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Abstract

The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but
in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of
appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning.
In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated
neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific
modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here,
we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line
consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-
specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For
functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is
expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat
Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal
subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show
selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-
HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-
mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher
the complex functions of the mammalian serotonergic system.
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Introduction

5-hydroxytryptamine (5-HT, serotonin) has been implicated in

a wide variety of emotional, cognitive and behavioral processes.

Psychopharmacotherapeutic agents targeting molecules of the

serotonergic system are often used for the treatment of a wide

spectrum of psychiatric disorders. Although this clearly demon-

strates the functional relevance of 5-HT for physiological as well

as disease processes, there is no well-defined framework for

comprehending any of its roles [1].

The understanding of the 5-HT system’s function and its

underlying molecular mechanisms has been strongly accelerated

by using reverse genetic approaches in transgenic mouse models

[2–11]. However, in mice the analysis of certain phenotypes

reaches its limits, as complex behavioral tasks involving higher

order cognitive functions are difficult to perform. Indeed, most

behavioral and electrophysiological studies are traditionally

conducted in rats and therefore many behavioral tests are only

validated for this species. The rat behavioral repertoires and the

related neural correlates have been well described and physiolog-

ical interventions, microsurgery and toxicology studies as well

as evaluation of higher order functions are in general more

sophisticated and informative in rats than in mice [12]. As a

consequence, most of the research on serotonergic functioning has

been accomplished using rats despite the fact that only few rats

with specific genetic manipulations of the 5-HT system are

available [13].

Recently, it has become feasible to manipulate the rat’s genome

with conditional transgenesis [14]. In the near future, technolog-

ical advances in the rat such as zinc finger nucleases [15] and the

development of germline competent rat embryonic stem cells [12]

will enable researchers to spatially and temporally control gene

manipulation. For this purpose, it will be necessary to control gene

expression or gene deletion with tissue-specific Cre-driver lines

which allow the recombination of loxP-flanked target sequences in

the rat genome. To specifically manipulate target genes within the

serotonergic system, Cre drivers could be linked to regulatory

sequences of 5-HT neuron specific genes such as Pet-1 or Tph2.
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In the present study, we generated and characterized four

transgenic TPH2-CreERT2 rat lines in which a 177 kb genomic

sequence of the mouse Tph2 gene controls tissue-specific

expression of the CreERT2 recombinase. Cre-mediated recombi-

nation of loxP flanked target genes was functionally characterized

with the Cre reporter line pCaggs-loxP.lacZ.loxP-EGFP (CAG-

loxP.EGFP). After tamoxifen treatment of double transgenic

TPH2-CreERT2/CAG-loxP.EGFP rats, efficient EGFP expres-

sion and hence recombination occured specifically in 5-HT

neurons while background recombination in the absence of

tamoxifen could not be identified.

Methods

Generation of TPH2-CreERT2 transgenic rats
A PAC (L065) which contains the full-length mouse Tph2 gene

(107 kb) with 51 kb upstream and 19 kb downstream DNA

sequences was modified as previously described [16]. The purified,

linearized TPH2-CreERT2 DNA was microinjected into the

pronucleus of oocytes of Sprague-Dawley rats (Charles River

Laboratories, Germany). Transgenic founder rats were identified

by PCR genotyping of tail tips. The TPH2-CreERT2 transgenic

rats were bred with the Cre reporter line CAG-loxP.EGFP

(Schönig et al, in preparation) to generate double-transgenic TPH2-

CreERT2/CAG-loxP.EGFP rats. In brief CAG-loxP.EGFP rats

harbour a loxP-flanked lacZ reporter gene, controlled by the

ubiquitously active CAG promoter [17,18]. The lacZ DNA fragment

precludes the transcription of a second reporter gene EGFP. Cre

mediated recombination can be monitored in double-transgenic

TPH2-CreERT2/CAG-loxP.EGFP by EGFP expression.

