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Abstract

Chromatin Immuno Precipitation (ChIP) profiling detects in vivo protein-DNA binding, and has revealed a large
combinatorial complexity in the binding of chromatin associated proteins and their post-translational modifications. To fully
explore the spatial and combinatorial patterns in ChIP-profiling data and detect potentially meaningful patterns, the areas
of enrichment must be aligned and clustered, which is an algorithmically and computationally challenging task. We have
developed CATCHprofiles, a novel tool for exhaustive pattern detection in ChIP profiling data. CATCHprofiles is built upon a
computationally efficient implementation for the exhaustive alignment and hierarchical clustering of ChIP profiling data.
The tool features a graphical interface for examination and browsing of the clustering results. CATCHprofiles requires no
prior knowledge about functional sites, detects known binding patterns ‘‘ab initio’’, and enables the detection of new
patterns from ChIP data at a high resolution, exemplified by the detection of asymmetric histone and histone modification
patterns around H2A.Z-enriched sites. CATCHprofiles’ capability for exhaustive analysis combined with its ease-of-use makes
it an invaluable tool for explorative research based on ChIP profiling data. CATCHprofiles and the CATCH algorithm run on
all platforms and is available for free through the CATCH website: http://catch.cmbi.ru.nl/. User support is available by
subscribing to the mailing list catch-users@bioinformatics.org.
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Introduction

Chromatin Immuno Precipitation (ChIP) profiling techniques

detect in vivo protein-DNA binding. The DNA bound by the

protein of interest is co-immunoprecipitated using protein-specific

antibodies (ChIP), and mapped to the genome either using a DNA

microarray chip (ChIP-on-chip) or by sequencing (ChIP-seq), for a

review see Collas et al.

ChIP profiling has been used not only to detect in vivo

transcription factor binding sites [1–5] but also to map the epigenetic

profile of the chromatin, e.g. histone occupancy and histone

modifications [6–9]. ChIP profiling has revealed a high complexity

of binding patterns, both for transcription factor binding sites and for

epigenetic markers. The DNA-binding proteins show temporal

variation in binding [9,7,10], as well as a combinatorial variation

over different binding sites in the genome [11]. The various

combinations of histone modifications are thought to instruct the

cellular machinery [12] while the combinatorial presence of

transcription factors could provide a mechanism to exert complex

gene regulation [13].

The initial analysis of ChIP-profiling data is primarily

concerned with detecting the binding sites in the genome and

correlating regions that have specific combinations of chromatin

modifications with other observables like gene expression. Such an

exploration of the biological relevance of the spatial and temporal

combinations of DNA-binding proteins and their modifications

requires the clustering of similar ChIP profile regions. One

approach is to discretize the data to a simple presence/absence call

of each ChIP signal per region, and then classify regions by their

binary presence/absence combinations [14,15]. However, this

approach does not exploit the rich information of the individual

peak height, width, nor of the variation in signal shapes and

relative positions within the regions. Another approach is to

compile sets of genomic regions with similar annotated functions

and determine their average ChIP profile signal pattern. This

approach is easy to apply but does not allow the exploration of

new patterns in unannotated regions. In general, a major

challenge in the clustering of ChIP profiling patterns is to compare

and cluster binding profiles to enable further analysis of the

identified clusters without a priori binning genomic locations of

known functions such as transcription start sites, or reducing the

complexity of the data by not including the relative positions and

shapes of the ChIP profiling signals. Not only does this call for an

unsupervised clustering method that can manage high-resolution
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ChIP profiling data, it also requires the method to account for the

unknown relative positioning of novel patterns, necessitating the

alignment of the ChIP profile regions. Furthermore, it requires a

flexible organization and graphical presentation of the results to

allow browsing and selecting the results for further analysis.

To meet this challenge we have developed the CATCH

(Clustering and AlignmenT of ChIp profiles) algorithm and

implemented it in the tool CATCHprofiles. The CATCH

algorithm is designed to handle ChIP profiling data and accounts

for variable signal strength and positioning of significant patterns

within profile regions by incorporating alignment and the option

of signal normalisation in the profile comparison. CATCHprofiles

supports the analysis workflow by an interactive graphical

visualization of data and results.

