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Abstract

Background: Niemann Pick disease type C1 is a neurodegenerative disease caused by mutations in the NPC1 gene, which
result in accumulation of unesterified cholesterol and glycosphingolipids in the endosomal-lysosomal system as well as
limiting membranes. We have previously shown the corneal involvement in NPC1 pathology in form of intracellular
inclusions in epithelial cells and keratocytes. The purpose of the present study was to clarify if these inclusions regress
during combined substrate reduction- and by-product therapy (SRT and BPT).

Methodology/Principal Findings: Starting at postnatal day 7 (P7) and thereafter, NPC1 knock-out mice (NPC12/2) and wild
type controls (NPC1+/+) were injected with cyclodextrin/allopregnanolone weekly. Additionally, a daily miglustat injection
started at P10 until P23. Starting at P23 the mice were fed powdered chow with daily addition of miglustat. The sham group
was injected with 0.9% NaCl at P7, thereafter daily starting at P10 until P23, and fed powdered chow starting at P23. For
corneal examination, in vivo confocal laser-scanning microscopy (CLSM) was performed one day before experiment was
terminated. Excised corneas were harvested for lipid analysis (HPLC/MS) and electron microscopy. In vivo CLSM
demonstrated a regression of hyperreflective inclusions in all treated NPC12/2mice. The findings varied between individual
mice, demonstrating a regression, ranging from complete absence to pronounced depositions. The reflectivity of inclusions,
however, was significantly lower when compared to untreated and sham-injected NPC12/2 mice. These confocal findings
were confirmed by lipid analysis and electron microscopy. Another important CLSM finding revealed a distinct increase of
mature dendritic cell number in corneas of all treated mice (NPC12/2 and NPC1+/+), including sham-treated ones.

Conclusions/Significance: The combined substrate reduction- and by-product therapy revealed beneficial effects on the
cornea. In vivo CLSM is a non-invasive tool to monitor disease progression and treatment effects in NPC1 disorder.
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Introduction

Lysosomal storage diseases (LSDs) are a form of metabolic

disorder caused by inherited deficiencies of specific lysosomal

enzymes, which lead to the accumulation of nonmetabolized

macromolecules [1]. The frequency of LSDs as a group varies

among populations from 7 to 25 per 100.000 [2].

Niemann Pick disease type C1 is a LSD of autosomal recessive

inheritance, caused by mutations in the NPC1 gene that encodes

for a large transmembrane protein [3]. In Western Europe, the

birth incidence of NPC1 has been estimated to be 1 in 150.000

[4]. Cells harbouring mutations in NPC1 gene accumulate low-

density lipoprotein (LDL)-derived cholesterol in late endosomes/

lysosomes and exhibit defects in lipid trafficking and storage [5,6].

Affected patients develop ataxia, motor dysfunction and organo-

megaly [7,8]. The neuropathological features are characterized by

progressive loss of Purkinje cells in the cerebellum, and neurons in

the basal ganglia and brain stem [9,10]. Also, cytoskeletal changes

have been demonstrated in neurons in form of neurofibrillary

tangles, consisting of hyperphosphorylated tau protein [11]. The

initial clinical manifestations of NPC1 disease vary strongly, being

neurological, pulmonary or hepatic in nature [12]. The lifespan of

patients varies between a few days until over 60 years of age - the

majority of cases, however, die between 10 and 25 years of age

[13].

One possibility to alleviate the severity of disease could be

blocking the intestinal absorption of cholesterol with Ezetimibe

[14] or inhibition of protein hyperphosphorylation. Blocking of

cyclin-dependent kinases reveal a strong inhibitory effect on

protein phosphorylation, being favourable for neural cell survival

and thus improving locomotor defects in NPC1 knock-out

(NPC12/2) mice [15]. However, the inhibition of extracellular
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signal regulated kinases did not alter neurological indices of NPC1

disease in this mouse model [16].

A very promising approach for the treatment of NPC1 is the

substrate reduction therapy (SRT) with the blood-brain barrier

crossing small molecule miglustat (N-butyldeoxynojirimycin),

which has been reported to reduce lipid accumulation in

NPC12/2 mice, thus leading to delay in onset of clinical signs

and increasing lifespan [17]. Administration of miglustat has

normalized lipid trafficking and improved clinical signs in human

patients, both children and adults [18–22].

