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Abstract

Most complex networks from different areas such as biology, sociology or technology, show a correlation on node degree
where the possibility of a link between two nodes depends on their connectivity. It is widely believed that complex
networks are either disassortative (links between hubs are systematically suppressed) or assortative (links between hubs are
enhanced). In this paper, we analyze a variety of biological networks and find that they generally show a dichotomous
degree correlation. We find that many properties of biological networks can be explained by this dichotomy in degree
correlation, including the neighborhood connectivity, the sickle-shaped clustering coefficient distribution and the
modularity structure. This dichotomy distinguishes biological networks from real disassortative networks or assortative
networks such as the Internet and social networks. We suggest that the modular structure of networks accounts for the
dichotomy in degree correlation and vice versa, shedding light on the source of modularity in biological networks. We
further show that a robust and well connected network necessitates the dichotomy of degree correlation, suggestive of an
evolutionary motivation for its existence. Finally, we suggest that a dichotomous degree correlation favors a centrally
connected modular network, by which the integrity of network and specificity of modules might be reconciled.

Citation: Hao D, Li C (2011) The Dichotomy in Degree Correlation of Biological Networks. PLoS ONE 6(12): e28322. doi:10.1371/journal.pone.0028322

Editor: Michal Zochowski, University of Michigan, United States of America

Received May 23, 2011; Accepted November 6, 2011; Published December 2, 2011

Copyright: � 2011 Hao, Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 30600367) and the Foundation of Harbin Medical
University (WLD-QN1107). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dapenghao@hotmail.com

Introduction

Topological features of molecular networks have been studied

extensively because of their relevance to the function and

organization of living cells [1,2]. A remarkable feature of most

real networks is degree correlation, where the probability that two

nodes are attached depends on their degrees [3,4]. The

importance of this stems from the fact that the structure of a

network is highly determined by the correlation pattern of node’s

degrees. Examples of complex networks having different degree

correlation patterns and very different network structures include

the Internet, World Wide Web (WWW), collaboration relation-

ships and metabolic networks [5]. The degree correlation pattern

can be negative (disassortative), so that links between nodes with

similar degree level are systematically suppressed, or positive

(assortative). In particular, biological networks are believed to be

disassortative, where a strong effective repulsion between highly

connected nodes (hubs) increases the specificity of functional

modules and stability of networks [4,6,7,8].

From a purely topological perspective, disassortative and

assortative networks are highly different. A schematic illustration

of a disassortative network and an assortative network is shown in

Figure 1A and 1B. The differences between them are clear to see.

The disassortative network is spread by the repulsion of hubs,

suggestive of a picture of modularity with nodes organized around

dispersed hubs [4]. The assortative network, on the contrary, is

integrated by fully connected hubs. It is found that disassortativity

produces better connected but vulnerable networks, whereas

assortativity gives rise to less connected but resilient networks

[3,6]. In this paper, we show that, biological networks of a living

cell have a better degree correlation pattern, which gives them the

advantages of both disassortativity and assortativity, and enables

them to avoid the disadvantages.

Results

Degree correlation of yeast protein interaction network
in nucleus

To illustrate the degree correlation pattern in biological

networks, we consider a representative network of yeast protein

interaction and found that is neither disassortative nor assortative.

According to a high-confidence (HC) dataset of yeast physical

protein interactions [9], we abstract a small part of the protein

network formed by proteins localized in nucleus, with 890 nodes

and 1399 links. To quantify the degree correlation, we use a

measure known as assortative coefficient, r, which is Pearson

coefficient between degrees at the end of each link and takes values

between 21 and 1 [3]. A positive r-value indicates assortativity

and a negative r-value indicates disassortativity. The assortative

coefficient of this small network is 20.15, which suggests

disassortativity. However, after removal of the 15 most connected

nodes and their links, the assortative coefficient of the network

becomes 0.28, which indicates an assortative correlation. Links for

the 15 most connected nodes and the remainder of the network

are shown in Figure 1C and D respectively, so that the topological

similarity between them and the two schematic networks in

Figure 1A and B can be noted. This phenomenon is not expected

in a real disassortative network, where the network should remain
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disassortative when a few hubs are removed. One remarkable

feature of the network in Figure 1D is the abundance of links

between nodes with low connectivity, which can only be observed

in an assortative network. Therefore, this protein network is likely

to be a combination of disassortativity (Figure 1C) and assortativity

(Figure 1D). This finding challenges the traditional opinion about

biological networks being disassortative and requires a deeper

investigation into their underlying degree correlation patterns.

The dichotomy in correlation profile
The correlation profile provides the most direct hint to the

current issue. A correlation profile compares the joint probability

P(K1, K2) of finding a link between two nodes with degree K1 and

K2 with the corresponding probability Pr(K1, K2) in randomized

networks [4]. Randomized networks are generated by random

swapping of the links and thus preserve the degree distribution

while having a neutral degree correlation. A plot of the value of Z-

score, Z~(P(K1, K2)-Pr(K1, K2)=s(K1, K2), provides evidence

of degree correlation that deviates from the uncorrelated neutral

case as well as statistical significance [4]. Figure 2 shows the

correlation profiles of the Internet at autonomous system (AS),

known to be disassortative [10], an assortative social network [11],

and three different types of biological networks, including physical

interaction networks (PIN), genetic interaction networks (GIN) and

metabolic networks.

For a real disassortative or assortative network, the color along

the diagonal in the correlation profile is similar, reflecting the

consistency of degree correlation pattern with which nodes of

similar degree repulse (blue) or associate (red) with each other.

This is seen in Figure 2A and B for the Internet and social

network, known to be disassortative and assortative respectively.