Two other analysis tools are currently available that include

aligning of ChIP profile regions. The first one, ChromaSIG [16],

implements a heuristic clustering and alignment based on Gibbs

sampling [17]. The second, ArchAlign [18], performs exhaustive

alignment using a similar approach to the CATCH algorithm, but

does not perform clustering. The non-exhaustive and probabilistic

search of ChromaSIG has an advantage in speed, but also the

disadvantage of varying, non-deterministic results. Also, the

heuristic approach to alignment and clustering cannot guarantee

sensitivity, and some patterns may go undetected. CATCHprofiles

and ArchAlign circumvent this by performing an exhaustive

comparison of all pairwise profile windows in the dataset.

However, since ArchAlign does not perform clustering, but reports

the average aligned pattern of a set of preselected profiles, it

cannot be used for discovery of more than one pattern in the given

data. Our CATCHprofiles tool presents advantages over both

ChromaSIG and ArchAlign, since we include both hierarchical

clustering and exhaustive alignment in a deterministic algorithm.

Furthermore, the Java tool CATCHprofiles has an interactive

graphical user interface to browse and export results and the

CATCH core algorithm is implemented for parallel execution on

multi-core machines.

CATCHprofiles can be used to detect ChIP profile patterns in

an unbiased approach, i.e. not based on functional annotation, as

well as to extract new biological information from the alignment of

individual patterns. We demonstrate the power of CATCHprofiles

by genome-wide clustering of H2A.Z-enriched sites in a ChIP-seq

dataset, revealing the H2A.Z context to contain various patterns of

CTCF, RNA Polymerase II (PolII) and histone modifications. We

also show how the orientation of the individual ChIP profiling

patterns correlates with the orientation of genomic elements,

namely how the relative orientations of the H2A.Z and CTCF

peak patterns are correlated with the orientation of the CTCF

binding motif.

Results

The CATCH algorithm
We designed and implemented the CATCH algorithm to

perform simultaneous alignment and clustering of ChIP profile

patterns. To run the CATCH algorithm, the user must provide

one or more ChIP profiling data sets along with the genomic

regions to analyse, e.g. peak regions of interest. In the following,

we use the shorthand ‘profiles’ refer to genomic regions of the

ChIP profiling data, unless stated otherwise. Our implementation

represents the profiles internally as multi-dimensional vectors of

equidistant floating point values along their specified regions of the

genome.

The CATCH algorithm uses a hierarchical clustering approach

combined with pairwise alignment: it keeps a pool of profiles from

which it iteratively aligns all pairs and chooses the most similar

pair. Initially, this pool is the set of all profiles in the data set. Each

time the most similar profile pair (P1, P2) is chosen, P1 and P2 are

merged to obtain P9, the average profile of their alignment, and P1

and P2 are replaced by P9 in the profile pool. P9 is then aligned to

all the remaining profiles in the pool to determine their pairwise

similarity. The sequence of merging events determines the

topology of the tree. Conceptually this type of clustering is an

unweighted pair-group centroid clustering [19]. As default

similarity measure for comparing the profiles we use the sum of

squared distances and every profile pair is compared in both

forward (left-to-right) and reverse (right-to-left, i.e. mirrored)

direction. Each profile pair is aligned in the orientation (mirrored

or non-mirrored) that gives the highest similarity. CATCH

represents the profiles internally by a series of signals for fixed

equidistant positions within the profile window, estimating missing

values by linear interpolation of neighbouring signals, thereby

allowing comparison of profiles with varying resolution. As profiles

are aligned at different offsets, the generated average profile may

grow in length. To avoid wasting computation time and

introducing artefacts by aligning non-informative parts of the

signal, the algorithm includes a measure for pruning signal at the

edges of the alignment. The pruning in combination with the

clustering is enforcing the idea of pattern significance by

recurrence, since the most heavily aligned part of the pattern will

be kept and the less densely aligned edges will be trimmed. The

CATCH algorithm and the options for the similarity measure,

normalization and pruning are described in detail in Supplemen-

tary Methods S1: CATCH algorithm and Figures S1, S2, S8, S9,

S10, and Tables S1, S2. In the analysis of the H2A.Z profiles (see

below), the default parameters were used.

