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Abstract

When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose
levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in
response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present
experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then
metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used
to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while
rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In
addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by
administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis.
Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired
memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes
regulate memory formation by controlling the provision of lactate to support neuronal functions.
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Introduction

Glucose is an important modulator of memory in multiple tasks

and species, with extensive work showing that peripheral and

central administration of glucose enhances memory and that

glucose may be an important mediator of epinephrine effects on

memory [1,2,3,4,5,6]. For example, glucose administered system-

ically to humans and rats significantly reverses age-related memory

loss when given before or after information acquisition [7,8,9,10]

and improves memory in patients with Alzheimer’s disease and

Down’s syndrome [11,12]. Moreover, meals that create a slow,

steady release of glucose improve memory in children and

individuals who have better glucose tolerance perform better at

memory tasks [10,13,14].

Although the adult brain relies heavily on glucose for its energy

needs, the extracellular glucose levels are some of the lowest in the

body, approximately 1 mM in the hippocampus vs. 5 mM in

blood [15,16,17,18]. In addition, extracellular glucose levels in the

rat hippocampus during memory tests are dynamic, decreasing in

response to memory tasks and loads [19,20,21]. In particular,

when rats are tested for memory in a 4-arm spontaneous

alternation maze, glucose levels decrease substantially; memory

is enhanced by systemic glucose administration at doses that

reverse that depletion as well as by microinjections of glucose

directly into the hippocampus [19,22]. These decreases in

extracellular glucose levels in the hippocampus are not the result

of locomotor activity or of alternation behavior per se: Rats tested

on a 3-arm maze, an easier task for rats due to the lower working

memory load of three versus four locations, make a similar

number of arm entries. However, the rats exhibit only slight

decreases in extracellular glucose levels and memory is not

improved by glucose injections [21]. These findings suggest that

basal glucose levels are sufficient for the energy demands of the

easier task but not the harder one.

While the mechanism by which glucose acts on the brain to

regulate memory is unclear, there is evidence that glucose

augments training-related release of acetylcholine in the hippo-

campus [8,22,23,24], an effect that may participate in glucose

enhancement of memory. In addition, glucose effects on memory

may include downstream effects mediated by the mammalian

target of rapamycin (mTOR) pathway to promote mechanisms of

neuronal plasticity [25]. mTOR is itself down-regulated by

activation of the metabolic sensor, AMP-activated protein kinase

(AMPK) [26], in response to cellular energy stress as might occur

during training-associated decreases in glucose availability. Recent

evidence suggests that the coordinated functions of mTOR and

AMPK up- and down-regulate neuronal plasticity, respectively

[27].
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Neurons have two main sources of neural energy substrates,

both beginning with circulating glucose. The first is glucose entry

into neurons with subsequent oxidative metabolism. In addition to

direct entry of glucose into neurons, a second source is provided by

glucose entry into astrocytes. Unlike neurons, astrocytes store

glycogen that can be rapidly metabolized upon activation to

initiate glycogenolysis, thereby providing lactate as an energy

substrate transported to neurons. Thus, astrocytic storage of

glycogen provides a supplemental energy reserve available to

neurons when demand is high [28,29,30,31,32].

While glucose uptake into neurons and astrocytes is about equal

at baseline, recent findings show that whisker stimulation of

somatosensory neocortical activity results in a preferential increase

in glucose uptake into astrocytes [33]. Together, these findings

lead to a general hypothesis that basal brain extracellular glucose

levels can fulfill neuronal energy requirements under low-need

conditions but, when the need is greater, for example during more

intense cognitive functions, astrocytic glycogenolysis is activated to

provide lactate, which is transported to neurons to provide a rapid

boost from energy reserves when extracellular glucose levels are

not sufficient to maintain optimal function.

The functional significance of this reserve for learning and

memory is supported by recent findings that interference with

lactate transport from astrocytes into neurons impairs long-term

potentiation and long-term memory for an inhibitory avoidance

task [32]. The transport is mediated by monocarboxylate

transporters (MCTs) distinctly localized on astrocytes (MCT1

and MCT4), to release lactate, and neurons (MCT2) to admit

lactate [34,35,36]. Because pretraining injections of a lactate

transport inhibitor did not impair memory tested 1 hr after

training, the authors concluded that astrocytic glycogenolysis was

selectively necessary for long- but not short-term memory.

