past results can improve inference

[66]. Noninformative prior distributions (distributions that play a

minimal role in the posterior distribution), also referred to as vague,

flat, diffuse, or uninformative, are used in Bayesian analysis ‘‘to let

the data speak for themselves, so that inferences are unaffected by

information external to the current data’’ [66,61].

When conducting Bayesian analyses it is important to ascertain

the influence of the prior on the posterior distribution; even when

using noninformative priors. Likelihood methods such as data

cloning may be used to examine such influence [67]. For each of the

multivariate normal distributions in this study, we used a normal

distribution prior to estimate mean parameters and gamma

distributions for variance parameters. We assessed the effect priors

had on inference by conducting a data cloning procedure described

by Lele et al. [67]. For this procedure, we replicated the dataset

(n = 10) and used these copies to swamp the posterior distribution,

effectively minimizing the influence of the prior distribution [67].

Data cloning procedures yield estimator output that are asymptot-

ically equivalent to maximum likelihood estimators. We evaluated

the influence of prior distributions on our analysis by comparing the

data cloning estimates to IsotopeR’s estimates.

Model comparisons
We calculated summary statistics for source aggregates and used

them as input parameters in all models except IsotopeR (Tables 2A

& 2C). We estimated the proportional source contributions (means

and 95% credible intervals) for the sampled population using the

full IsotopeR model and compared these estimates to those when

each IsotopeR model feature was independently removed from the

model (Fig. 2). In addition, we compared estimates by IsotopeR to

estimates calculated by commonly used SIMMs (Fig. 2, Table S5).

Lastly, we compared individual dietary estimates for bears

calculated by IsotopeR to those calculated by the Semmens et

al. model (Fig. 3).

Bayesian models have different convergence properties; there-

fore, we ran each model using a different number of iterations. We

ran a burnin of 56105 draws for all IsotopeR models, followed by

156105 iterations of MCMC. We thinned our resulting chain by

every 1,000 draws due to strong autocorrelation in some

parameters. The Semmens et al. model used a burnin of

156103 draws, followed by 156104 iterations of MCMC that

were thinned by every 100 draws, whereas SIAR was run at a

burnin of 46105 draws, followed by 16106 iterations that were

thinned by every 300 draws. MixSIR was run at a burnin of 56103

draws, followed by 36104 iterations.

Results

SIA and diet analysis
We analyzed the isotopic composition (d13C, d15N) of hair for

11 male FC black bears (Table S1) and estimated their diets using

IsotopeR (Fig. 2, Table S5; Appendix S3). The protein content of

sampled plants and animals were outside the bounds of the protein

content in rat diets [58]; therefore, we extrapolated the

discrimination factors used in this study. Specifically, the estimated

protein content of sampled plants (range = 2.5–23.1%) was less

than rat diets (range = 30–40%) and the estimated protein content

of sampled animals (60.5–98.1%) was greater than rat diets (Table

S2). Each predicted discrimination factor for each sample was

added to the isotope value of each sample (Table S2). We used

these adjusted values to estimate plant and animal source

aggregates (Table S2). IsotopeR estimated all three sources

(Table 2B) and the isotopic mixing space (Fig. 1). We note that

source data (Tables 2A & 2C) and IsotopeR estimates for sources

(Table 2B) were essentially equivalent.

IsotopeR estimated measurement error (d13C: �xx = 0.34; d15N:

�xx = 0.12) and applied this error to each observation. IsotopeR also

included discrimination error (D13C = 1.96; D15N = 0.37) in its

estimation process. We calculated isotopic correlation for use in

IsoError (Table 2A) and IsotopeR estimated this relationship

(Fig. 4, Table 2B). Animal and human d13C and d15N values were

highly correlated (Figs. 4, Table 2) and all source correlations were

similar to estimates calculated from the data (Tables 2A vs. 2B).

We found that estimating correlation in the residual error term

was unnecessary because the correlation in the bear population

(r = 0.17) was accounted for by the correlation in the sources.