The second therapeutic approach, so called by-product therapy

(BPT) utilizes the neurosteroid allopregnanolone, which is

deficient in NPC12/2 mice [23]. Allopregnanolone, dissolved in

2-hydroxypropyl-ß-cyclodextrin (CD), led to delay in clinical onset

and decrease of ganglioside deposition [24]. It could be shown that

combination of both approaches (miglustat and cyclodextrin/

allopregnanolone) had a significant synergic effect in ameliorating

disease progression [25]. Very interestingly, the same study

demonstrated that administration of vehicle cyclodextrin even at

low concentrations had a greater therapeutic effect in NPC12/2

mice than did the administration of allopregnanolone alone.

Recently, we have reported on the visualization of hyperre-

flective inclusions in corneal epithelial cells in NPC1 deficient mice

by in vivo confocal laser-scanning microscopy (CLSM), a non-

invasive technique [26]. The present study was designed for

investigation of NPC12/2 mice corneas after combined SRT and

BRT, including cyclodextrin, allopregnanolone and miglustat

(Cyclo/ALLO/miglustat). We hypothesized that treatment effects

could be monitored by this in vivo imaging possibility, thus, giving

researchers and clinicians an additional tool for monitoring disease

lapse and treatment efficiency among neurological and biochem-

ical examinations.

Results

In vivo CLSM
In vivo CLSM allowed visualization of all corneal layers at the

cellular level (Fig. 1).

The most superficial cells of a normal cornea (NPC1+/+ mice)

were visualised as polygonal structures with bright cytoplasm and

hyperreflective nuclei (Fig. 1A). The smaller basal cells were

characterized by bright cell borders and a dark cytoplasm, without

distinguishable nuclei (Fig. 1B). The corneal stroma demonstrated

a dark background (extracellular matrix), reflective interconnected

stellate structures, corresponding to keratocyte cell bodies and

hyperreflective stromal nerves (Fig. 1C). The endothelial mono-

layer consisted of hexagonal cells with bright cytoplasm, displaying

minimal variations in size and morphology (Fig. 1D).

Figure 2 demonstrates structural changes affecting basal cells in

NPC1 disease. When compared to the normal morphology of

basal epithelial cells seen in NPC1+/+ mice (Fig. 2A), the basal cells

in NPC12/2 cells showed no distinguishable borders and

cytoplasm, but were identified as units with hyperreflective content

(Fig. 2B).

Figure 1. In vivo CLSM of NPC1+/+ mouse cornea. (A) - superficial epithelial cells with hyperreflective nuclei and dark cytoplasm. (B) - basal
epithelial cells with polygonal morphology and bright cell borders. (C) - corneal stroma with dark ground substance and hyperreflective nerves.
(D) - hexagonal endothelial cells with highly reflective cytoplasm and dark cell borders. Bar: 50 mm.
doi:10.1371/journal.pone.0028418.g001

Corneal Changes in NPC1 Disease after Therapy
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In vivo CLSM revealed regression of hyperreflective inclusions in

epithelial cells after Cyclo/ALLO/miglustat treatment. Impor-

tantly, the corneal response to the treatment varied strongly

between individual mice. We therefore classified the inclusions in a

grading system. From out of 14 Cyclo/ALLO/miglustat-treated

NPC12/2 mice 3 almost lacked inclusions (grade 0, Fig. 3A).

Among residual 11 NPC12/2 mice, grade 1 (up to 25% of cells

affected) occurred in 5 (Fig. 3B) and grade 2 (up to 50% of cells

affected) in 6 mice (Fig. 3C). In sham-treated NPC12/2 corneas

the depositions of very high intensity affected almost every single

cell (grade 3, Fig. 3D). To date, the grade 3 was never observed in

Cyclo/ALLO/miglustat-treated NPC12/2 mice. These findings

are summarized in a graph (Fig. 3E), which clearly shows the

percentage of NPC12/2 mice involved in a grading system from 0

to 3, before and after treatment.