The present experiments examine possible astrocytic involve-

ment in a spontaneous alternation task, in which spatial working

memory is assessed during short-term memory tests. Supporting

the idea that memory in the spontaneous alternation task might be

mediated by astrocytic glycogenolysis, previous findings indicate

that systemic and central injections of glucose enhance memory in

this task and reverse age-related memory impairments. Figure 1

illustrates the model tested here with pharmacological and

neurochemical methods to evaluate the significance for memory

of astrocytic glycogen metabolism to lactate and transport to

neurons. In the present experiments, changes in extracellular

lactate and glucose levels were assessed with bioprobes, enabling

sampling every second. The roles of lactate and glucose in memory

were further evaluated with selective pharmacological agents to

block glycogenolysis [37] and MCT2 [38].

Methods

Subjects
Male, Sprague-Dawley rats (Harlan Laboratories; 3 months old

at the time of surgery) were housed individually with free access to

food and water and maintained on a 12:12 hr light/dark cycle

with lights on at 7:00 am. All procedures described in this paper

were approved by the University of Illinois Urbana-Champaign

Institutional Animal Care and Use Committee in accordance with

guidelines outlined in Guide for Care and Use of Laboratory Animals and

accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care.

Surgeries
Rats were anesthetized with isoflurane and placed in a

stereotaxic frame. In studies of the effects on memory of

intrahippocampal drug infusions, two 8-mm guide cannulae

(Plastics One) were chronically implanted bilaterally above the

central portion of the ventral hippocampus (coordinates: 5.5 mm

posterior and 64.8 mm lateral from bregma and 4.2 mm ventral

from skull) to accommodate infusion cannulae near the time of

behavioral testing. Due to the shape and size of the housing for the

wireless potentiostat used for measurements of changes in

extracellular glucose and lactate levels during behavioral testing,

the guide cannula for bioprobes needed to be placed close to the

midline of the skull. Therefore the guide cannulae for bioprobes

were implanted above the dorsal hippocampus instead of the

ventral hippocampus in either the left or right hemisphere

(coordinates: 3.8 mm posterior and 2.5 mm lateral from bregma

and 1.9 mm ventral from skull). We have previously found that

direct infusions of glucose into either the dorsal [39] or ventral

[22,24] hippocampus were both effective in enhancing memory

during spontaneous alternation testing. All rats were allowed at

least 1 week to recover after surgery during which rats were

handled 3 min each day for 5 consecutive days prior to behavioral

testing.

Memory testing
Spatial working memory was assessed using spontaneous

alternation tasks [cf: 40,41,42]. Spontaneous alternation was

chosen to assess memory because it requires no food reward and

thus no food restriction; therefore the natural levels of glucose or

lactate would be at baseline at the start of testing. The task was

also chosen because it measures spatial working memory, which is

sensitive to hippocampal manipulations. In the current experi-

ments, animals were placed on a four-arm, plus-shaped maze

(arms: 45 cm long, 14 cm wide, 7.5 cm tall; center area:

14614 cm) constructed of opaque, black Plexiglas, as described

previously [22,23,24] or in a four-arm, plus-shaped maze with

slightly higher sides (45 cm long, 14 cm wide, and 15 cm tall;

center area: 14614 cm) that were made of clear Plexiglas. The

maze with higher arms was used to contain the rats better on the

maze in experiments in which a delay was imposed between arm

choices [43,44]. The maze was located in the center of the testing

rooms on a table 76 cm above the floor surrounded by a rich

assortment of extra-maze visual cues. During each testing session,

the rat was placed in a start arm and allowed to explore the maze

freely for 20 min while the number and sequence of arm entries

were recorded. An alternation was defined as when the rat visited

all four arms within a span of five choices. Thus, five consecutive

arm choices during a testing session comprised a quintuple set. As

examples, a quintuple set consisting of arm choices A,B,D,A,C was

considered an alternation but a quintuple set consisting of arm

choices A,B,D,A,D was not considered an alternation. Using this

procedure, possible alternation sequences are equal to the number

of arm entries minus 4. The percent alternation score is equal to

the ratio of actual alternations/possible alternations 6100; chance

performance using this measure is 44%.

Intrahippocampal injections of lactate were expected to

enhance memory scores. To prevent a ceiling effect in memory

scores, a delay of 20 sec was introduced between each arm entry.

After the rat entered the first four arms, a barrier was placed at the

end of the fifth choice to prevent the rat from leaving the arm for

20 sec. The first four choices made without the 20-second delays

were not included in the calculations of spontaneous alternation

scores.

All other pharmacological experiments examined impairments

of memory with drugs that block lactate delivery from astrocytes to

neurons, together with possible reversals of these impairments with

co-administration of glucose or lactate. No delay between arm

Astrocytes and Memory
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entries was imposed during these experiments or in the experiment

measuring changes in extracellular glucose and lactate during

maze testing.