Estimated elemental concentrations among food sources were

non-constant, causing the lines that connect the sources in the

isotopic mixing space to be curvilinear (Fig. 1). Specifically, the

isotopic data for animal matter had a higher [N] than sampled

plants (t = 47.40, df = 47.12, P = ,0.001; Table S2), regardless of

whether digestibility corrections were included in the estimation

(non-digest: t = 6.98, df = 47, P = ,0.001; digest t = 9.96,

df = 47.12, P = ,0.001). As expected, ignoring the effect of

concentration dependence among sources had a considerable

effect on inference (Fig. 2, Table S5).

IsotopeR features
We removed each feature from the model independently and

compared inference to results from the full IsotopeR model (Fig. 2,

Table S5). Removing correlation and measurement error indepen-

dently had an effect on source estimates (especially for human food);

although we note differences are similar to Monte Carlo error

(,3%). Removing the residual error term and discrimination error

term (the latter independently having a larger effect) also had an

effect on dietary estimates and increased the size of the credible
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intervals (Fig. 2, Table S5). Removing digestibility, concentration

dependence, and all features separately from the full model had

considerable influences on dietary estimates (Fig. 2, Table S5).

Bayesian and frequentist SIMMs
Population estimates generated by IsotopeR, SIAR, and

IsoConc were different than other estimates because these models

included concentration dependence. In addition, the digestibility

and non-digestibility population estimates for these models were

different within and among models (Table S5). Results from the

Semmens et al. model, MixSIR, IsoError, and IsotopeR without

features (i.e., No components; Fig. 2) were all similar (Fig. 2, Table

S5). Also, population estimates generated by the Semmens et al.

model and MixSIR’s were nearly identical (Fig. 2, Table S5); small

differences in results were likely due to error associated with

MCMC sampling and because the Semmens et al. model includes

individual-level estimation.

Estimates by SIAR and IsotopeR were similar, yet slightly

different. This difference was likely due to IsotopeR estimating

dietary proportions at the individual-level; including isotopic

correlation when estimating the mixing space; and accounting for

the measurement error applied to each observation in the study

and the error associated with a fully Bayesian approach. Including

these important features will increase the accuracy of estimating

dietary parameters.

IsotopeR’s credible intervals for individuals were wider than

estimates calculated by the Semmens et al. model (Fig. 3, Table

S6). Mean estimates for human food were similar between models,

but plant and animal proportions were different (Fig. 3, Table S6).

This discrepancy was likely due to the fact that Semmens et. al.

model did not include concentration dependence, measurement

error, or a fully Bayesian approach. Furthermore, their model

estimates were essentially the same for each individual (Fig. 3,

Table S6), whereas IsotopeR provided a variety of dietary

information for individuals (Table S6).

Point estimates by IsoError and IsoSource (tolerance of 0.05)

were essentially identical; however, we note, IsoError provided

confidence intervals and IsoSource did not. It is also important to

note that mean estimates for these models were similar to all other

models that did not include concentration dependence in their

calculations.

Influence of prior distributions
Data cloning and IsotopeR yielded similar dietary estimates

(,3%) (Fig. 2, Table S5); therefore, we conclude that priors had

little influence on the posterior distribution. We further tested the

influence of the priors by changing all prior distributions to uniform

distributions, which led to essentially no change (,3%) in our

estimated population- or individual-level estimators (Fig. 2, Table

S5). Given the Monte Carlo error present (,3%) these results

suggest that inferences are robust when using uninformative priors.

Discussion

IsotopeR generated credible intervals that were generally wider

than other models (Fig. 2, Tables S5 & S6); however, IsotopeR

calculated more accurate parameter estimates because the model

includes all recognized and quantifiable SIMM features, including

measurement error, concentration dependence (with digestibility),

isotopic correlation, individual-level estimation, and a fully

Bayesian calculation. Collectively, these model features can have

a considerable effect on dietary estimates when compared to

commonly used models (Fig. 2, Tables S5 & S6).