However, for biological networks, including PIN, GIN and

metabolic networks, the color along the diagonal changes

dramatically from red to blue, providing direct evidence for

dichotomy in degree correlation (Figure 2C, 2D and 2E). In

particular, a disassortative pattern is characterized by the blue

region in the upper right corners and red regions in both the upper

left and lower right corners, whereas an assortative correlation can

be found in the lower left corner colored red. For example, there

are 55 links between the top 1% most connected nodes in PIN,

which is significantly less than the 123610 links in randomized

network. In contrast, there are 1,632 links between the top 10%

most connected nodes (with the top 1% excluded), which is

significantly larger than the 1,035624 links in randomized

networks. We further find the same dichotomy in the correlation

profiles for many other datasets (Table 1 and Figure 1 in Text S1),

suggesting that our finding is not influenced by the choice of

datasets.

In this study, the degree correlation of nodes in different

biological networks shows the same dichotomy. That is, links

between the most connected nodes are systematically suppressed,

whereas those between nodes that are relatively loosely connected

but have a similar degree are favored. In the correlation profiles in

Figure 2, this suppression corresponds to the blue colored regions

in the upper right corners of the diagonal, and the favored links

corresponds to the red regions in the lower left corner of the

diagonal. It is important to note that the correlation profiles use

logarithmic coordinates, which means that only about 1% of nodes

lie in the blue region in the upper right corners (note that

30#k#300 in the PIN correlation profile). Since hubs are usually

defined as the top 10%–20% most connected nodes, it may be

incorrect to conclude that ‘‘hubs’’ in biological networks are

systematically suppressed [4,12].

Although our results suggest an inherent consistency in

topological organization of different biological networks, several

other studies suggest that metabolic networks may have a different

network topology [13]. Two reports show that hub nodes are more

likely to be linked to each other in metabolic networks, whereas in

protein networks the hubs are anti-correlated [14,15]. Thus, these

results seem to imply that metabolic networks have a fundamen-

tally different network topology than other biological networks.

However, other researches present contrary observations that links

between hubs in metabolic networks are indeed suppressed [6,8].

By comparing these results, we found that studies supporting the

suppression between hubs use full datasets for metabolic networks,

whereas studies supporting the affinity between hubs removed

‘‘popular metabolites’’ such as ADP, ATP and water, which

correspond to the blue region in the upper right corners of our

correlation profile (Figure 2E). In other words, the contradictory

observations in the former studies arise from the dichotomy in

degree correlation of metabolic networks. Therefore, our finding

of dichotomy in degree correlation reconciles the contradictory

observations for metabolic networks and again suggests that

different biological networks may in fact have the fundamental

network topology. The dichotomy in degree correlation may have

possible applications, for example aiding the development of anti-

cancer drugs. Hub genes of GIN are potential targets for anti-

cancer drugs because cancer cells often carry a lot of cancerous

mutation and thus may be destroyed preferentially by the

inactivation of a hub gene which has synthetic lethal interactions

with those mutations [16,17]. The apparent dichotomy in degree

correlation of GIN may suggest what kind of hub should be

selected preferentially according to the degree distribution of

cancerous mutations.

Reproduced dichotomy in PINs excluding protein
complexes

For PIN, the red region in the lower left corner of the

correlation profile can probably be attributed to the fact that

members of complexes tend to physically interact with other

Figure 1. Disassortative and assortative networks. Schematic
illustration of a disassortative network (A) and an assortative network
(B). C. The 15 best connected proteins and their direct links to other
proteins of yeast protein network constructed by proteins localized in
nucleus. D. The rest of network after removal of the 15 best connected
nodes. Nodes disconnected to the largest component are not shown. A
predominant feature of B and D is the over-abundance of links
between low connected nodes.
doi:10.1371/journal.pone.0028322.g001
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proteins from the same complex [4,18]. To investigate this, we

took a comprehensive catalogue of 408 manually curated yeast

protein complexes reported in the current literatures [19], and

reanalyzed the correlation profile of PIN excluding all interactions

between proteins within the same complex. This removed about

one third of the links from the original network. The average

clustering coefficient of an HC network is above 0.16, while after

this step it is below 0.06, suggesting that most of the densely

connected regions have disappeared. Nevertheless, the dichotomy

in the correlation profile of PIN remains (Figure 2E). The same

analysis on another high-confidence dataset known as DIP-core

shows the same result (see Figure 2 in Text S1) [20]. The physical

protein networks, especially the high-confidence datasets, are

believed to be enriched of protein complexes [21]. Thus, the

reproduced dichotomy in the two high-confidence datasets further

suggests that dichotomy is an inherent property of physical protein

networks. Further evidence of dichotomy related to the affinity

between low connected proteins (1#k#3) is unlikely to be

attributable to multi-protein complexes.

Another source of evidence comes from the enhanced links

between date hubs. It has been found previously that hub proteins

of PINs can be partitioned into date and party hubs, and that most

party hubs are members of protein complexes while most date

hubs are not [22,23]. A PIN constructed by a filtered high-

confidence dataset (FHC) also shows the dichotomy in correlation

profile (Table 1 and Figure 1 in Text S1), where a prominent red

region along the diagonal can be found in the lower left corner,

corresponding to proteins with degree less than 30. 236 party and

290 date hubs having degree less than 30 were identified according

to the definition of the two types of hubs [24]. There are 465 links

between these party hubs and 885 links between these date hubs in

FHC dataset, both of which are significantly above 258613 links

and 539617 links, respectively, in randomized networks (P

value,0.01). The enhanced number of links between date hubs

further suggests that the dichotomy can not be solely attributed to

protein complexes. Thus the dichotomy in degree correlation is an

inherent property of protein networks.