Visualization and graphical interface
CATCHprofiles is a stand-alone tool for ChIP profiling

clustering analysis and visualization. The tool implements the

CATCH algorithm, as described above, for the alignment and

clustering of ChIP profiles. It takes as input selected areas from the

ChIP profiling data, e.g. areas obtained from peak calling, or areas

selected from annotation, such as promoter regions. Through the

graphical user interface, the user can selectively load one or more

ChIP profiling data sets, along with a bed format file defining the

positions of the profiles to be analysed within the selected profiling

data. When the data has been loaded into CATCHprofiles, the

selected profiles are presented to the user in the Graph view with

each included ChIP profiling experiment plotted in a different

colour for easy distinction (Figure S4). After alignment and

clustering, the result is visualized in two different types of displays,

the Cluster view (Figure S5) to explore the tree obtained by the

clustering, and the Branch view to visualize and compare profile

patterns at selected branches of the tree. The graphical interface

allows the user to examine and select distinctive ChIP-profile

patterns and the corresponding branches of the tree for further

analysis. At any level in the tree the average profile patterns and

the genomic positions of the profiles can be exported as plain text

while clusters can be marked and saved for later browsing in

CATCHprofiles.

Computational efficiency
The exhaustive all-against-all comparison and alignment in the

CATCH algorithm comes at a cost in computation time. Since the

similarity score is calculated per track in the pairwise comparisons,

adding more ChIP profiling experiments (signal tracks) to the

profiles adds linearly to the computation time. Adding more

profiles, however, causes a quadratic increase in pair-wise profile

CATCHprofiles
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comparisons and computation time. We have therefore imple-

mented the CATCH clustering algorithm in C, optimizing for

both memory efficiency and computation speed. Furthermore, we

have enabled parallel computation of the comparison scores, so

the computation time scales inversely with the number of available

processors (see Supplementary Methods S1: Parallel Implementa-

tion).

Clustering of PolII sites and alignment of promoters
We demonstrate the capability of CATCH for unbiased

discovery by clustering regions of PolII binding in the ChIP-seq

dataset of PolII, H2A.Z and a selection of histone modifications

from Wang et al. [15]. In these data CATCHprofiles detects a

cluster of 2093 profiles with a high signal for H3K4me3 and for

almost all the histone acetylation marks under study, a profile

pattern that has been reported for actively transcribed promoters

[15] (Figure 1). We validated the positions of the profiles in the

cluster to be enriched in promoters by comparing to annotation.

Indeed, 81% of the profiles are within 1 kb of annotated Ensembl

TSS. From the remaining 19% more than half (253/389) were

within 1 kb of TSS predicted by Aceview [20] based on

transcription data (Supplementary material: cluster12750.xls).

We used the same dataset to study how the alignment changes

the average profile of the promoters. We selected the active

promoters (TSS) from ENCODE regions and used CATCHpro-

files to align the H3K4me3 signals in the promoter regions. When

disregarding the direction of transcription, the average TSS has a

peak of H3K4me3 on both sides of the centre (Figure 2A).

However, the average profile patterns change when allowing both

alignment and mirroring of the profile regions (Figure 2 B, C),

revealing that the individual profile patterns are actually

asymmetric around the TSS (Figure 2D).

Clustering of H2A.Z profiles
To demonstrate the power of CATCH for the discovery of new,

potentially biologically relevant patterns in ChIP-seq data we

analysed the chromatin modification patterns accompanying

H2A.Z. H2A.Z is a histone variant that is found throughout the

genome. In both yeast and human, H2A.Z occupies two consecutive

nucleosomes around the nucleosome-free region at transcriptionally

active promoters [21], but little is known about binding patterns at

other H2A.Z sites and their functional relevance.

We applied the CATCH algorithm and the CATCHprofiles

tool with our default settings to analyse the patterns around

Figure 1. Example profile of PolII cluster with marks of active transcription. The average profile pattern of cluster 12750 (containing 2093
profiles) from the CATCH clustering of PolII binding sites. The profile pattern has a high signal for both H3K4me3 and all the histone acetylation
marks, which are known to correlate with active transcription. 81% of the profiles are within 1 kb of annotated Ensembl TSS, and of the remaining
389 regions, 253 were within 1 kb of Aceview predicted TSS.
doi:10.1371/journal.pone.0028272.g001

CATCHprofiles
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H2A.Z enriched sites in a genome-wide ChIP-seq dataset from

human CD4+ cells of histone modifications, RNApolII and CTCF

[15]. The dendrogram of the total 37456 ChIP-seq profile regions

contained seven major clusters (Figure 3). Each of the clusters

presented a unique combination and shape of binding patterns

around the H2A.Z signal. The average profiles of the clusters were

viewed and exported from the CATCHprofiles tool.