The pharmacological manipulations were performed as within-

subjects testing of multiple doses. Each testing session occurred in

a new room with new extramaze visual cues to encourage

sufficient exploratory behavior. Additionally, an interval of at least

48 hrs was imposed between testing sessions to allow sufficient

time for drugs to clear the animal’s system. To ensure an accurate

assessment of spontaneous alternation, only rats that made a

minimum of ten arm entries (6 possible alternations) during the 20-

minute test were included in the final analysis.

Bioprobe measurements of extracellular hippocampal
glucose and lactate during behavioral testing

Either a glucose- or a lactate-sensitive biosensor was inserted

into the dorsal hippocampus via a guide cannula (Pinnacle

Technology Inc., Lawrence, KS). The biosensor projected 3 mm

beyond the end of the implanted cannula. The last 1 mm of the

probe was coated with lactate oxidase or glucose oxidase to

metabolize the respective analyte, generating a current measured

by the probe. The biosensor was connected to a potentiostat inside

the head cap, which sent readings of the current generated by

lactate or glucose in extracellular fluid to a computer by telemetry,

with data recording and storage in 1-sec bins accomplished with

Pinnacle Technology Laboratory v. 1.6.7 software. Glucose

biosensors have previously been shown to have a range of 0–

10 mM with in vitro sensitivity of 1.660.4 nA/mM (mean 6 SEM)

and lactate biosensors have a range of 0–8 mM with an in vitro

sensitivity of 4.660.6 nA/mM (mean 6 SEM) [45,46]. To

confirm the accuracy of the biosensors prior to implantation and

immediately following testing, the probe was placed in 0.1 M PBS,

connected to the potentiostat, and readings were allowed to

stabilize (generally stable within 15–30 minutes). After a stable

baseline reading over at least 4 minutes was recorded for the

lactate probe, lactate was added to the PBS in 20 mM increments

every 1.5 minutes to establish the nA/mM ratio. For the glucose

probe, glucose was added to the PBS in 500 mM increments.

Because the probes have been shown to measure ascorbic acid,

they are coated with a selective membrane containing ascorbate

oxidase to break down the ascorbic acid so it is not measured by

the biosensor. To ensure this layer is intact, 250 mM of ascorbic

acid was added to the PBS solution two times. No other substrates

have been shown to be measured by the biosensors [45,46]. Four

rats were tested with the lactate biosensor and four rats were tested

with the glucose biosensor. Biosensors were inserted into the guide

cannula at least 4–5 hours prior to testing on spontaneous

alternation. For graphical presentation in this report, the

recordings are presented here as averages across 10 sec. Baseline

values were determined using the 5 min prior to the start of

spontaneous alternation and all results are reported as a percent

change from baseline. The results were then analyzed statistically

using comparisons at baseline, 0.5, 5 min, 10 min, and 15 min

into spontaneous alternation testing as well as at 0, 0.5, and 5 min

after the end of testing.

Intrahippocampal Injections to enhance or impair
memory

All injections (0.5 ml, 0.9% saline vehicle, pH = 7.2) were made

bilaterally into the ventral hippocampus with a CMA/100

microinjection pump at a flow rate of 0.25 ml/min 5 min prior

to behavioral testing. Ten rats were injected with lactate (0, 50,

100, or 150 nmol of lactate in 0.5 ml of 0.9% saline, pH = 7.2), 12

rats were injected with 1,4-dideoxy-1,4-imino-D-aribinitol (DAB;

0, 0.5, 5, 50 pmol, 50 pmol+25 nmol glucose, or 50 pmol+50 n-

mol lactate in 0.5 ml of 0.9% saline, pH = 7.2), and 8 rats were

injected with a-cyano-4-hydroxycinnamate (4-CIN; 3, 10,

30 pmol, 30 pmol+25 nmol glucose, or 30 pmol+50 nmol lactate

Figure 1. Model of astrocytic contribution of lactate to memory processing. Pharmacological tests and measures of many aspects of this
figure were tested in the present experiments. DAB: 1,4-dideoxy = 1,4-imino-D-aribinitol, 4-CIN: a-cyano-4-hydroxycinnamate, MCT: monocarboxylate
transporter.
doi:10.1371/journal.pone.0028427.g001
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in 0.5 ml of 1% DMSO and 0.9% saline, pH = 7.2) were infused

into the hippocampus 5 min prior to behavioral testing. DAB, an

inhibitor of glycogen phosphorylase, was used to block glycogen-

olysis in astrocytes [32,37,47]. Low doses of 4-CIN were used to

block the neuronal transporter, MCT2, while not blocking

astrocytic MCT1 or MCT4 transporters [34,35,48,49,50,51,

52,53]. Doses were given in a counterbalanced order using a

Latin squares design with each main treatment tested in separate

groups of rats. In the DAB and 4-CIN experiments, the maximum

doses (50 pmol of DAB or 30 pmol of 4-CIN) were co-

administered with either 25 nmol of glucose or 50 nmol of lactate

in a counterbalanced order after the dose-response curve had been

defined to test whether impairments induced by DAB or 4-CIN

could be reversed by either glucose or lactate. Because each

glucose molecule yields two lactate molecules, the molar dose of

lactate was twice that of glucose to match the stoichiometry

[32,54]. Because 25 nmol of glucose is similar to doses that have

been demonstrated to enhance memory,15, 50 and 150 nmol of

lactate were chosen to assess whether lactate could enhance

memory to include an optimal dose (50 nmol) as well as a dose

that is higher (150 nmol) and lower (15 nmol) [55,56].