The dichotomy determines neighborhood connectivity
The degree correlation can also be extracted by studying the

relationship between nodes’ connectivity k and the average

connectivity, Knc, of the nearest neighbors [4,13,25]. In Figure 3,

Figure 2. Correlation profiles of complex networks. A. The plot of Z-score of Internet at AS level which is known to be disassortative, where
the red color reflects the affinity of nodes and blue color reflects the repulsion between nodes. B. The profile of a social network constructed by
collaborations between authors who co-authored a paper, which is known to be assortative. C. The correlation profile of yeast PIN constructed by HC
dataset. D. The correlation profile of yeast GIN. E. The profile of yeast metabolic network abstracted from KEGG. F. The correlation profile of HC
dataset after removing interactions between proteins within the same complex. Note that through C to F, at least 99% nodes of biological networks
are localized in the lower left corner where the diagonal is colored red.
doi:10.1371/journal.pone.0028322.g002
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we show the results of this for the above networks. For the

Internet, Knc is consistent with a previous study in showing a clear

power-law dependence, Knc,kc, with c<20.5 (Figure 3A) [25].

For the social network, however, Knc shows a gradual increase with

k (Figure 3B), suggesting a different pattern than for a

disassortative network such as Internet. At first glance, the

biological networks exhibit the same correlation pattern as

Internet when considering the dependence of Knc on connectivity

(Figure 3C). However, a huge difference emerges when the most

connected hubs are excluded from analysis. The Knc for Internet

decreases in the same rate after excluding the top 1% most

connected nodes (Figure 3A), whereas Knc for the biological

networks increases after excluding the most connected nodes,

suggestive of an assortative correlation (Figure 3D). This

observation gives additional credence to the dichotomy in degree

correlation pattern of biological networks.

The dichotomy of degree correlation determines a sickle-
shaped distribution of clustering coefficient

Clustering coefficient denotes the proportion of links between

the nearest neighbors of nodes [26]. In disassortative networks,

highly connected nodes tend to be linked to low connected nodes

(for example, the Internet, Figure 2A). As a result, a unique feature

of disassortative networks not shared by either assortative or

randomized networks is the gradual decline in the clustering

coefficient with connectivity k. The clustering coefficient distribu-

tion, C(k), of Internet at AS level is a perfect illustration of this

theoretical speculation (Figure 4A). As a comparison, C(k) for the

social network is relatively high for well connected nodes and does

not decrease with connectivity (Figure 4B). For biological

networks, however, we found a special form of C(k) that is distinct

from the social network or Internet (Figure 4C). The value of C(k)

for biological networks is relatively high at first and then suddenly

decreases once k becomes large enough, which gives rise to a

sickle-shaped distribution under logarithmic coordinates. This

contrasts with the shape derived from a real disassortative network

such as Internet. We also found the same sickle-shaped

distribution for all the biological datasets shown in Table 1 (See

Figure 3 in Text S1), all of which are consistent with the

dichotomy in their correlation profiles.

To investigate whether this sickle-shaped distribution in C(k)

reflects the dichotomy of degree correlation, we measured the C(k)

distribution for 100 random dichotomized networks with the same

degree distribution as biological networks (see materials and

methods section for how to generate dichotomized networks). As

shown in the inset of Figure 4D, similar to biological networks, the

C(k) distribution for random dichotomized networks is also sickle-

shaped. Ravasz et al. measured the C(k) distribution of metabolic

networks for 43 organisms, and each of them shows a sickle-shape

[26]. They proposed a hierarchical model to explain the C(k),k21

dependence at the tail of the distribution. However, the model

dose not explain the sickle-shape of the entire C(k) distribution and

dose not take into account the degree correlation pattern of

networks. Another former study also suggests that the variations in

the clustering coefficient with node degrees are mainly determined

by the degree correlations [27].

We note that the assortative coefficient r does not distinguish

between dichotomized and disassortative networks, but its

variance r(k) is more discriminating when nodes with connectivity

larger than k are excluded. Note that to reflect the degree

correlation of the original networks, we do not remove the links

incident with these notes from network and recalculate the degree

for the rest of nodes. The distribution of r(k), which varies with k,

captures the dichotomy of degree correlation (Figure 4D). In

particular, r(k) for biological networks starts from a high positive

value and drops to below zero, indicating a switch in their degree

correlation patterns from assortativity to disassortativity

(Figure 4D). On the other hand, r(k) for Internet or social network

never varies above or below zero (See Figure 4 in Text S1). One

can find a connection by comparing distributions of r(k) and C(k).

C(k) decreases when there is a significant decline in r(k) (Figure 4C

vs. D). A quantified connection can be measured using Pearson

Table 1. Network datasets and their assortative coefficients r.

Dataset Nodes Links r
r (number of hubs
excluded) Source

Internet at AS level 10670 22003 20.186 20.319 (100) Leskovec et al, 2005

Collaboration network 5242 28980 0.659 0.672 (51) Leskovec et al, 2005

HC dataset 4008 9857 20.115 0.276 (40) Batada et al, 2007

HC dataset (excluding protein complexes) 4008 6953 20.137 0.094 (53) Batada et al, 2007

FHC dataset 2559 5991 20.064 0.234 (27) Bertin et al, 2007

Ito dataset 3278 4549 20.172 0.206 (49) Ito et al, 2001

DIP dataset 5213 25232 20.101 0.108 (97) DIP (10/2010)

DIP-core dataset 2200 4514 20.093 0.100 (17) DIP (10/2010)

Genetic interaction network 3743 23125 20.171 0.115 (83) Biogrid
(version 3.1.72)

Metabolic network
(yeast)

1239 3611 20.228 0.116 (20) KEGG

Metabolic network
(E. coli)

1208 3420 20.196 0.146 (22) KEGG

Metabolic network
(E. coli)

765 2409 20.177 0.205 (25) Jeong et al, 2000

Metabolic network
(S. typhi)

806 2539 20.176 0.181 (24) Jeong et al, 2000

doi:10.1371/journal.pone.0028322.t001
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coefficients between r(k) and C(k). The Pearson coefficients for PIN

of HC dataset, GIN and yeast metabolic network are 0.78, 0.75

and 0.75 , respectively. The strong correlation between r(k) and

C(k) suggests that the degree correlation does indeed determine the

variation of clustering coefficient.