Quantification of transgene copy number
Copy number quantification of the TPH2-CreERT2 transgene

per cell was done via genomic quantitative real-time PCR (qPCR)

for each TPH2-CreERT2 line. For amplification and data

collection, we used the Rotor-Gene Q-system (Qiagen). All

reactions were carried out in a total volume of 25 mL and were

measured in triplicates. Each reaction mixture contained 5 ng of

genomic DNA, 12.5 ml Rotor-Gene Fast SYBR Green Master

Mix (Qiagen) and 300 nM forward and reverse primers. The

amplification protocol consisted of an initial denaturation step at

95uC for 5 min, followed by 40 cycles at 95uC for 10 s, 60uC for

10 s and 72uC for 10 s. SYBR Green fluorescence was detected at

72uC. Each amplification reaction was checked for the absence of

nonspecific PCR products by melting curve analysis followed by

agarose gel electrophoresis.

The absolute target copy numbers were determined using 1:2

dilution series of genomic mouse DNA harbouring defined

numbers of Cre transgenes [19] as an external standard. For

each sample, the amount of Cre transgene and reference gene

(ApoB) was measured in each transgenic line. The following

primers were used: Cre3: 59 TCG CTG CAT TAC CGG TCG

ATG C 39; Cre4: 59 CCA TGA GTG AAC GAA CCT GGT CG

39; ApoB_for: 59 ATC TCA GCA CGT GGG CTC 39; ApoB_rev

59 TCA CCA GTC ATT TCT GCC TTT G 39.

In vivo induction of Cre-mediated recombination with
tamoxifen

Tamoxifen (Sigma) was dissolved in neutral oil at a final

concentration of 20 mg/ml. For recombination analysis, double-

transgenic TPH2-CreERT2/CAG-loxP.EGFP rats (8–12 weeks)

were given a protocol of alternating daily tamoxifen injections

(40 mg/kg) for a total of five consecutive days. The protocol was

designed with single injections on days 1, 3 and 5 and two

tamoxifen injections twelve hours apart on days 2 and 4. Control

animals were injected with neutral oil (vehicle) using the same

schedule. Rats were sacrificed 14 days after the last injection.

All experimental procedures were approved by the local Animal

Welfare Committee (Regierungspräsidium Karlsruhe 35-918581/

G-107/09) and carried out in accordance with the local Animal

Welfare Act and the European Communities Council Directive of

24 November 1986 (86/609/EEC).

Immunohistochemistry
Transgenic TPH2-CreERT2 founder rats were characterized

by immunohistochemistry using DAB staining (Vectastain Elite

ABC kit) with a rabbit a-Cre primary antibody (Covance, 1:2500).

Founder line #15 was further characterized with dual-label

fluorescent immunohistochemistry in TPH2-CreERT2 and

TPH2-CreERT2/CAG-loxP.EGFP rats. The following primary

antibodies were used: chicken a-bgalactosidase (Abcam, 1:10000),

rabbit a-GFP (Invitrogen, 1:1000), rabbit a-Cre (Covance,

1:1000), mouse a-GAD67 (Millipore, 1:500), mouse a-TH

(Millipore, 1:500), mouse a-NeuN (Millipore, 1:4000), mouse a-

GFAP (Sigma, 1:2000), rabbit a-TPH2 (Dianova, 1:5000), and

mouse a-TPH1 (Sigma, 1:2000) antibodies. Tryptophane hydrox-

ylase 2 (TPH2) is the rate-limiting enzyme of 5-HT synthesis in the

brain and specific to serotonergic neurons. The anti-tryptophan

hydroxylase 1 (TPH1) antibody crossreacts with TPH2 and detects

both isoenzymes. Secondary antibodies were AF488 donkey a-

rabbit (Invitrogen, 1:1000 for TPH2 and 1:5000 for GFP and

Cre), Cy3 donkey a-mouse (Jackson ImmunoResearch, 1:200 for

TPH1), Cy3 donkey a-chicken (Jackson ImmunoResearch, 1:1000

for bgalactosidase) and AF488 donkey a-mouse (Invitrogen, 1:200

for GAD67, NeuN, TH and GFAP). Sections were examined

using a Nikon C1Si-CLEM confocal laser-scanning microscope

(Nikon Imaging Center, BioQuant, Heidelberg, Germany).