Based on the analysis of our dataset, the Semmens et al. model,

MixSIR, and IsoError, all generated very similar solutions (Fig. 2,

Table S5). However, these models provide invalid estimates when

elemental concentrations are nonconstant. Although IsoConc

incorporates concentration dependence and had mean estimates

similar to SIAR, like IsoSource, it does not calculate interval

estimates. SIAR provides reasonable parameter estimates, but

does not incorporate the sources of error and other important

features IsotopeR includes in its model design.

Measurement error, isotopic correlation, and residual
error

We suggest SIMM users include measurement error in their

estimation procedure because it exists, it can be estimated, and its

absence in the estimation process can bias results (Fig. 2, Table

S5). Previous studies have shown that not including measurement

error may lead to biased parameter estimates and can also lead to

a loss of statistical power [68]. We also found that accounting for

measurement error increased the magnitude of correlation in

sources. Not accounting for this error in measurements may

Figure 4. Isotopic correlation of d13C and d15N in each aggregated source. Orange circles indicate accepted draws from IsotopeR’s MCMC
chains; these values are used to estimate isotopic correlation and other source parameters. Black circles denote observed values.
doi:10.1371/journal.pone.0028478.g004
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effectively ‘wash out’ dependencies between variables and reduce

estimates of isotopic correlation in sources.

It is important to account for isotopic correlation in sources

because this relationship can affect the shape of the isotopic mixing

space and the posterior probability distributions. Determining the

proper shape of the mixing space is crucial when estimating the

diets of animals using isotopic data. Although there may not

always be enough measurements for source isotope values to

accurately estimate correlation coefficients, our results suggest that

including these estimates may be important when estimating the

credible intervals of dietary proportions. In particular, evidence

from our analysis suggests that the isotopic correlation of bears was

explained by isotopic correlation in sources; however, future

studies should determine if accounting for isotopic correlation in

sources fully explains isotopic correlation in mixture data.

Discrimination error
Isotopic discrimination is a complicated process and is difficult

to accurately measure [23]. As a result, many researchers use

discrimination factors from the published literature and assume

they were estimated correctly. We corrected the isotope value for

each food using a predicted discrimination factor and included the

variability of these predictions in the estimation of source

aggregates. In addition, we estimated sources using a discrimina-

tion error term, which represents the uncertainty associated with

the regression models used to predict discrimination factors.

Although our predicted discrimination factors are outside the

regression range provided by Kurle [58], and are therefore

unreliable, we assume interpolated predictions are valid and

suggest researchers adjust each sample in their study in such

a manner if feasible. We recommend sampling prey items to

determine their nutrient compositions before deciding the range of

biologically significant diets (e.g., ranging in protein quantity or

quality [61]) to feed animals in a complementary controlled study.

This will ensure regression models are useful in predicting

discrimination factors for consumer’s dietary sources.

We assumed rats, bears, and humans have similar discrimina-

tion factors since omnivorous species have similar digestive

physiologies. Although this assumption is reasonable (i.e., rats

are commonly used as a proxy for humans in controlled

experiments), more controlled studies need to be conducted to

determine if discrimination variation is negligible among omni-

vores on different protein quantity and quality diets.

Concentration dependence
The assumption that elemental concentrations among sources

are constant was violated and addressed in our analysis.

Specifically, IsotopeR corrected the isotopic mixing space (Fig. 1)

by accounting for digestible [C] and [N] values for each food

source. When excluding this feature from the model, dietary

estimates changed (Fig. 2, Table S5); a linear relationship between

sources (inlay in Fig. 1) led to overestimated sources with greater N

concentrations. Similar to other models that incorporate concen-

tration dependence (i.e., SIAR and IsoConc), our full model

estimates for plants increased considerably while animals and

human food decreased. This occurred because estimated N

concentrations were higher for animals and human food when

compared to plants (Table 2). Correcting for differences in

digestible C and N for source concentrations curved the lines that

connected the isotopic endpoints and pinched the bottom of the

mixing space. This decrease in area proximate to the plant

aggregate increased the estimated proportion of plants to the diets

of bears (Fig. 1). Although dietary estimates for omnivores are not

reliable without taking concentration dependence (with digestibil-

ity corrections) into consideration, the effects of concentration

dependence on SIMM inferences have not been evaluated using

captive animals. Therefore, in addition to including concentration

dependence in SIMM calculations it may also be important to

exclude it from analysis and report all results.