Origin of dichotomy in degree correlation
Spatially isolated functional modules are considered to be

fundamental building blocks of cellular organization [26], but the

relationship between their presence and degree correlation in

biological networks has not been systematically analyzed. We next

demonstrate that a network comprised of functional modules

necessitates the dichotomy in degree correlation, and that in turn,

the dichotomy determines the modularity structure of a network to

a great extent. A distinguished feature of modular networks is the

existence of highly separated but densely interconnected modules,

characterized by high local clustering. High clustering means that

two neighbors of a node are more likely to be connected, resulting

in a large number of triangles. Thus, the modular networks differ

from random networks in two main respects: separated parts and

many triangles within each part. In a disassortative network,

however, hubs preferentially link to low connected nodes and vice

versa, while the links between two hubs or between two low

connected nodes are highly suppressed. As a result, local clustering

in disassortative network is extremely small. For instance, it was

reported that the number of triangles in Internet is significantly

smaller than their randomized counterparts [28]. This property

stands in sharp contrast with modular networks such as PIN, in

which nodes are much more densely clustered than in random

networks. For example, the PIN for the HC dataset has 8851

triangles, which is significantly greater than the 714620 triangles

in randomized networks with the same degree distribution. There

are ways to increase clustering, for instance by fully connecting

hubs as in assortative networks, but this arrangement also rejects

modularity by ruling out the existence of separated parts within a

networks.

Thus, the dilemma of modularity versus both disassortativity

and assortativity exists, and this may require dichotomy in degree

correlation. To prove this, we compare two different random

networks with the same degree distribution as the PIN for the HC

dataset. Both were generated by combining the edge rewiring step

and Metropolis algorithm based on an energy function favoring

the properties observed in PINs. To check whether a random

network can evolve to a network exhibiting the properties

observed in PINs, both networks start from a randomized version

of the PIN that has 702 triangles. The first network favors the

same number of triangles of PIN (ND = 8851), which we refer to as

a ‘triangle-favoring’ network. In this case the energy function is

defined as Ht~(ND
rand

-ND)2
.

ND and the network is sampled at a

finite temperature T . Rewiring steps that lower the energy

function or leave it unchanged are always accepted, while those

increasing it by DHt are accepted with probability exp(2DHt/T).

The triangle-favoring network generated by this method has 8683

triangles and assortative coefficient r = 0.16 (T = 0.1). From the red

area around the diagonal of its correlation profile (Figure 5A), we

can conclude that the large number of triangles favors assortativity

as opposed to disassortativity. For the second network our

algorithm was designed to generate the same level of anti-

correlation as in the PIN, measured by the assortative coefficient r,

and is referred to as an ‘anti-correlation favoring’ network. In

practice, the r-value for a network with given degree distribution is

solely determined by
P
m

ki � kj , where ki and kj are the degrees of

Figure 3. Correlations between node connectivity and its neighborhood connectivity. A. The nearest neighbors’ average connectivity Knc,
of nodes with connectivity k for Internet at AS level, and for the rest of network with top 1% best connected nodes removed (solid triangle). B. The
same as A but for social network of co-authored relationship. C. Correlations of biological networks: PIN of HC dataset (red), GIN (green) and yeast
metabolic network (blue). D. Correlations of biological networks after removing top ,1% best connected nodes (detailed numbers of hubs removed
are shown in Table 1). The solid lines in A and C correspond to *K{0:5 ; the solid lines in B and D correspond to *K0:3 . Note that the solid lines in C
and D are not fitted to biological networks; they are drawn to compare with Internet and social network.
doi:10.1371/journal.pone.0028322.g003
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the nodes at the ends of the mth edge, with m = 1…9857. Thus, the

energy function is defined as Hr~(
P
m

rand ki � kj-
P
m

ki � kj)
2

�
P
m

ki � kj , and rewiring steps that lead to an increase of DHr are

accepted with probability exp(2DHr/T). The generated anti-

correlation favoring network has the same level of anti-correlation

as the PIN (r = 20.115) but has only 337 triangles (T = 10). Its

correlation profile is shown in Figure 5B, and the blue color

around the diagonal corresponds to disassortativity rather than

dichotomy or assortativity. This result indicates that the level of

anti-correlation favors links between nodes with different connec-

tivities and preserves only a very small number of triangles.

Therefore, the properties of high clustering and anti-correlation in

biological networks are unlikely to present simultaneously in either

a disassortative or an assortative network.

However, it is still uncertain that the dilemma necessitates the

dichotomy in degree correlation observed in biological networks.

This is easily checked by annealing a random network using a

composite energy function that favors both the number of triangles

and the level of anti-correlation of the PIN, which in our case can

be defined as H~Hr=std(Hr)zHt=std(Ht), where the standard

error here is evaluated by jackknife method (randomly removing

an edge from the network each time) and is used to bring the two

energy functions into the same order of magnitude. Rewiring steps

are accepted with probability exp(2DH/T). We refer to the

network generated by this composite energy function as a

‘composite’ network. Figure 5C shows the correlation profile of

a composite network that has 8747 triangles and r = 20.114

(T = 1). It is apparent that the correlation profile is dichotomized

in a way that is very similar to biological networks (Figure 2).