Confocal image stacks for both channels were acquired sequen-

tially, and projected on average using ImageJ software.

Statistical methods
Coronal slices of 3 adult TPH2-CreERT2/CAG-loxP.EGFP

rats (8–10 weeks old) per group were processed with dual-label

fluorescent immunohistochemistry detecting GFP and TPH.

Image stacks of slices that showed TPH staining were acquired

using a confocal laser-scanning microscope. The ratio of GFP+/

TPH+ neurons to all TPH+ neurons was calculated separately for

caudal, median and dorsal raphe nuclei. Confidence-bounds (CI)

for recombination efficacy and background recombination in adult

rats were calculated using the Clopper-Pearson method based on

significance level 95%.

Results

Generation of TPH2-CreERT2 transgenic rats
For inducible, tissue-specific expression of CreERT2 in

serotonergic neurons of the rat brain, a 177 kb fragment of

mouse genomic DNA containing the Tph2 gene and its regulatory

elements was used [16]. The linearized CreERT2 expression

cassette (Fig. 1A) was introduced into the rat genome via

pronuclear microinjection of fertilized Sprague Dawley rat

oocytes. Seven transgenic founder rats were identified by PCR

of tail DNA. Of those, three founders did not transmit their

transgene leaving four founders for characterization.

Cre expression in TPH2-CreERT2 founder rats
All four TPH2-CreERT2 founder lines showed Cre immuno-

staining in the raphe nuclei of the brain stem and midbrain while
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no Cre expression was observed outside the raphe nuclei. The

efficacy of Cre expression varied notably among the founder lines.

The TPH2-CreERT2 founder lines #7, #8 and #14 showed

weak and mosaic Cre staining in serotonergic neurons (Fig. 1B–G)

while strong Cre expression could be detected in the raphe nuclei

of line #15 (Fig. 1H,I). Since large genomic DNA constructs are

thought to regulate transgene expression independent of their

integration site but copy number dependent [20], we determined

the transgene copy number of each TPH2-CreERT2 founder by

qPCR (Fig. 1J). Stronger Cre expression in founder line #15 could

be correlated with increased transgene copy number while the

weakly expressing founder lines #7, #8 and #14 contained only a

single copy of the transgene. Cre expression in founder line #15

(Fig. 2A,C,E,G) was further investigated for their tissue-specificity

with dual-label fluorescent immunohistochemistry using a 5-HT

neuron specific TPH antibody and a Cre antibody (Fig. 2B,D,F,H).

Colocalization of Cre and TPH demonstrated that Cre was

exclusively expressed in 5-HT neurons. Hence, the transgenic rat

founder line #15 showed extensive and tissue-specific Cre

expression in 5-HT neurons of all raphe nuclei.

Inducible and efficient recombination in serotonergic
neurons of double-transgenic TPH2-CreERT2/
CAG-loxP.EGFP rats

Line #15 was further used to functionally characterize the

temporal and spatial control of tamoxifen-induced CreERT2-

mediated recombination in 5-HT neurons. We made use of a rat

Cre reporter line (CAG-loxP.EGFP), which has been shown to

efficiently monitor Cre-mediated recombination in forebrain

principal neurons (Schönig et al, in preparation). Here, the

ubiquitously active CAG-promoter [17,18,21] drives the expres-

sion of a double reporter. Under uninduced baseline conditions,

the loxP-flanked lacZ minigene is expressed, reflecting cell-type

specific CAG-promoter activity. Upon Cre-mediated recombina-

tion, lacZ is replaced with the second reporter gene enhanced

green fluorescent protein (EGFP). The appearance of EGFP serves

as an indicator of Cre mediated recombination in double

transgenic rats.