These observations become more obvious in oblique sections of

the epithelium (Fig. 4). The oblique section shows clearly

hyperreflective inclusions in intermediate and basal cells in

NPC12/2 corneas (Fig. 4B). The corneas of some Cyclo/

ALLO/miglustat-treated NPC12/2 mice revealed almost no

inclusions (Fig. 4C) when compared to controls (Fig. 4A), whereas

corneas from other treated NPC12/2 mice revealed more

pronounced inclusions (Fig. 4D, grade 2), whose intensity was,

however, much lower when compared to untreated ones.

Normally, there are only very few dendritic cells (DCs) observed

in the central mouse cornea. They become obvious only after

careful examination of the entire central part of the cornea. A

considerable increase in DC number was noted in NPC12/2

corneas (Fig. 5A). After Cyclo/ALLO/miglustat treatment, in

both groups (NPC12/2 and NPC1+/+) in vivo CLSM revealed

numerous mature DCs with processes arranged in a meshwork

(Fig. 5B and C). Interestingly, also the sham-treated group

revealed very pronounced DCs (Fig. 5D). The number of DCs

was quantified in all groups (Table 1). In the NPC1+/+ group

(Fig. 6A) the number of DCs increased significantly from 963 to

4565 cells/mm2 after Cyclo/ALLO/miglustat therapy

(p,0.0001). Also the sham-treated NPC1+/+ mice revealed an

increase to 3463 cells/mm2, which was statistically significant

when compared to pre-treatment value (p,0.0001). Similarly, the

NPC12/2 corneas (Fig. 6B) demonstrated a significant increase of

DC number from 2965 cells/mm2 to 7266 cells/mm2

(p,0.0001) after Cyclo/ALLO/miglustat therapy and to 5064

cells/mm2 (p,0.0001) after sham treatment. Notably, the increase

of DC number was more pronounced after Cyclo/ALLO/

miglustat therapy: the comparison of both forms of therapy by

mean of DC number revealed a significant difference, both for

NPC1+/+ (p = 0.00068) and NPC12/2 (p = 0.000018) mice

corneas.

High Performance Liquid Chromatography/Mass
spectroscopy (HPLC/MS)

The levels of two different isoforms of disialotetrahexosylgan-

glioside 2-GM2 (GM2 C20-0 and GM2 C18-0) were negligible

(lower than level of quantification-LLOQ, less than 4 mg/g) in

NPC1+/+ mice corneas (n = 4). Therefore it was not possible to

evaluate the impact of Cyclo/ALLO/miglustat therapy on GM2

level in NPC1+/+ corneas. In contrast, the NPC12/2 corneas

(n = 4) revealed a highly increased level of GM2 isoforms before

treatment, reaching 12 and 14 mg per g tissue for GM2 C20-0 and

GM2 C18, respectively. After Cyclo/ALLO/miglustat therapy the

HPLC/MS analysis demonstrated that the GM2 C20-0 and GM2

C18-0 levels were dramatically reduced in Cyclo/ALLO/miglu-

stat-treated NPC12/2 mice corneas, reaching 3 and 2 mg per g

tissue, respectively (Fig. 7A). For both, C20-0 and C18-0 this

reduction reached significance (p = 0.02).

The corneas of Cyclo/ALLO/miglustat-treated NPC1+/+ and

NPC12/2 mice revealed also a reduction in free cholesterol level

in both groups (Fig. 7B). The level of cholesterol was reduced from

19846164 mg/g (before treatment) to 13676493 mg/g (after

Cyclo/ALLO/miglustat treatment) in NPC1+/+ mice and from

27926599 mg/g (before treatment) to 21656248 mg/g (after

Cyclo/ALLO/miglustat treatment) in NPC12/2 treated ones.

This decrease was, however, not significant for both, NPC1+/+ and

NPC12/2 mice corneas (p = 0.0564 for NPC1+/+ group and

p = 0.083 for NPC12/2 group).

The comparison of free cholesterol level between NPC1+/+ and

NPC12/2 group revealed a statistically not significant increase in

NPC12/2 group before treatment. After Cyclo/ALLO/miglustat

therapy the difference in free cholesterol level was still relatively

small between NPC1+/+ and NPC12/2, reaching, however,

significance (p = 0.02).