Greater than n+1 sources
Estimator coverage will decrease as the number of sources

increase. This is due to the inability of the model to always

estimate unique solutions when the number of sources is greater

than the number of degrees of freedom (n+1). Therefore, we

recommend reducing the amount of bias in SIMM analysis by

having #n+1 sources. This can be accomplished by aggregating

sources when they exceed n+1, adding dimensionality to the

mixing space by including additional isotopes in the analysis, or

eliminating sources that do not significantly contribute to the diets

of animals as suggested by previous diet studies. Without taking

one of these appropriate steps, a user will often calculate

confounding results (i.e., inconsistent or bimodal posterior

probability distributions). For example, a wolf population was

partitioned into three groups and a Bayesian SIMM was used to

make inferences about the diets of groups and individuals [31]. For

the mainland group, the isotopic distribution of the sampled

salmon population fell in the middle of the wolf distribution and

directly between the deer and marine mammal distributions; this

isotopic arrangement of sources confounded the estimation

process. Adding another isotope (e.g., d34S) or eliminating marine

mammals from the analysis—only if they were shown in other

studies to not contribute to the diets of wolves on the mainland—

would have likely remedied this problem.

For omnivores, plant and animals may be aggregated into more

groups (i.e., more dietary sources to estimate) if a user increases the

number of isotopes used to make inference (e.g., including d34S to

estimate the contribution of salmon in diets of bears in Alaska).

This would potentially increase the predictive power of the model

[30], especially if sources were #n+1. It is important to put

sufficient effort in using prior data (e.g., results from scat or gut

content analysis) to determine the complete list of food sources and

to aggregate them appropriately (e.g., [65]; as suggested in this

study) to construct an isotopic mixing space that will produce

unique and biologically significant solutions. In addition, such

studies are also important when defining prior distributions in

Bayesian SIMM analysis.

Influence of prior distributions
Estimating all parameters simultaneously (i.e., fully Bayesian

approach) is most useful when consumer sample size is low. When

sample size increases, estimation error decreases, and parameter

estimates will effectively become constants. Despite our small

sample size (n = 11), data cloning point estimates were similar

(,3%; Fig. 2, Table S5) to our model estimates; thus, suggesting

the prior had little influenced on IsotopeR’s parameter estimates.

Conclusions
Here, we provide a review of commonly used SIMMs and offer

a new comprehensive model. Our purpose was not to accurately

estimate the real diets of YNP black bears. We used an incomplete

collection of the plant foods and extrapolated discrimination

factors; therefore, our dietary inferences are likely incorrect.

However, we do believe our estimates are reasonable given what

we know about the diets of FC bears in YNP and the nutrient

requirements of bears. In particular, we believe it is reasonable for

bears that regularly consume human food (18–43%), which is high

in protein [41], to eat less animal matter (0–19%) than bears that
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do not consume human food. This is especially the case for YNP

black bears since most of the animal matter in their diets is

composed of insects [38,39]. In addition, vegetation is clearly the

largest contributor to the diets of bears (Fig. 2, Tables S5 & S6) as

suggested by past diet studies conducted in YNP [38,39].

SIMMs are evolving rapidly. We believe this expeditious process

will result in the abandonment of many models currently used to

estimate the diets of animals and the creation of many new models

(e.g., time-series models). Because IsotopeR includes all features

used in current models as well as other new features, we believe it

will be the model of choice for many ecologists interested

estimating the diets of animals using isotopic data. In addition,

the model could be used as a foundation for future SIMM

development because of its comprehensive structure; we note that

IsotopeR, like other SIMMs, is also applicable for use in

paleontology, archaeology, and forensic studies as well as

estimating pollution inputs. The R package ‘‘IsotopeR’’ (with

GUI) is available on CRAN (see R vignette and help files for

directions on model use).
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