A prerequisite for a versatile Cre reporter line is the ability to

monitor recombination in a wide range of cells. We first analysed

baseline expression of beta-galactosidase (bgal) in serotonergic

neurons and other cell types of the brain by dual-label fluorescent

immunohistochemistry to determine expression characteristics of

the CAG-loxP.EGFP line. CAG-driven bgal expression was found

in virtually all brain regions (Fig. 3A–E) and in many types of

neurons including monoaminergic (Fig. 3F–H) and GABAergic

neurons (Fig. 3I–J). In contrast to neuronal expression, bgal

expression was only infrequently found in astrocytes (Fig. 3K).

These results verify the utility of the CAG-loxP.EGFP reporter line

for monitoring Cre-mediated recombination not only in seroto-

nergic neurons, but also in other neuronal subtypes.

Based on these results, we generated double-transgenic TPH2-

CreERT2/CAG-loxP.EGFP rats to determine recombination

efficiency and tissue specificity for our rat Cre driver line TPH2-

CreERT2 (Fig. 4A). Coronal brain sections from tamoxifen and

vehicle treated TPH2-CreERT2/CAG-loxP.EGFP rats were

analysed using dual-label fluorescent immunohistochemistry with

Figure 1. Copy number dependent Cre expression in TPH2-
CreERT2 founder rats. (A) Mouse TPH2-CreERT2 expression cassette
for DNA microinjection. (B–I) DAB-immunohistochemistry with a Cre
antibody shows weak Cre expression in the brain stem and mid-brain of

TPH2-CreERT2 rat founder lines #7 (Fig. 1B,C), #8 (Fig. 1D,E), and #14
(Fig. 1F,G). Founder line #15 shows extensive Cre staining in areas
where serotonergic raphe nuclei are located (Fig. 1H,I). Intensity of Cre
expression correlates with the transgene copy number of TPH2-CreERT2
rat founders (Fig. 1J).
doi:10.1371/journal.pone.0028283.g001
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bgal/TPH2 and GFP/TPH1 antibodies. In vehicle treated TPH2-

CreERT2/CAG-loxP.EGFP rats, bgal-expression could be detect-

ed in virtually all 5-HT neurons (Fig. 4B,E,H,K). In contrast,

EGFP expression could only be detected in few 5-HT neurons

(Fig. 4C,F,I,L), which indicates minimal Cre-mediated background

recombination in the absence of tamoxifen (Table 1). Importantly,

in tamoxifen-treated TPH2-CreERT2/CAG-loxP.EGFP rats,

EGFP and TPH expression colocalised in 5-HT neurons of caudal,

dorsal and median raphe nuclei indicating effective Cre-mediated

recombination in all raphe nuclei (Fig. 4D,G,J,M; Table 1). Extra-

serotonergic brain regions showed no EGFP staining.

Discussion

In this study, we describe an inducible, tissue-specific rat

transgenic CreERT2 driver line for conditional gene manipula-

tions in serotonergic neurons. We functionally demonstrate

efficient, tamoxifen-inducible, 5-HT neuron specific recombina-

tion with minimal background activity in TPH2-CreERT2 rats

crossed to the rat Cre reporter line pCAG-loxP.EGFP.

Application of mouse genomic regulatory sequences for
the generation of tissue-specific rat Cre driver lines