As mentioned above, the corneas for lipid analysis were

harvested from randomly chosen mice. To verify the treatment

effects, a comparison between HPLC data and in vivo CLSM

findings was performed.

By comparison of absolute values of HPLC/MS (Table 2) with in

vivo CLSM findings a very interesting observation was made: those

Figure 2. In vivo CLSM of basal epithelial cells in NPC1+/+ and NPC12/2 mouse cornea. Compared to the normal epithelium of NPC1+/+

mice (A), the basal epithelial cells of NPC12/2 mice revealed no visible cell borders and excessive hyperreflective inclusions (B). Bar: 50 mm.
doi:10.1371/journal.pone.0028418.g002

Corneal Changes in NPC1 Disease after Therapy
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mice having intracellular deposits of grade 0 or 1 in in vivo CLSM

also had negligible GM2 values in HPLC/MS (LLOQ), whereas the

mice with more pronounced accumulations in CLSM demonstrated

detectable amounts of both isoforms of GM2, which were, however,

strongly decreased when compared to pre-treatment values.

Electron microscopy
In one Cyclo/ALLO/miglustat-treated NPC12/2 mouse

cornea that showed only sporadic CLSM reflectivity (mouse

1089), we did not observe myelin-like material compared to that

found in non-treated NPC12/2 corneas. The superficial epithelial

Figure 3. Grading system of corneal epithelial inclusions following in vivo CLSM in Cyclo/ALLO/miglustat-treated NPC12/2 mice.
(A) - almost no inclusions, grade 0. (B) - isolated hyperreflective structures in the basal cell layer, less than 25% of cells are affected-grade 1. (C)- up to
50% of cells content hyperreflective inclusions-grade 2. (D) - for comparison, the cornea of a sham-treated NPC12/2 mouse - more than 75% of cells
are affected, grade 3. Bar: 50 mm. (E) - A graph, representing the number of NPC12/2 mice with corneal inclusions of different grades (0–3) before and
after treatment.
doi:10.1371/journal.pone.0028418.g003

Corneal Changes in NPC1 Disease after Therapy
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cells did not contain any pathological intracellular inclusions

(Fig. 8A). Occasionally, some enlarged electron-lucent compart-

ments (probably Golgi cisterns) were seen in intermediate

epithelial cells (Fig. 8B, C) rather than in basal cells (Fig. 8D).

Unmyelinated nerve fibers in several areas and levels of basal

epithelium and corneal stroma were largely void of inclusions

(Fig. 8D, E). Also, keratocytes of the stroma did not show any

deposits after combined drug therapy (Fig. 8F).

Discussion

The NPC1 phenotype observed in BALB/c npcnih mice results

from a mutation in NPC1 gene-the same gene which is responsible

for NPC1 disease in humans [27]. These mice exhibit a deficiency

of NPC1 protein with subcellular consequences, including

disturbances in sterol metabolism and trafficking [28]. Patholog-

ical features in NPC12/2 mice resemble those observed in late

infantile NPC1 disease in humans, exhibiting progressive neuro-

degeneration, hepatosplenomegaly and ataxia [29]. The mice

revealed excessive lipid deposition in different tissues, causing

permanent cellular damage, particularly in the nervous system,

liver, spleen, lungs and bone marrow [27]. Cholesterol and

glycosphingolipids such as GM2 and neutral glycolipids have been

reported to be predominantly accumulated in the NPC12/2

mouse [30,31]. Consistently, we could show accumulation of GM2

in the cornea of NPC12/2 mice [26]. Interestingly, no unesterified

cholesterol storage could be found in the cornea, whereas the

retina of the same mice revealed excessive accumulation of free

cholesterol [32], suggesting different storage patterns even within

different tissues.