Histology for glycogen localization and for cannula
placements

On completion of testing, rats received an overdose of sodium

pentobarbital followed by intracardial perfusion with ice-cold 4%

paraformaldehyde in 0.1 M PBS. Brains were removed and

postfixed overnight in 4% paraformaldehyde. They were then

transferred to a 20% glycerol solution until they lost buoyancy

(,48 hrs). They were then sectioned on a cryostat (Leica

CM1850, Leica Microsystems Inc., Germany) with 20 mm slices

of prefrontal cortex, striatum, dorsal hippocampus, and ventral

hippocampus saved for glycogen localization analysis using a

periodic acid-Schiff’s reagent method (PAS) previously demon-

strated to highlight glycogen [57]. Prior to PAS staining,

immunofluorescence methods were used to stain neurons with

neuronal nuclear antigen (NeuN) and astrocytes with glial fibrillary

acidic protein (GFAP) so that all sections were stained with PAS

and consecutive sections were stained for NeuN and GFAP.

Briefly, for GFAP immunofluorescence, the tissue was rinsed in

0.05 M PBS 46 for 10 minutes and then incubated in a 5%

normal goat serum (NGS), 1% bovine serum albumin (BSA), and

0.2% Triton X-100 in 0.05 M PBS for 60 minutes to block

endogenous proteins. Next, the tissue was transferred a solution

containing 5% NGS, 1% BSA, 0.2% Triton X-100 and 1:2000

dilution of Rabbit anti-GFAP (Millipore # AB5804) in 0.05 M

PBS overnight at room temperature. Sections were then rinsed 46
in 0.05 M PBS for 10 minutes each. Finally the tissue was

incubated for 2 hours in 1% NGS, 0.2% Triton X-100, and

1:2000 dilution of Goat anti-rabbit Alexa Fluor 488 (Invitrogen

#A11008). For NeuN immunofluorescence, the same rinsing and

blocking procedures were followed. The tissue was then incubated

in 5% NGS, 1% BSA, 0.2% Triton X-100 and 1:2000 dilution of

Milli-Mark FluoroPan Neuronal Marker ( Mouse IgG conjugated

with Alexa 488; Millipore # MAB2300X) in 0.05 M PBS

overnight at room temperature. All tissue was then mounted on

silated slides and stained for glycogen. The PAS method used was

previously described [57,58]. Briefly, slides were oxidized in 0.5%

periodic acid for 10 min at room temperature and then incubated

in a saturated solution of dimedone in 80% ethanol for 1 hour at

60uC. After rinsing in distilled water slides were reacted in Lillie’s

cold Schiff’s reagent for 30 minutes. Slides were next rinsed in

running tap water for 5 minutes. Slides were then dehydrated,

delipidated using Histoclear and coverslipped. Photomicrographs

of the tissue were collected using a Leica CTR6000 microscope, a

Leica DM600B camera, and Leica Application Suite (v. 3.7.0,

Leica Microsystems Inc., Germany). The PAS stain fluoresces at

an excitation wavelength around 525 nm and can be visualized

using a red light (rhodamine) fluorescent filter [59,60,61]. Images

were captured for each slice with the rhodamine and fitc (green)

filters (for GFAP or NeuN). Images were then compiled using

Photoshop v. 6.0 to look for colocalization.

Forty-mm sections were also taken from the same brains around

the areas of cannula implantations to confirm placements using

cresyl violet. Photomicrographs were taken using Image Pro

Express (v. 5.1.0.12, Media Cybernetics, Inc., Bethesda, MD). No

data had to be excluded from rats with either extensive tissue

damage or from rats where the placement was outside the target

brain structure; however one rat was excluded from the DAB

experiment because it died prior to the completion of data

collection. Two rats were excluded from the 4-CIN study; one

developed seizures and the other removed one cannula prior to

completion of data collection. Lastly, one rat implanted with a

glucose biosensor was excluded because it failed to navigate the

maze during the spontaneous alternation test.

To show that 4-CIN did not block monocarboxylate transport

into mitochondria, activity of the mitochondria was monitored

using a stain for succinate dehydrogenase (SDH) activity [62,63].