TPH2 is the rate-limiting enzyme of 5-HT synthesis and

strongly and exclusively expressed in serotonergic neurons of the

raphe nuclei in the brain [22]. Hence, regulatory elements of Tph2

should be suitable to direct Cre expression specifically to 5-HT

neurons. We previously made use of large regulatory elements of

the Tph2 locus identified on a genomic mouse PAC clone to

generate a TPH2-CreERT2 mouse line that shows highly efficient,

tamoxifen-inducible recombination in 5-HT neurons [16]. As not

only the rat and mouse Tph2 genes are almost identical [22], but

also the entire region of the mouse Tph2 locus on chromosome 10

is highly homologous to the rat locus on 7q22 (NCBI Blast), we

decided to use the same 177 kb TPH2-CreERT2 construct to

generate transgenic rats. We demonstrate the fidelity of the mouse

Tph2 locus to direct Cre expression selectively to serotonergic

neurons in transgenic rats. With this TPH2-CreERT2-expression

cassette, transgenic 5-HT neuron-specific Cre expression is likely

not dependent on the genomic site of integration since all founder

lines showed Cre expression in the raphe nuclei. More likely, the

efficacy of Tph2-controlled Cre expression appears to depend on

the transgenic copy number. This is in accordance with previous

reports showing that large genomic DNA constructs allow copy-

number dependent transgene expression independent of the

genomic integration site of the construct [20,23,24]. Efficient

serotonergic Cre expression could only be found in founder line

#15 which contained 2–3 transgene copies compared to single

copies in all other founder lines.

Interestingly, we could not identify founder lines with higher

copy numbers [24]. It remains to be investigated whether this

finding of low copy numbers in rat transgenesis is purely

coincidental or specific for microinjected rat oocytes.

The finding that large genomic mouse sequences which have

been shown to adequately control Cre expression in mouse Cre

driver lines likely contain sufficient regulatory information for rat

transgenesis suggest that this strategy might be applicable in a

general way to generate tissue-specific rat Cre driver lines.

Functional analysis of Cre-mediated recombination in
transgenic TPH2-CreERT2 rats

Novel Cre driver lines need to be functionally assessed for

efficiency and tissue-specificity of Cre-mediated recombination.

We previously generated a rat Cre reporter line, CAG-loxP.EGFP,

which shows CAG-promoter controlled baseline, non-recombined

bgal expression and EGFP reporter expression once Cre-mediated

recombination of a loxP flanked lacZ STOP cassette has occurred

(Schönig et al, in preparation). A major advantage of this strategy

is that basal CAG-promoter activity in the tissue of interest can be

readily assessed on a cellular level by monitoring bgal expression.

Hence, it can be rapidly determined in advance whether CAG-

loxP.EGFP rats allow for functional characterization of a new

tissue-specific rat Cre driver line. We have characterized the

CAG-loxP.EGFP rat Cre reporter line for its utility to monitor

Cre-mediated recombination in TPH2-CreERT2 rats. We find

strong bgal expression throughout the brain in all examined

Figure 2. Cre expression is restricted to serotonergic neurons
of the raphe nuclei. (A,C,E,G) DAB-immunohistochemistry with a Cre
antibody of line #15 shows Cre staining in the brain stem and mid-
brain, regions which contain serotonergic somata while extraseroto-
nergic brain regions show no staining. (B,D,F,H) Coronal sections of
dual-label fluorescence immunohistochemistry with Cre and TPH1
antibodies. The TPH1 antibody crossreacts with TPH2 and detects both
isoenzymes. Colocalization of TPH1 and Cre confirms exclusive Cre
expression in 5-HT neurons of the raphe nuclei. Caudal raphe nuclei
(CR); dorsal raphe nuclei (DR); median raphe nuclei (MR). Scale bars:
100 mm.
doi:10.1371/journal.pone.0028283.g002
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neuronal populations and in a portion of astrocytes. In particular,

CAG-loxP.EGFP rats show abundant monoaminergic bgal

expression in the absence of EGFP expression which makes

CAG-loxP.EGFP rats suitable to functionally characterize tamox-

ifen-induced, Cre mediated recombination and background

recombination in 5-HT neurons. Using TPH2-CreERT2/CAG-

loxP.EGFP double transgenic rats, we functionally validate Cre-

mediated recombination, i.e. EGFP expression, in 5-HT neurons

of all raphe nuclei upon tamoxifen induction whereas background

recombination in vehicle-treated rats was absent. Furthermore,

the absence of extraserotonergic EGFP expression in TPH2-

CreERT2/CAG-loxP.EGFP rats confirms tissue specificity of the

TPH2-CreERT2 driver line.