The ophthalmological examination has been reported to be of

particular interest in NPC1 disease, because abnormal saccadic

eye movements (SEM) are one of the earliest neurological signs of

disease onset [33]. The deficit in SEM occurs both in vertical and

horizontal plane. Another sign of NPC1 disease addressing to

ocular involvement is the macular cherry red spot, which is one of

most important symptoms in the diagnosis of almost all storage

diseases [34,35]. The corneal involvement in NPC1 disease has

been only seldom reported, and even these rare data are

inconsistent, reporting in one case on corneal inclusions [36]

and in another case on normal corneal morphology without any

abnormalities [37], even though the same techniques (histology

and electron microscopy) were used in both studies. In our

previous work we demonstrated for the first time corneal

inclusions in NPC12/2 mice by using in vivo CLSM. The in vivo

CLSM findings were confirmed by lipid analysis and electron

microscopy [26]. The in vivo CLSM is a relatively new but very

promising approach for corneal examination in LSDs. This

technique has a big advantage to be non-invasive, thus enabling

dynamic studies in the same individuals over time. The corneal

involvement has been demonstrated by using in vivo CLSM in

patients with other LSDs, like Fabry disease, Tangier disease and

cystinosis [38–40].

On the basis of our in vivo CLSM finding about corneal

involvement in NPC1 disease, we performed the present study to

further clarify whether the regression of cellular inclusions could

Figure 4. In vivo CLSM of cornea, oblique section. (A) - normal cell morphology in NPC1+/+ cornea. (B) - inclusions in intermediate and basal
cells in NPC12/2 cornea. NPC12/2 corneas after treatment: (C) - almost no inclusions after Cyclo/ALLO/miglustat therapy, (D) - severe inclusions with
low intensity, after Cyclo/ALLO/miglustat therapy. Bar: 50 mm.
doi:10.1371/journal.pone.0028418.g004

Corneal Changes in NPC1 Disease after Therapy
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be achieved by combined Cyclo/ALLO/miglustat therapy. This

combined approach has been shown to have alleviating effects in

NPC12/2 mice [25]. The treated NPC12/2 mice revealed

delayed onset of ataxic gait and tremor, increased lifespan and

significant reduction of cholesterol and ganglioside accumulation.

In good agreement with Davidson et al. (2009), [25], we visualised

the regression of accumulations in corneal epithelium of NPC12/2

mice. Notably, the in vivo CLSM findings varied between individual

mice, revealing an absolute remission of deposits in some animals,

and still pronounced accumulations in others. Overall, however, the

number of affected cells and intensity of inclusions were significantly

reduced in corneas of Cyclo/ALLO/miglustat-treated NPC12/2

mice when compared to untreated or sham-treated NPC12/2 mice

corneas. These findings were confirmed by lipid analysis, which

demonstrated a significant reduction of both examined isoforms of

GM2 and a slight reduction of cholesterol concentration. These

findings could be further confirmed by using electron microscopy,

which also revealed a relatively normal corneal morphology,

without apparent intracellular inclusions. It should be pointed out,

that the free cholesterol concentration differed not significantly

between both groups before treatment. This difference became,

however, statistically significant after Cyclo/ALLO/miglustat

treatment. We proposed that this might have been caused by a

more pronounced decrease of free cholesterol concentration in

NPC1+/+ mice corneas (31% from initial values in NPC1+/+ versus

22% in NPC12/2 mice corneas). Accordingly, we would also expect

a more pronounced decrease of GM2 levels in NPC1+/+ mice

corneas. We could not prove this, however, because the levels of

both isoforms of GM2 were lower than the limit of quantification in

NPC1+/+ mice corneas. The main scope of our study was, however,

Figure 5. Corneal Dendritic cells in in vivo CLSM. (A) - Dendritic cells in the cornea of a NPC12/2 mouse before treatment. Massive
accumulation of DCs in the corneas of NPC12/2 (B) and NPC1+/+ mice (C) after Cyclo/ALLO/miglustat-treatment. Also sham-treated mice revealed a
dense population of DCs (D). Bar represents 50 mm.
doi:10.1371/journal.pone.0028418.g005

Table 1. Dendritic cell number in the central cornea of NPC1+/+ and NPC12/2 mice before and after treatment (Cyclo/ALLO/
miglustat or sham).