Therefore, with regard to the dilemma we discussed above, the

network does indeed evolve a dichotomy in degree correlation. We

also plot the distribution of clustering coefficient of the composite

network, which perfectly overlaps with the distribution of the real

PIN (Figure 5D). This confirms our speculation that dichotomy in

degree correlation determines a sickle-shaped clustering coefficient

distribution.

We next show that, conversely, the dichotomy in degree

correlation determines the strength of modularity in a network. A

standard approach for quantifying the strength of modularity

landscape in a network is to measure the number of intra-module

links and compare it with what one would expect from chance

alone [29,30,31]. For a given partition of network nodes into

modules, the modularity of this partition is defined as:

M~
Xm

i~1

li

L
{

Di

2L

� �2
" #

where m is the number of modules, L is the total number of links in

the network, li is the number of links within module i, and Di is the

Figure 4. The dichotomy of degree correlation and its reflection on clustering coefficient distribution. The clustering coefficient
distribution of Internet at AS level (A) and social network of co-authored relationship (B). C. The sickle-shaped C(k) curve of biological networks: PIN
of HC dataset (red), GIN (green) and yeast metabolic network (blue). The inset displays the C(k) curves of 100 random dichotomized networks (each
containing 10,000 nodes with P(k),k22.4, of which links of the top 0.5% best connected nodes are disassortative while those of other nodes are
assortative). D. The assortative coefficient curves r(k) for the three biological networks. In A, C and D, the solid lines correspond to C(k),k21, which
are drawn to compare with the hierarchical model.
doi:10.1371/journal.pone.0028322.g004
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sum of degrees of all the nodes in module i. This definition implies

that the value of M ranges from 0 to 1. Most real networks were

found to have modularity between 0.3 and 0.7, while higher values

are rare [30]. The value of M is high for a correct partition of a

network that is modularly organized. An effective algorithm for

discovering modularity structure involves iterative removal of

edges from the network to divide it into modules, the edges

removed at each step being identified by the largest betweenness

value [32]. The iterative removal gradually separates modules

from one another, and the inherent strength of the modularity of a

network can be evaluated during these steps. Usually, the height of

a peak of M is a good measure of the strength of the best

Figure 5. Degree correlation and modularity. A. The correlation profile of the triangle-favoring network. Note that the network is assortative. B.
The correlation profile of the anti-correlation favoring network. Note that the network is disassortative. C. The correlation profile of the composite
network, which presents a dichotomy in degree correlation. D. The two C(k) curves of the composite network (T = 1, black circles) and PIN of HC
dataset (red circles) overlaps in a great extent. E. The strength of modularity, M and the relative size of largest component, S during the removal of a
fraction fe of intermodular edges for the triangle-favoring (TF) network, the anti-correlation favoring (ACF) network, the composite network and PIN
of HC dataset.
doi:10.1371/journal.pone.0028322.g005
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modularity partition [30]. This algorithm was performed on the

three random networks and the PIN of HC dataset, with the

strength of modularity evaluated after removing a fraction fe of

edges (Figure 5E). As we can see, although all the networks reach a

peak at a finite fraction fe, the composite network and the PIN

have a significantly stronger modularity compared with the

triangle-favoring network or the anti-correlation favoring network.

This is shown by the larger peak value of M and the smaller fe
required to reach the peak. The peak value of PIN and the

composite network are around 0.7, which usually indicates a

strong effective modularity structure. It is also important to note

that although PIN and the composite network share only 129

edges, their variances in M during the algorithm is almost the

same, suggesting that the composite network has a similar modular

organization as the PIN. We also plot the relative size of the largest

component, S, as a function of fe (Figure 5E). Since modules are

gradually separated from the network during the removal of

intermodular edges, S should also gradually decrease and the rate

of decrease should be similar for networks with similar modular

organization. Thus, the variance of S, again, indicates that the

composite network has a similar modularity structure as the PIN.

We also show the four networks with the top 3,000 intermodule

edges been removed (See Figure 5 in Text S1), from which we see

that the PIN and composite network indeed have similar modules

whereas the triangle-favoring network and the anti-correlation

favoring network obviously lack modularity structure. Together,

these results imply that the dichotomy in degree correlation is the

topological foundation of the modularity structure in biological

networks.

Robustness and interconnectivity in the dichotomy of
degree correlation

Discussing the influence of degree correlation on robustness and

interconnectivity of networks is of fundamental importance as it

implies an evolutionary advantage behind its existence. Disas-

sortative networks, such as the Internet, are known to be extremely

vulnerable to intentional attacks on hubs [6]. In disassortative

networks, hubs connect to a large number of low connected nodes

(as in Figure 1A and 1C), so that removing every single hub results

in many isolated nodes, and even attacking only a few of hubs

attacks all parts of the network at once. On the other hand, in

assortative networks, hubs are fully connected and so attacking

them is somewhat redundant [6]. However, this arrangement does

not preserve the interconnectivity as well, since the affinity

between low connected nodes reduces the possibility that they are

connected to the largest component of the network and enlarges

their distances to other nodes in the network. We next show that

the dichotomy of degree correlation significantly increases the

robustness while preserving the interconnectivity of a network.