Serotonergic recombination in tamoxifen-induced TPH2-

CreERT2/CAG-loxP.EGFP rats was less efficient than recombi-

nation in the previously described mouse TPH2-CreERT2 line

[16] (5-HT neuron specific recombination rate: mouse 90% versus

rat 77%) while background recombination without tamoxifen

was equally low in the rat TPH2-CreERT2 line. The lower

recombination efficacy could be due to the integration site of the

Figure 3. Baseline bgal expression in the brain of CAG-loxP.EGFP Cre reporter rats. (A,B) X-Gal staining of sagittal sections shows
ubiquitous bgal activity throughout the brain of adult CAG-loxP.EGFP rats (P90). (C–K) Dual-label fluorescence immunohistochemistry (IHC). (C–E)
bgal/NeuN IHC of the cerebellum (C), cortex (D) and OB (E) shows strong colocalization of bgal with the neuronal marker NeuN. (F–H) bgal IHC with
the serotonergic marker TPH2 (F), and the dopaminergic and noradrenergic marker tyrosine hydroxylase (TH) (G,H) shows abundant colocalization of
bgal with 5-HT neurons in the dorsal raphe (F), with dopaminergic neurons in the ventral tegmental area and substantia nigra (G) and noradrenergic
neurons in the locus coeruleus (H) confirming strong bgal expression in all monoaminergic neurons. (I,J) bgal/GAD67 IHC shows bgal expression in
GABAergic neurons of the granular layer of the OB (I) and in the hippocampus (J). (K) bgal/GFAP IHC in the hippocampus shows infrequent bgal
expression in glia. OB, olfactory bulb; DR, dorsal raphe nuclei; VTA, ventral tegmental area; SN, substantia nigra; LC, locus coeruleus; HC,
hippocampus. Scale bars: 100 mm.
doi:10.1371/journal.pone.0028283.g003
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transgene, its copy number or missing regulatory elements in the

mouse Tph2 sequence which drives CreERT2 expression in the rat

brain. Alternatively, the tamoxifen dose or the induction protocol

with three single daily injections and only two twice daily

tamoxifen injections could potentially result in insufficient nuclear

translocation of CreERT2 and thus reduced Cre-mediated

recombination. The individual tamoxifen dosage of 40 mg/kg in

rats is analogous to 1 mg/injection often used in mice [25–27]. In

CreERT2 mice, it has been previously shown that the most

efficient tamoxifen protocol consists of twice daily tamoxifen

injections for 5 consecutive days [25,27]. The frequency of Cre-

mediated recombination in mice decreased considerably with

protocols using single daily tamoxifen injections even when the

protocol was extended to 10 days [25,27]. Our initial attempts to

Figure 4. Inducible recombination is restricted to serotonergic neurons of adult TPH2-CreERT2/CAG-loxP.EGFP rats. (A) TPH2-
CreERT2 rats were bred to CAG-loxP.EGFP rats to generate double-transgenic TPH2-CreERT2/CAG-loxP.EGFP rats. Under uninduced baseline
conditions, the loxP-flanked lacZ minigene is expressed reflecting cell-type specific CAG-promoter activity. Upon Cre-mediated recombination (+
Tamoxifen), lacZ is replaced with the second reporter gene enhanced green fluorescent protein (EGFP). The appearance of EGFP serves as an
indicator of Cre mediated recombination in double transgenic rats. TPH2-CreERT2/CAG-loxP.EGFP rats were daily injected with tamoxifen (40 mg/kg)
or vehicle for five consecutive days starting between P60–90. Coronal sections show dual-label fluorescence immunohistochemistry for TPH/bgal
(B,E,H,K) and TPH/GFP (C,F,I,L) in vehicle-treated rats (-Tx) and TPH/GFP in tamoxifen-treated (+Tx) rats (D,G,J,M). Colocalization is visualized at the
level of caudal raphe nuclei (CR) (B–D), dorsal raphe nuclei (DR) (E–J) and median raphe nuclei (MR) (K–M) using confocal images. In vehicle-treated
rats, TPH2-CreERT2/CAG-loxP.EGFP rats display strong basal, non-recombined bgal expression in TPH2+ 5-HT neurons (B,E,H,K) making these rats
ideally suited to monitor tamoxifen-induced Cre-mediated recombination in 5-HT neurons. (C,F,I,L) Without tamoxifen treatment, background
recombination, i.e. EGFP expression (arrows) hardly occurs. (D,G,J,M) After tamoxifen treatment, the majority of TPH+ 5-HT neurons in all raphe nuclei
now show EGFP expression indicating Cre-mediated recombination in these neurons (GFP+/TPH+). Scale bars: 100 mm.
doi:10.1371/journal.pone.0028283.g004
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apply the mouse protocol of twice daily tamoxifen injections to our

transgenic rats failed as the rats did not well tolerate this protocol.