Number of DCs (cells/mm2)

Before treatment After Cyclo/ALLO/miglustat-traetment After sham treatment

NPC1+/+ 963 4565 3463

NPC12/2 2965 7266 5064

doi:10.1371/journal.pone.0028418.t001

Corneal Changes in NPC1 Disease after Therapy
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the in vivo examination of hyperreflective inclusions following

Cyclo/ALLO/miglustat treatment. Biochemical analysis and

electron microscopy were performed for confirmation of in vivo

findings, and only on a limited number of animals. Future

biochemical studies with sufficient number of mice (n = 6 or 8)

should be performed to clarify whether (and why) the corneas of

wild type and NPC12/2 mice respond differently to Cyclo/ALLO/

miglustat treatment.

Another important finding was the increase of dendritic cell

(DC) number in both treated groups. To our knowledge, one

possible explanation could be the mild allergic inflammation of

corneal surface without functional specificity. Alternatively, this

reaction could be caused by powdered chow which all mice were

fed starting at P23 until termination of experiments. The

powdered chow could have induced mechanical stress in the

cornea, leading probably to the migration of mature DCs from

the periphery to the central cornea, thus, resulting in the increase

Figure 6. Number of dendritic cells before and after treatment in NPC1+/+ and NPC12/2 mouse corneas. (A) - the number of dendritic
cells in NPC1+/+ corneas increased after Cyclo/ALLO/miglustat and sham treatment. In both cases the increase was statistically significant (p,0.0001).
(B) - also the corneas of NPC12/2 mice revealed a statistically significant increase in dendritic cell number both after Cyclo/ALLO/miglustat and sham
treatment (p,0.0001).
doi:10.1371/journal.pone.0028418.g006

Corneal Changes in NPC1 Disease after Therapy

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e28418



of DCs in the central cornea. This hypothesis could be supported

by the fact that sham-treated mice, which got their chow in

powdered form, also demonstrated an increase of DCs number

like Cyclo/ALLO/miglustat-treated ones. Nevertheless, an addi-

tional statistical analysis between sham-treated and Cyclo/

ALLO/miglustat-treated animals showed a significant difference

between two treatment options, both in NPC1+/+ and NPC12/2

groups. Thus, we are inclined to believe that apart from a mild

stress, caused by powdered chow, Cyclo/ALLO/miglustat

treatment itself contributed, at least partially, to the increase of

DCs.

It is widely known that one of the most pronounced side effects

of miglustat treatment in Gaucher and NPC1 patients is the

peripheral neuropathy [41]. Immune mechanisms have been

proposed to play an important role in the development of

peripheral neuropathy in the cornea [42]. Thus, the increased

Figure 7. Levels of GM2-isoforms and free cholesterol before and after Cyclo/ALLO/miglustat-treatment. (A) - lipid analysis showed a
decrease of free cholesterol level after Cyclo/ALLO/miglustat-treatment, both in NPC1+/+ and NPC12/2 mice (statistically not significant). (B) - levels of
both isoforms of GM2 revealed a statistically significant decrease in NPC12/2 after Cyclo/ALLO/miglustat-treatment, when compared to controls. For
both, C20-0 and C18-0 the differences were statistically significant.
doi:10.1371/journal.pone.0028418.g007

Corneal Changes in NPC1 Disease after Therapy
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number of DCs can be considered as a part of mechanisms

suggesting immune-mediated contribution to the neuropathy.

Importantly, the NPC12/2 mice had already had a high

number of DCs before treatment, when compared to NPC1+/+,

and also after the treatment they revealed the most pronounced

increase of DC number. This pronounced increase can be

attributed to some extent to be part of natural progression of

disease. In the future, in vivo dynamic assessment of central corneal

inflammatory cells density may provide new insights for manage-

ment of side effects and, probably, serve as an indicator of

miglustat-caused neuropathy’s severity following long-term

therapy.