The analysis is carried out on random assortative, disassortative

and dichotomized networks with the same number of nodes

(N = 10,000), the same degree distribution that approximates to

biological networks (P kð Þ*k{l, l~2:4), and thus the same

number of edges (see materials and methods section for the

construction of random networks). The difference between these

networks is solely attributed to degree correlation pattern. The

average assortative coefficient r of 100 assortative networks is

0.129 (60.0001) and r of disassortative networks is 20.088

(60.0005). For dichotomized networks, only the 0.5% most

connected nodes are disassortatively linked to other nodes,

whereas the rest of the nodes are assortatively linked, giving rise

to a dichotomy in degree correlation with the average r being

20.079 (60.003) or 0.14 (60.01) after excluding the 0.5% most

connected nodes. Thus, even 99.5% of nodes in a dichotomized

networks are assortatively connected, the assortative coefficients is

probably below zero. This fact might be mistaken as an evidence

of disassortativity, as has previously been concluded for biological

networks. Figure 6A and 6B show a comparison between the three

types of network. The two figures plot the size of the largest

component in each network, S and network diameter, d, as a

function of the fraction of nodes removed [33].

The assortative network is certainly the most robust against

attacks on nodes, which is indicated by both the slow decrease in S

and the slow increase in d. However, it is also the worst from the

perspective of interconnectivity, shown by the large diameter and

the small size of S for the original network (f = 0). On the other

hand, the disassortative network shows better interconnectivity but

poor robustness against removal of nodes compared with the

assortative network. For the dichotomized network, a significantly

larger number of nodes must be removed to destroy the network

than for the disassortative network (shown by S tending to 0 and

the peak in d), and is surprisingly well connected compared with

the disassortative network (large S and small d at f = 0). This result

indicates that the dichotomized network takes full advantage of the

links available to it, giving rise to the simultaneous appearance of

robustness and interconnectivity within a single network. A

comparison between two biological networks (see PIN of the HC

dataset and the yeast GIN) and their disassortative counterparts

with the same size and similar level of anti-correlation is also

shown (Figure 6C and 6D), with both biological networks showing

similar interconnectivity but significantly higher robustness than

disassortative networks.

Two recent studies revealed that only about 0.5% nodes are

truly critical for interconnectivity of protein networks [34,35]. Our

work provides a reasonable explanation for this finding. Although

we do not compare the resilience of networks under random

failures, considering that 99.5% of nodes in dichotomized

networks are assortatively connected, it is reasonable to expect a

case similar to targeted attacks on hubs. Supposing that

interconnectivity and robustness are two parameters both relevant

to evolution, this result suggests an evolutionary motivation for the

existence of dichotomy in degree correlation of biological

networks.

Discussion

A heuristic model of modular organization
A complete understanding of the modularity structure in a

biological network also depends on uncovering the organized

principle according to which the network connects modules

together [22]. Although our results indicated that the dichotomy in

degree correlation is necessary for the existence of modules, it still

raises the question of connection between different modules. The

anti-correlation between the most connected nodes decentralizes

the network and suggests nodes organized around dispersed hubs

(Figure 7A), whereas affinity between hubs suggests nodes

integrated by a fully connected central core (Figure 7C). Thus,

the dichotomy in degree correlation may suggest modules that

have been separated by the repulsion between a few well

connected hubs, but that are centrally connected by a core

formed by another group of relatively low connected hubs. This

can be illustrated by a heuristic model of modular organization,

which we refer to as ‘‘centrally organized modularity’’ (see the

inset of Figure 7B). In this model, links for the three most

connected hubs (red nodes) are disassortative, as represented by

the suppressed links among them and the enhanced links between

them and low connected nodes. On the other hand, the remainder

of the network is assortative (shown by bold edges). The
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architecture of such a network integrates assortativity and

disassortativity, and thus is dichotomized. Its apparent feature of

centrally organized modularity cannot emerge from either a

disassortative network model (inset of Figure 7A) or an assortative

network model (inset of Figure 7B). Random rewiring steps would

inevitably lead to a centrally connected modularity structure. For

example, to generate a random dichotomized version of network,

we use the disassortative network as a seed to rewire edges. Two

randomly selected edges (i.e., (s, t) and (u, v)) that are not

connected to any of the three most connected nodes are replaced

by two new edges that are assortatively connected (i.e., replaced by

(s, u) and (t, v)). Thus, repeated random rewiring steps also result in

a centrally connected network, as shown in the inset of Figure 7B.

To further investigate the modular organization, we plot three

small random networks using the principle of these models

(Figure 7 A–C). Each network has the same number of nodes

(N = 100), and the same degree distribution (generated according

to P kð Þ*k{l, l~2:4, See Materials and Methods). Thus the

difference in the organization solely attributes to the different

degree correlation patterns. For the network of disassortative

model, although modularity is visible through connecting nodes

with the dispersed hubs, these modules are spread too far apart

from each other. Conversely, for the network of assortative model,

although it is highly integrated because of the affinity between

hubs, the modularity structure does not preserved and too many

nodes are isolated from the largest component. The network of the

dichotomized model, however, preserves both the modularity and

integration of the network (Figure 7B).

Biological significance of the dichotomy
Figure 8A–B shows the subnets consisting of proteins organized

around super-hubs YLR423C and YBR160W according to the

HC dataset. The first subnet around YLR423C forms a module

that is essential for autophagy, while the later forms a module that

is essential for the start of cell cycle [36,37]. Both the two subnets

consist of a lot of interactions between the super-hub and low

connected protein pairs (blue), as well as a lot of interactions

between their neighbors that have similar degrees (red). In these

two subnets, red and blue edges correspond to assortative links and

disassortative links respectively. As we can see, many red links are

necessary to ensure the high local clustering of super-hubs given

the fact that super-hubs are preferentially connected to non super-

hubs. On the other words, the only way to keep high density of

inner modular links is the dichotomy of degree correlation.

Biological networks show many modules just like these (see Figure 5

in Text S1). Figure 8C shows two modules organized around

super-hubs YDL239C and YML264C in the HC dataset.