SDH activity has previously been demonstrated to decrease in the

presence of 3-bromopyruvate and with sensory deprivation

[62,63,64] supporting a relationship between SDH activity and

mitochondrial function. Prior to sacrifice, the rats used in the 4-

CIN dose response experiment received 30 pmol 4-CIN unilater-

ally in the ventral hippocampus and 1% DMSO in saline in the

other hemisphere, providing within-subjects comparisons. The

hemispheres receiving 4-CIN were counterbalanced across rats.

Five min after the injection animals were tested on spontaneous

alternation for 20 minutes to parallel the other behavioral

experiments. The rats then received an overdose of sodium

pentobarbital and were perfused transcardially with 10% glycerol

and 0.5% paraformaldehyde in PBS. The brains were removed,

blocked, frozen rapidly in heptane cooled with dry ice, and

sectioned in the coronal plane at 30 mm in a cryostat. Alternating

40 mm sections were saved from ventral hippocampus for cresyl

violet nissl staining to determine cannulae placements and staining

for SDH activity using methods previously described [62,65]. The

colorimetric change reflecting SDH activity was then assessed for

optical density using ImageJ 1.43n (National Institutes of Health,

USA, http://rsb.info.nih.gov/ij). In ventral hippocampus, sepa-

rate measures were taken from CA1, CA3 and the dentate gyrus.

Statistical Analysis
All statistical analyses were done using SPSS v. 18.0 (SPSS,

Chicago, IL). For each experiment, repeated measures ANOVAs

were used to analyze differences. Fisher’s least significant

difference post hoc tests were conducted when the results from

the ANOVAs were significant.

Results

Glycogen is in astrocytes, not neurons
As shown in Figure 2, astrocytes immunolabeled with GFAP

(left) and neurons immunolabeled with NeuN (right) in the dentate

gyrus are stained green. Glycogen colocalized with GFAP or

NeuN is stained yellow. As evident in this figure, glycogen staining

was colocalized with astrocytes but not with neurons. These

findings support past results [66,67,68,69]. The colocalization is

especially prominent in the molecular layer and the hilus of the
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dentate gyrus, i.e. in synapse dense regions of the granule cell

dendrites and the axonal regions where energy demands would be

expected to be higher than in the cell layers [17,70,71]. Similar

results (not shown here) were also seen in the prefrontal cortex,

striatum, and ventral hippocampus with colocalization of glycogen

and GFAP but no colocalization with NeuN.

Lactate and glucose levels increase and decrease,
respectively, during behavioral testing

Recordings from bioprobes before, during and after memory

testing revealed substantial increases in extracellular hippocampus

levels of lactate and decreases in extracellular levels of glucose

beginning with the placement of the rat on the maze (Figure 3).

Extracellular lactate concentrations significantly increased in the

first 30 sec of testing on the maze (t3 = 4.77, p,0.02) while glucose

levels did not significantly decrease until 5 min into testing

(t2 = 3.58, p,0.05). Both lactate and glucose levels returned

toward baseline after about 10 min of testing, while the rats were

still performing on the maze (baseline vs. 10 min: lactate, p = 0.12;

glucose, p = 0.47) however at 15 minutes after the start of testing,

lactate levels were significantly higher than baseline (t3 = 4.47,

p,0.05). The initial decreases and later increases in extracellular

glucose levels are consistent with those we have seen before with 5-

min sampling obtained with microdialysis procedures in the

hippocampus during similar spontaneous alternation testing; the

increase in extracellular glucose late in testing corresponds to an

increase in blood glucose levels during training [19,21].

A slight second increase in lactate was evident when the rats

were removed from the maze and replaced in their home cages

(t3 = 3.27, p,0.05). This could indicate that the arousal of

handling was sufficient to elicit these fluxes in lactate and supports

previous findings that stress can elicit lactate production from glial

cells [72]. However this effect at the end of testing was not as great

or as long-lasting as was the rise in lactate during testing. It should

also be noted that while no memory processing was measured

behaviorally at the time of handling-related increases in lactate, it

is likely that memory of the handling experience may also be

formed in this experiment as in other experiments of this type.

Intrahippocampal infusions of lactate enhance memory
Injections of lactate directly into the hippocampus prior to

testing enhanced memory on the delayed version of the

spontaneous alternation task (F3,27 = 4.04, p,0.02; Figure 4).

The enhancement of memory by lactate followed an inverted-U

dose response curve in a manner similar to that seen previously

with systemic and intrahippocampal injections of glucose

[23,55,73]. In past studies of intrahippocampal injections of

glucose, the optimal dose was ,20 nmol [55]. This value is

approximately half the optimal dose of lactate, consistent with two

lactates produced for each glucose metabolized [20,32,54,55].