Nonetheless, we believe that insufficient tamoxifen-mediated

nuclear translocation of CreERT2 is only partially responsible

for the found incomplete recombination efficacy since Cre was not

expressed at all in some 5-HT neurons.

Importance of tissue specific rat Cre driver lines for rat
transgenesis

Recently, a plethora of new techniques for the modification of

the rat genome has been introduced including the development of

germline competent embryonic rat stem cells and nuclease based

methods [12,28–31]. For the first time, this permits targeted

integration of recombinant DNA sequences into the rat genome.

In the near future, it is expected that these techniques will be

applied to generate conditional loxP-flanked alleles in the rat

allowing for spatial and temporal control of gene deletion with

tissue-specific rat CreERT2 driver lines. This strategy is of

particular importance in order to overcome lethality or induction

of compensatory, homeostatic mechanisms or pleiotropy during

development, inherent with traditional methods applied in rats

such as ENU- or transposon mediated mutagenesis [32–34].

Furthermore, the CAG-loxP.EGFP line illustrates how comple-

mentary systems for tissue-specific overexpression or knock-down

of target genes could be easily implemented. For inducible

overexpression, the EGFP reporter cassette would be simply

replaced by a candidate gene’s cDNA which transcription would

only be activated after Cre-mediated recombination. Alternatively,

polymerase II controlled microRNAs or sponge/decoy miRNA

sequences [35,36] could be placed downstream of the loxP-flanked

lacZ cassette which would allow a Cre-mediated gene knock-

down. Apart from tissue specific and inducible overexpression of

cDNAs, this technology enables the conditional rescue of gene

knockouts, overexpression of mutated gene variants, micro RNA

mediated translational repression or the study of microRNA

mediated post-transcriptional gene regulation by antagonizing

microRNA activity. The TPH2-CreERT2 rat line is also optimally

suited for optogenetic manipulations of the serotonergic system

with Cre-activated opsin genes delivered to the brain by viruses

[37,38].

As we have demonstrated above, the combination of such Cre

activatable ‘‘response units’’ with the TPH2-CreERT2 line will

guide modifications specifically to serotonergic neurons.

Conditional gene manipulations in serotonergic neurons
of transgenic rats

Only during the last decade, conditional transgenic mouse tools

have been developed to manipulate candidate genes exclusively in

5-HT neurons using the Cre/loxP recombinatorial system

[5,16,39]. These studies have led to important insights into the

physiological role of the 5-HT system [5,6,8,40–42]. In contrast,

only few publications have addressed the involvement of the 5-HT

system in impulsive behavior, cognitive flexibility, decision

making, sensitivity to reward, and responsiveness to punishment

and aversive signals [9,43], all functions that have been

prominently associated with 5-HT [1,44,45]. This comes as no

surprise, since the mouse as a model organism for complex

behavioral analysis of higher cognitive functions has not been the

first choice for most researchers. Because of its size, ease of

manipulation and breeding characteristics, the laboratory rat has

been the preferred animal model for physiology, pharmacology,

toxicology, nutrition, behavior, immunology and neoplasia for

many decades while the mouse has emerged as the principal

mammal for experimental genetics [46]. Transferring conditional

genetic manipulation to the rat would greatly enhance our

capabilities to dissect 5-HT functions and its implications for

emotions, learning and complex behaviour. With our approach,

the advantages of conditional, 5-HT neuron specific genetic

manipulation – previously a mouse geneticist’s province - can now

be studied in the rat with all its amenities.
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