YDL239C is a protein involved in the pathway that organizes

the prospore membrane (PSM) during sporulation, and

YML264C is a GTP-binding protein involved in termination of

M phase. Both the two modules consist of many blue links and red

links, indicating the dichotomy of degree correlation. Consistent

with the strong repulsion between super-hubs, the two hub

proteins do not interact directly. However, the two modules are

tightly integrated by the red links, supporting our heuristic model

of modular organization as illustrated in Figure 7C. Therefore,

realizing that biological networks are dichotomous provides a new

insight into the principle according to which the network modules

are organized.

According to the dichotomous nature of biological networks,

nodes can probably be divided into two classes by their roles in

degree correlation. To further investigate the biological signifi-

cance of the dichotomy, we divide hub proteins into two distinct

classes and study their relationship with gene lethality (see

Figure 6. Robustness and interconnectivity of the network under targeted attacks. A. Comparison of the size of the largest component
between disassortative, assortative and dichotomized network models, each containing 10,000 nodes with P(k),k22.4. B. Comparison of network
diameter as a function of the fraction f of removed best connected nodes. Note that the size of the largest component of unperturbed dichotomized
network (f = 0) is larger than that of assortative network, while the diameter is smaller than it, indicating that the dichotomy of degree correlation
generates a more interconnected web. C. The size of the largest component in function of f, between PIN of HC dataset and a random network with
similar level of anti-correlation (generated by rewiring links of PIN and by setting the parameter p = 0.05, see materials and methods). D. The same as
C but between GIN and a random network with similar level of anti-correlation (generated by setting the parameter p = 0.1).
doi:10.1371/journal.pone.0028322.g006
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Materials and Methods section). We obtain 204 assortative hubs

and 66 disassortative hubs in total. The average degree of

assortative hubs is 17.6, whereas that of disassortative hubs is 38.4.

According to previous studies that gene lethality is positively

correlated with the connectivity of that gene in biological

networks, the disassortative hubs should be more essential than

assortative hubs. However, our result yields a surprising finding.

That is, the assortative hubs are significantly more essential than

the disassortative hubs. A possible explanation for the high

lethality of assortative hubs is that assortative hubs are responsible

for inter-module connecting. Modules are otherwise poorly

connected to each other, so the failure of assortative hubs will

probably have a large impact. On the contrary, disassortative hubs

are within modules so that the failures of them are confined to

their module and thus have a relatively smaller impact.

Furthermore, the anti-correlation between disassortative hubs

and well connected proteins may suppress their propagation of

deleterious perturbations over the network, so that the failures of

them are not lethal. A previous study once found that the

bottleneck genes are more essential than other genes [34]. More

interestingly, a study on metabolic networks also found that

module connectors are more important than intra-module hubs;

even their connectivity is significantly smaller than intra-module

hubs [38]. Therefore, the dichotomy of degree correlation leads to

a better understanding of the knockout phenotypes.

It is believed that the degree correlation of protein network

reduces the number of interactions between essential proteins

(IBEPs), thus providing some kind of protection for cellular system

[4,39,40]. Since we have shown that biological networks are

dichotomous in degree correlation, there is a need to re-evaluate

this concept. For this purpose, we calculate the number of IBEPs

in random networks with no degree correlation and random

networks with the same dichotomous degree correlation as PIN

(see Figure 6 in text S1). We find that, by keeping the dichotomy of

degree correlation, the number of IBEPs is significantly larger than

the number of random networks without degree correlation.

Nevertheless, both of them are significantly smaller than PIN.

Thus, although the number of IBEPs is reduced in random

networks, it is not because of degree correlation but because of

other possible reasons, i.e., the existence of essential protein

interactions [40]. We therefore suggest to reconsider the

relationship between the role of IBEPs and topological structures

of protein network [39].

In summary, while current studies widely believe that complex

networks are either disassortative or assortative [41], we find a

dichotomy in degree correlation of different biological networks.

This finding distinguishes biological networks from two networks

of different areas. We suggest that many topological measures and

biological significance related to these topological measures should

be re-evaluated under this new finding. It also suggests a novel

model of modular organization, which resolves the conflict

between the specificity of modules and the integrity of network.

Hence, a network with dichotomy in degree correlation may better

integrate information and resolve conflicts of different modules.

This shows an intriguing similarity with neurobiology, where the

central nervous system integrates information from different senses

and resolves conflicts [42]. It is reasonable to suppose that some

other networks believed to be disassortative and modular, such as

WWW, are probably dichotomized too. Assortativity alone can

also generate modularity structure, for example by fully connect-

ing the same type of node while suppressing links between nodes of

different types. This mechanism, however, in spite of its advantage

in explaining the formation of community structure in social

networks and the formation of small biological modules such as

protein complexes, cannot generate the kind of large-scale

modules observed in biological networks.

Figure 7. Schematic models of disassortative, dichotomized and assortative networks. A. Schematic model of a disassortative network
(inset) and a random network under the principle of the model. B. The same as A but for dichotomized network. C. The same as A but for assortative
network. Each of the random networks has the same number of nodes (100), the same number of edges (94) and the same degree distribution.
Disassortative network model in A suggests a modular structure with modules separately distributed and pair-wisely connected, whereas C suggests
a highly integrated network with nodes integrated by a core of fully connected hubs. The dichotomized network in B suggests a centrally connected
modular structure where modules are tightly connected to each other rather than dispersedly distributed.
doi:10.1371/journal.pone.0028322.g007
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Materials and Methods

Datasets
The PIN of the HC dataset in the main text is constructed by a

high-confidence dataset curated from the literature and high-

throughput sources such as Y2H, which contains 9857 interactions

between 4008 proteins after excluding redundant edges [9]. The

GIN is constructed by 12,100 synthetic lethality genetic interac-

tions and 15,322 synthetic growth defect interactions between

3743 proteins, downloaded from Biogrid database [43], with genes

having no ‘‘Systematic Names’’ excluded. We analyze metabolic

networks obtained from two different sources: KEGG and the

datasets of Jeong et al. [44,45]. The yeast metabolic network of

KEGG is used in the Figure 2 and the others can be found in Text

S1. Metabolic networks for E. coli and S. typhi from Jeong datasets

display similar dichotomous patterns (See Figure 1 in Text S1 and

Table 1). We also analyzed a number of other datasets

[24,43,45,46], for which the descriptions can be found in Table 1

and the correlation profiles can be found in Figure 1 of Text S1.