There were no significant differences in the total arm choices the

animals made across doses (p.0.9). There were also no differences

across the counterbalanced testing sessions confirming there were

no overall improvements or impairments due to repeated

spontaneous alternation testing (p.0.3).

Inhibition of glycogenolysis impairs memory, an effect
reversed by addition of glucose or lactate

DAB was used to inhibit glycogen phosphorylase and to limit

the production of lactate from glycogen in astrocytes. DAB

injections into the hippocampus significantly impaired alternation

scores (F3,33 = 15.48, p,0.001; Figure 5). The impairment was

evident at both the 5 and the 50 pmol doses (Percent Alternation

6 SEM: Saline = 71%63.7% vs. 5 pmol DAB = 58.8%63.6%,

p,0.02 and vs. 50 pmol DAB = 41.6%63.2%, p,0.001). The

total number of arm choices did not differ across doses (p.0.6).

Injections of either 25 nmol of glucose or 50 nmol of lactate

together with the higher DAB dose significantly reversed the

memory impairments (Percent Alternation 6 SEM: 50 pmol

DAB = 41.6%63.2% vs. 25 nmol of glucose and 50 pmol

DAB = 62.6%63.1%, p,0.001 and 50 nmol of lactate and

50 pmol DAB = 56.2%62.9%, p,0.01).

Blocking lactate transport into neurons impairs memory,
an effect not reversed by addition of either lactate or
glucose

Preferential blockade of the MCT2 by intrahippocampal injections

of 4-CIN significantly impaired alternation scores (F3,15 = 4.52,

p,0.03; Figure 6). The impairment was seen at both the 10 pmol

and the 30 pmol doses (Percent Alternation 6 SEM: 1% DMSO in

Saline = 65.2%64.9% vs. 10 pmol 4-CIN = 47.4%64.7%, p,0.05

and 30 pmol 4-CIN = 39.8%63.3%, p,0.05). The total arm choices

made did not differ across doses (p.0.9). Importantly, the addition of

either 25 nmol of glucose or 50 nmol of lactate to the 30 pmol dose

of 4-CIN did not significantly improve working memory (all p.0.1).

In the ventral hippocampus, CA1, CA3 and DG were

individually analyzed for optical density using Paxinos and Watson

(2003) as a reference. The area of interest was highlighted and a

minimal threshold was used to exclude portions that did not

contain stained tissue (e.g. capillaries) and kept constant across

animals. No significant differences in SDH activity were seen

between the hemisphere that received 30 pmol of 4-CIN and the

hemisphere that received 1% DMSO in saline across the assessed

areas of the ventral hippocampus (Ns = 4; p.0.1, Figure 7).

Discussion

The data reported here support the view that, in the

hippocampus, glycogenolysis in astrocytes, and subsequent

delivery of lactate to neurons, is important for spatial working

memory. Within the hippocampus, glycogen was localized to

astrocytes and not neurons, consistent with other evidence that

astrocytes are the prime source of glycogen in the brain

[28,29,69,74,75]. There are still some who argue glycogen is

found in neurons as well, which could be due to the transient

appearance of glycogen in neurons during development [76] or

the appearance of glycogen in neurons in glycogen storage diseases

[77,78,79]. Glycogen was further localized to the molecular layer

and hilus, as compared to the dentate granule cell layer [80]; the

synapse dense molecular layer is likely to be a subregion especially

Figure 2. Immunolabeling of astrocytes using GFAP and
staining for glycogen using a Periodic Acid Schiff’s Reaction
(PAS) demonstrated colocalization (in yellow) of glycogen and
astrocytes (left). Immunolabeling of neurons using NeuN and
glycogen with PAS showed no colocalization (in yellow) of glycogen
in neurons (right).
doi:10.1371/journal.pone.0028427.g002
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Figure 3. Extracellular lactate and glucose levels in the hippocampus, measured before, during, and after behavioral testing. Using
lactate- and glucose-specific biosensors, extracellular concentrations of both lactate and glucose were measured during spontaneous alternation
testing. Lactate concentrations significantly increased at the beginning of behavioral testing (n = 4; t3 = 4.77, p,0.02; MEAN 6 SEM: 112.50%63.15%).
In contrast, glucose concentrations decreased after 5 minutes on the task (n = 3; t2 = 3.58, p,0.05; MEAN 6 SEM: 86.19%67.73%). The increase in
extracellular glucose seen 5–10 min after the start of memory testing corresponds to an increase in blood glucose levels (baseline vs. 10 min: p = 0.47,
10 min MEAN 6 SEM: 103.68%66.29%). After the rat was removed from the maze there was a significant increase in lactate compared to baseline
levels (t3 = 4.77, p,0.02; MEAN 6 SEM: 117.9%62.87%) most likely due to handling.
doi:10.1371/journal.pone.0028427.g003

Figure 4. Enhancement of memory with intrahippocampal injections of lactate. Lactate injected into the ventral hippocampus 5 min
before testing improved the percent alternation scores on a 4-arm delayed spontaneous alternation task at the 50 nmol dose (n = 10; F3,27 = 4.04,
p,0.02; Percent Alternation 6 SEM: Saline = 34.5%68.9% vs. 50 nmol Lactate = 61.2%66.5%). Higher and lower doses of lactate did not significantly
improve alternation scores.
doi:10.1371/journal.pone.0028427.g004
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dependent on maintenance of energy metabolism to support

neural functions [17,81].