Figure 8. Electron microscopical depictions of treated NPC1 mice. (A) - superficial epithelial cells of a treated NPC12/2 mouse without
pathological inclusions. (B) - regular cytoplasm of an intermediate epithelial cell. Rarely, somewhat enlarged profiles of Golgi compartments can be
found (asterisk, detail from C). (C) - intermediate epithelial cell with some enlarged membrane-bound compartments, presumably derived from Golgi
cisterns. (D) - basal layer of a regular corneal epithelium of NPC1+/+ mouse. The arrows indicate axons wrapped by basal epithelial cells close to the
Bowman membrane. (E) - unmyelinated nerve fibers in the corneal stroma. Some of the fibers contain enlarged electron-light compartments with
small electron-dense corpuscles similar to that seen in B. Other cell organelles (mitochondria, neurotubules, and vesicles) are regular. Schwann cell
processes (arrows) do not contain pathological inclusions. (F) – keratocytes of the stroma show a regular aspect.
doi:10.1371/journal.pone.0028418.g008

Table 2. Comparison of HPLC/MS data with in vivo CLSM
findings.

Mouse number GM2 C20-0 GM2C18-0 In vivo CLSM

1062(NPC12/2) LLOQ LLOQ Grade 0

1068(NPC12/2) 5,15 4,37 Grade 2

1061(NPC12/2) 6,03 5,17 Grade 2

1087(NPC12/2) LLOQ LLOQ Grade 1

doi:10.1371/journal.pone.0028418.t002

Corneal Changes in NPC1 Disease after Therapy
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To date, very often ophthalmologic findings and the relation-

ship between ocular and extraocular symptoms are neglected in

the global evaluation of the LSD-patients. Nevertheless, the ocular

involvement can alternatively reflect other more generalized

defects in LSDs [35]. Keeping in mind the evidence that in vivo

CLSM allows the early recognition of morphological changes in

the cornea during the progression of disease or treatment course,

we believe that this technique has the potential to become an

additional clinical tool for reliable diagnosis and evaluation of

treatment options in NPC1 disorder.

Materials and Methods

Animals
All animal procedures used in this study were approved by the

Animal Use and Care Committee of the University of Rostock

(approval ID: 7221.3-1.1-088/10) and are in accordance with

ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research. Breeding pairs of BALB/cNctr-Npc1m1N/-J

mice were obtained from Jackson Laboratories (Bar Harbor, ME,

USA). These mice were bred to produce normal (NPC1+/+),

heterozygous (NPC1+/2) and homozygous affected (NPC12/2)

mice. All mouse pups were genotyped by using a polymerase chain

reaction (PCR) assay.

Twenty NPC1+/+ and 20 NPC12/2 mice were involved in the

treatment study. Fourteen mice from each group were treated by

combined SRT and BPT- Cyclo/ALLO/miglustat. Six NPC1+/+

and 6 NPC12/2 underwent sham treatment.

At the age of 65 days in vivo confocal laser-scanning microscopy

(CLSM) was performed on both eyes of each animal. Thereafter,

the animals were sacrificed by an overdose of pentobarbital, and

the excised eyes were further processed for electron microscopy or

High Performance Liquid Chromatography/Mass spectroscopy

(HPLC/MS).

Drug administration
Starting at postnatal day 7 (P7) and weekly thereafter, mice were

injected with Cyclodextrin/Allopregnanolone (25 mg/kg ALLO

dissolved in 40% CYCLO) (both from Sigma-Aldrich, Munich,

Germany). Additionally, the mice were daily injected with

miglustat, dissolved in NaCl, 300 mg/kg (miglustat was a kind

gift from Actelion Pharmaceuticals, Freiburg, Germany) at P10

until P23. Starting at P23 and until termination of experiments the

mice were fed powdered chow with daily addition of miglustat

(1200 mg/kg,). In the sham-treated group (both, NPC1+/+ and

NPC12/2) the mice were injected with 50 ml 0.9% NaCl at P7

and thereafter daily, starting at P10 until P23. Like therapy group

the sham-treated mice were fed powdered chow starting at P23.

In vivo confocal laser-scanning microscopy (CLSM)
HRT II/RCM (Heidelberg Engineering GmbH, Heidelberg,

Germany) adapted for veterinary use, was used to examine the

corneas of the mice. For in vivo CLSM examination mice were

anesthetized with 2 mg/kg body weight of xylazine hydrochloride

(Rompun; Bayer HealthCare, Leverkusen, Germany) and 50 mg/

kg ketamine hydrochloride (Bela-Pharm GmbH & Co KG,

Vechta, Germany).