The list of lethal yeast genes is downloaded from (http://www-

sequence.stanford.edu/group/yeast_deletion_project).

Random networks construction
For our purpose on comparing robustness and interconnectivity

of networks with different degree correlation patterns and the

same degree distribution, we use a simple method proposed by

Newman to generate random networks [6]. Specifically, the

method is as follows. First, we form a node set O containing ki

copies of node i from any given distribution (We use

P kð Þ*k{l, l~2:4 in our analysis, which approximates the PIN

well). Then we connect nodes of O randomly in pairs to generate a

neutral uncorrelated scale-free network. This step has also been

described by Molloy and Reed [47]. One limitation of this step is

the appearance of multiple edges connecting the same pair of

nodes. To prohibit these multiple edges, we randomly swapping

the edges in the network until no multiple edges between two

nodes exit. Next, we choose at random two edges from the

network generated by the above step, for example (a,b), (c,d).

Then, we measure the remaining degrees (degree minus 1) of the

nodes at the ends of the two selected edges, denoting these by ka,

kb, kc, kd . We now replace the two edges by two new edges (a,c),

(b,d) with probability min(1, (ekakc
ekbkd

=ekakb
ekckd

)), where eij is

the joint probability of nodes. In our analysis, eij has the following

Figure 8. Dichotomous modules. A. Modules organized around YLR423C YBR160W. Assortative links are colored red and disassortative links are
colored blue. B. Modules organized around YBR160W. C. Two modules organized around YDL239C and YML264C are connected to each other
through assortative links. D. Assortative hubs are more essential than disassortative hubs (chi-square test).
doi:10.1371/journal.pone.0028322.g008
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follows a symmetric binomial form:

eij*
izj

i

� �
pi 1{pð Þjz

izj

j

� �
pj 1{pð Þi

One can get assortative networks or disassortative networks by

changing the parameter p in the formula above. In our analysis, p

is set to 0.5 to generate an assortative network and 0.05 to

generate a disassortative network. To generate dichotomized

networks, we set p to 0.05 for the joint probability between the top

0.5% best connected nodes and 0.5 for the joint probability

between the rest of nodes. This gives rise to a dichotomy in degree

correlation with an r-value below 0 initially and above 0 after

excluding the 0.5% most connected nodes. The networks

generated have the same number of nodes, the same degree

distribution, allowing a comparison of the difference between

network properties solely attributed to degree correlation pattern.

A more detailed description of this method can be found in the

work of Newman [3,6].

Neutral randomized networks used in the analysis of Figure 2

are generated in a slightly different way: We use Internet, social

network and biological networks as seed networks, then select two

edges at random and replace them by two new edges, as described

by Malsov and Sneppen [4]. We then repeat the rewiring step until

every edge in the network is rewired at an average of 100 times.

100 randomized networks are generated using the above

procedure for each seed network to determine the standard

deviation s(K1, K2) of Z-score.

To create random networks with the same degree correlation as

biological networks, we propose the following algorithm.

(1) We estimate the joint probability P(ki, kj) of two nodes (with

degree ki, kj at either end of a randomly chosen edge in biological

network. The joint probability should satisfy the sum rules

X
ki ,kj

P(ki,kj)~1,
X

kj

P(ki,kj)~P(ki),
X

ki

P(ki,kj)~P(kj),

Where P(k) is the degree distribution of biological network and

P(ki), P(kj) denotes the probability of a random chosen nodes with

degree ki and kj. P(ki,kj) is the neighborhood degree distribution of

node with degree ki.

(2) For each degree k, we draw NNP(k)nodes from the degree

distribution P(k), and then form a node set S containing ki copies of

each node i, where N denotes the number of nodes in biological

network. Thus, the number of elements in S is the number of ends

of edges in biological network.

(3) We select at random two nodes from S, connect them to

generate a new random graph and then remove them from S. At

each time, we estimate the probability Pr(ki,kj) in the random graph

Pr(ki,kj)~mij

�
M, where mij is the number of edges connecting

nodes of degree ki and kj. Note that ki and kj are not re-estimated

in the new graph; they are fixed attributes of nodes of S. So,P
Pr(ki,kj)~0 in the beginning. Then we test if

Pr(ki,kj)ƒP(ki,kj), and when the condition is not fulfilled, we

discard the two nodes and draw two new ones from S. We repeat

this step until
P
ki ,kj

Pr(ki,kj)~~1.

This algorithm was used to test the speculation that dichotomy

in degree correlation determines a sickle-shaped clustering

coefficient distribution (see Figure 7 in text S1).

Hub partition
For each hub (defined as the 10% of most connected nodes), we

calculate its neighbourhood degree distribution and compare it

with what one would expect in random networks. We identified

204 hubs that have significantly more hub-hub connections, which

we denoted by assortative hubs; 66 hubs that have significantly

fewer hub-hub connections, which we denoted by disassortative

hubs (Kolmogorov-Smirnov test, p = 0.05). In practise, one can use

the formula PN (k)~ k:P(k)P
i

i:P(i)
to estimate the neighbourhood degree

distribution in random networks.

Supporting Information

Text S1 Supporting information.
(DOC)
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