Using bioprobes to measure extracellular lactate and glucose

levels in the hippocampus with 1-sec sampling, the present findings

indicate that lactate levels increase, and glucose levels decrease,

during alternation testing. The decrease in glucose levels is

consistent with prior evidence obtained with slower 5-min in vivo

microdialysis samples [18,21]. Of note, the decrease in glucose

Figure 5. Impairment of memory by DAB injections, used to inhibit glycogenolysis. The impairment was reversed by lactate or glucose,
which can act downstream of glycogenolysis. 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) injected into the ventral hippocampus 5 min prior to testing
significantly impaired scores on a 4-arm spontaneous alternation task (n = 12; Percent Alternation 6 SEM: Saline = 71%63.7% vs. 5 pmol
DAB = 58.8%63.6%, p,0.02 and vs. 50 pmol DAB = 41.6%63.2%, p,0.001). The performance deficit created by 100 mM of DAB was significantly
reversed by the co-administration of 100 mM lactate or 50 mM glucose (Percent Alternation 6 SEM: 50 pmol DAB = 41.6%63.2% vs. 25 nmol of
glucose and 50 pmol DAB = 62.6%63.1%, p,0.001 and 50 nmol of lactate and 50 pmol DAB = 56.2%62.9%, p,0.01).
doi:10.1371/journal.pone.0028427.g005

Figure 6. Impairment of memory by 4-CIN injections, used to block MCT2. The impairment was not reversed by either lactate or glucose.
Blockade of the MCT-2 with 4-CIN impaired working memory in a dose-dependent manner (n = 6; Percent Alternation 6 SEM: 1% DMSO in
Saline = 65.2%64.9% vs. 10 pmol 4-CIN = 47.4%64.7%, p,0.05 and 30 pmol 4-CIN = 39.8%63.3%, p,0.05). This impairment was not significantly
reversed with the addition of either lactate or glucose (ps.0.1).
doi:10.1371/journal.pone.0028427.g006
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levels in prior experiments was not a function simply of locomotor

activity since the decrease was not seen on a similar alternation

task with comparable motoric activity but lower cognitive

demands [21]. Also, the rise in hippocampal glucose levels while

the rats remain on the maze during testing corresponds to a rise in

blood glucose levels, probably subsequent to epinephrine release

from the adrenal medulla into blood and initiation of hepatic

glycogenolysis, while the rats are tested [21].

The reciprocal relationship between lactate and glucose

responses to memory testing suggests that glucose and lactate

work in concert to maintain the energy capacity of neurons, as

appears evident also in the dentate gyrus after perforant path

stimulation [45] and in somatosensory cortex after whisker

stimulation [33]. While it is clear that the increased levels of

lactate are mirrored by decreased levels of glucose in the beginning

of testing, the levels of extracellular lactate stay above baseline for

the duration of spontaneous alternation testing even as glucose

levels return to baseline values, suggesting that lactate may not just

be a compensatory substrate but may be important for

maintaining working memory processing.

The importance for memory of the increases in lactate was

supported by a set of pharmacological findings showing that

lactate provision from astrocytes to neurons is necessary for

memory processing. Lactate itself, in the absence of other

(impairing) treatment enhanced memory in the alternation task.

These findings are similar to those observed previously with

intrahippocampal glucose injections [8,16,20]. The inverted-U

dose-response function for memory enhancement is typical of

many cognitive enhancers, including glucose [3,101,102,103,104];

while this effect has been shown repeatedly, there is no consensus

regarding its neurobiological bases. The glycogen phosphorylase

inhibitor, DAB, impaired memory when injected into the

hippocampus; the impairment was mitigated by either lactate or

glucose. While the lactate most likely was directly taken up by the

neurons, it was unclear from these data whether the glucose was

being taken up by the neurons or the astrocytes in order to rescue

memory after impairment by DAB. As illustrated in Figure 1,

astrocytes could have provided lactate to neurons either through

glycolysis or glycogenolysis. However, additional findings indicat-

ed that MCT2 blockade also impaired memory and that the

impairment was not reversed by either glucose or lactate. The

blockade of the MCT2 transporter should not affect the ability of

neurons to admit glucose through the main neuronal glucose

transporter GLUT3 [105,106]. Thus, the current data suggest that

lactate, provided by astrocytes via glycolysis or glycogenolysis, may

be an important substrate for neurons during working memory by

providing rapid additional energy at times of high need. As shown

here, that need can be generated by cognitive demands.