The laser source was a diode laser with a wavelength of 670 nm,

and the objective of the microscope was a water immersion lens

with magnification 663 (Zeiss, Hamburg, Germany). The

objective lens was fitted with a sterile polymethyle methacrylate

cap. During examination a drop of carbomer gel (VidisicTM,

Bausch & Lomb/Mann Pharma, Berlin, Germany) was applied as

a coupling medium between the lens cap and the cornea. The field

of view was 3846384 pixels (image size 3006300 mm) and the

focal plane could be moved through the entire cornea. Each

cornea was scanned in z-direction 6 times for collecting image

stacks, in different x-y positions in the area, including 2 mm of

central cornea. Oblique sections of the cornea were obtained by

controlling manually the x–y position and the depth of the optical

section. Each scan took approximately 20 seconds, and the overall

examination, including animal positioning and focus adjustment

time, took 10 minutes per cornea.

For quantification of dendritic cells (DCs) HRT-associated cell

count software was used. For every cornea each DC was marked

once in a predetermined area. DCs touching the border lines were

counted only along the upper and right border. DCs touching the

left and lower border, were not counted. Statistical analysis was

conducted using one side t-test for two independent samples.

Electron Microscopy
Corneas from following mice were used for transmission electron

microscopy: NPC1+/+ (untreated control, n = 1), NPC1+/+ (treated,

n = 1), NPC12/2 treated with no hyperreflective depositions in in

vivo CLSM (n = 1) and NPC12/2 treated with hyperreflective

depositions in in vivo CLSM (n = 1). Both corneas of each mouse

were excised and fixed in 3.7% paraformaldehyde (PFA) for 1 hour,

followed by postfixation in 0.1 M cacodylate buffer containing 2.5%

glutaraldehyde for at least 24 hours at 4uC. Thereafter, the

specimens were osmicated, washed, block contrasted with 2%

aqueous uranyl acetate, dehydrated through a graded series of

ethanol, and embedded in Epon 812 (Plano GmbH, Marburg,

Germany). Ultrathin sections (about 70 nm) were mounted on

pioloform-coated slot copper grids and contrasted with uranyl

acetate (8 minutes) followed by lead citrate (2 min). The specimens

were examined with a Zeiss EM 902 transmission electron

microscope (Zeiss, Oberkochen, Germany) at 80 kV. Photographs

were taken using a CCD camera, scanned and adjusted using

Photoshop CS2 software.

High Performance Lipid Chromatography/Mass
spectroscopy (HPLC/MS)

For lipid analysis both corneas from randomly selected NPC1+/+

(n = 4) and NPC12/2 were harvested and weighed. The samples

were immediately frozen in liquid nitrogen and stored at 280uC
until further analysis. Both corneas for each animal were pooled to

form one sample. Total lipid extractions were obtained by using

ultrasonic tissue disintegration for 2 minutes. Total lipids were

extracted into ethanolic solution of internal standard (deuterated).

Thereafter HPLC/MS was carried out on a C8 column (ACE 3C8,

5062.1 mm) for determination of free cholesterol and 2 different

isoforms (C20-0 and C18-0) of disialotetrahexosylganglioside 2

(GM2). The values were expressed as mg per g wet weight of tissue

(mg/g). For statistical analysis non-parametric U-test was performed.

Acknowledgments

The authors would like to sincerely thank: Dr. Hermann Mascher in

Pharm-analyt Laboratory GmbH, Baden, Austria, for performing HPLC/

MS, Dr. Oliver Schmitt, Department of Anatomy, Rostock, Germany, for

help with statistical analysis, and Mrs Anja Meyer for excellent technical

assistance (electron microscopy).

Author Contributions

Conceived and designed the experiments: MH AW AR. Performed the

experiments: MH MW JP FM JL AW MR. Analyzed the data: MH MW

AW OS RG. Contributed reagents/materials/analysis tools: OS AR RG

AW. Wrote the paper: MH MW AW.

Corneal Changes in NPC1 Disease after Therapy

PLoS ONE | www.plosone.org 10 December 2011 | Volume 6 | Issue 12 | e28418



References

1. Hers HG (1965) Inborn lysosomal diseases. Gastroenterology 48: 625–633.
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