The findings reported here are largely consistent with past

examinations of lactate derived from astrocytes in regulating

memory processing in chicks [107,108,109] and laboratory

rodents [32]. In addition, memory after inhibitory avoidance

training and long-term potentiation were impaired by interference

with MCT1 and these impairments were reversed by lactate. In

rats, training-related expression of molecular factors often

associated with memory, pCREB and Arc, were also blocked

after inhibition of MCT1 and these effects too were rescued by

lactate [32]. Although the previous work focused on lactate

contributions to consolidation of long-term memory, and included

the suggestion that lactate was not necessary for short-term

memory, the present findings reveal an important role for lactate

in spatial working memory assessed with short-term tests,

suggesting that the role of astrocytes and lactate include supporting

short-term memory processing as well as the formation of long-

term memories.

With the 1-sec sampling method used here to measure fluxes in

extracellular lactate and glucose levels; it appears that the rise in

extracellular lactate slightly precedes the decrease in glucose. This

finding suggests that the astrocytic responses may anticipate

energy needs rather than responding to them. In this regard, it is

important to note that glycogenolysis in astrocytes can be initiated

by activation of ß-adrenergic receptors on astrocytes [82,83,84].

Other neurotransmitters are likely involved as well, with evidence

revealing several signals that can lead to glycogenolysis in

astrocytes. These signals include neurotransmitters and modula-

tors such as glutamate, GABA, vasoactive intestinal peptide,

acetylcholine, serotonin, norepinephrine, dopamine, adenosine

and insulin [85,86,87,88,89,90,91,92,93,94,95]. Some of these

same modulators have also been shown to increase glucose

transport into the astrocytes [96,97,98] and this increased glucose

transport has been associated with learning and memory [99,100].

These and other neurotransmitters have received attention in

regulating memory processing, with interpretations based on

direct neural actions of the transmitters and related drugs and

other interventions. Given the breadth of neurochemical signals

that act on astrocytic receptors, and possibly then on lactate

production, it may be important to revisit the effects of many

neurotransmitter-related treatments that enhance memory to

determine which drugs act indirectly on neurons via regulation

of astrocytes to provide energy substrates available for neurons.

Together, these findings suggest that astrocytes may play an

important role in neural plasticity and memory [29,31,

32,96,109,110]. The neurochemical and pharmacological results

are consistent with the hypothesis, illustrated in Figure 1, in which

lactate is released from astrocytes and ‘shuttled’ to neurons for

energy metabolism (as in [29,111]). It must be noted that there is

not uniform agreement about the role for lactate in providing

energy for brain function [112]. In part, as presented in recent

reviews [17,112], the disagreement results from a dearth of

Figure 7. Representative histology showing SDH activity in the
ventral hippocampus. In this example, the left hemisphere received
infusions of 1% DMSO in saline (left) and the right hemisphere received
infusions of 30 pmol 4-CIN. There were no significant differences in
optical density between ventral hippocampal areas receiving 30 pmol
of 4-CIN or 1% DMSO in saline in CA1, CA3, or dentate gyrus (n = 6;
p.0.1).
doi:10.1371/journal.pone.0028427.g007
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information relating the magnitudes and time courses of fluxes in

brain ECF glucose levels to those of ECF lactate levels under

normal physiological conditions. The present findings address this

issue directly with experiments showing that lactate levels increase

when glucose levels decrease.

Although the focus of the present report is on metabolic

contributions to modulation of memory, there are other ways that

astrocytes may contribute to memory and other neural functions.

These need not be seen as mutually exclusive and include:

neurotransmitter clearance to inactivate neurotransmitters by

uptake mechanisms; as one of the elements of the ‘‘tripartite

synapse’’ [113,114], with astrocyte, pre- and postsynaptic neural

elements functioning in integrative manner to control excitability

and to reshape synapse morphology (e.g., [115,116,117,118,

119,120]); synthesis and release of D-serine into extracellular

space, where serine functions as an NMDA receptor co-agonist to

promote long-term potentiation [121]; synthesis and release of

ephrin-A3 in the hippocampus [122], which may regulate glial

glutamate transport, and synapse morphology [118]. Together,

there is growing evidence that astrocytes participate actively and

importantly to memory processing and neural plasticity, requiring

careful attention to the contributions of these varied astrocytic

mechanisms for memory.
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