One cluster pattern (cluster 35517) consisted of H2A.Z binding

sites with no apparent PolII, CTCF or histone mark. Another

cluster (cluster 37112) has an H2A.Z peak co-located with peaks

for H3K4me and H3K9me. Two of the clusters (cluster 37163 and

36420) have patterns closely resembling the known pattern of

active promoters [6,15], the main difference between them is that

cluster 36420 has a CTCF peak immediately adjacent to the PolII

peak while cluster 37163 has no CTCF. And finally, three clusters

(cluster 36426, 36884 and 36899) have novel and asymmetric

patterns with a CTCF peak flanking the H2A.Z and around them

varying degrees of histone methylation (Figure 3 and Figure S6).

For each cluster, we extracted and compared the genomic

context of the regions in the cluster with the whole-genome

distribution of H2A.Z sites to asses which cluster pattern was over-

represented in genomic regions located at 59 end of genes, 39 end

of genes, in introns, in exons and gene distant regions (see

Methods).

Gratifying, the two clusters that contain patterns resembling

active promoters (cluster 37163 and 36420) contained regions

close to annotated promoter regions (83% and 80% were within

5 kb of annotated TSS, respectively).

CTCF/H2A.Z asymmetric patterns
Of particular interest are the three clusters in which the CTCF

protein co-occurs with H2A.Z. Each of these three clusters is

significantly over-represented in 39 regions of genes as compared

to the complete set of H2A.Z sites (Figure S7). These clusters show

a pattern of H2A.Z located asymmetrically near the CTCF

binding sites. Instead of an H2A.Z double peak as is seen in the

promoter pattern, H2A.Z is present only on one side of the CTCF

and thus incorporated in only one of the two neighbouring

nucleosomes.

CTCF (CCCTC-binding factor) is a zinc finger protein that has

been reported to be critical in regulation of gene expression [22].

The distinct positioning relative to the H2A.Z site uncovered by

CATCHprofiles suggests a (possibly indirect) physical link between

the CTCF binding site and the adjacent H2A.Z nucleosome. To

corroborate the asymmetry of the CTCF/H2A.Z patterns we

performed a CTCF motif detection for each profile region and

correlated the motif orientation with the orientation of the profile

in the CATCH alignment. The orientation of the CTCF/H2A.Z

pattern has a highly significant correlation with the orientation of

the CTCF motif for each of the clusters that feature the CTCF/

H2A.Z peak pattern: cluster 36884 (0.33, P,e-32), cluster 36426

(0.39, P,e-19 ), cluster 36420 (0.29, P,e-5 ) while there was no

correlation in the remaining clusters (Table 1).

The CTCF binding affinity to the CTCF motif was investigated

by Renda et al [23] who showed that of the eleven zinc fingers in

the protein, only four are required for strong binding, and these

zinc fingers (numbered ZF4 to ZF7) have a specific orientation

Figure 2. The effect of CATCH alignment on H3K4me3 profile on a subset of ENCODE TSS. A set of 241 promoter regions with high
H3K4me3 was selected from the CATCH analysis of ENCODE TSS. The H3K4me3 signal is shown (a) aligned by the genomic position of the TSS
disregarding the direction of the TSS (b) aligned by TSS and allowing mirroring of profiles to increase similarity of the patterns (c) by CATCH
alignment without mirroring (d) by CATCH alignment and mirroring. The alignment becomes better and the average signal more localized when
using both mirroring and CATCH alignment.
doi:10.1371/journal.pone.0028272.g002

CATCHprofiles
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with respect to the sequence motif. The correlation of the

asymmetric CTCF/H2A.Z pattern with the CTCF binding motif

indicates that the H2A.Z nucleosome is most likely to be found 39

of the CTCF motif that corresponds to the ZF4 side of the bound

CTCF protein (Figure 4).

Two earlier studies on CTCF and nucleosome positioning that

did not apply alignment did not report any asymmetric patterns,

but instead showed that H2A.Z is highly enriched in nucleosomes

flanking the CTCF binding sites [24], and that H2A.Z has one

major enrichment peak at the centre of intergenic CTCF-sites

[25]. In their recent paper, Lai and Buck [18] did report an

asymmetry in the nucleosome pattern as well as in the H2A.Z

pattern when they aligned the signal in both forward and reverse

direction around a preselected set of 1000 CTCF binding sites.

However, in their study Lai and Buck did not find a correlation

between the pattern orientation and the orientation of the

underlying CTCF motif that links the asymmetry of the pattern

to the orientation of the CTCF protein.

Discussion

The analysis of ChIP profiling data aims to discover the

functional relevance of DNA-binding proteins. A prerequisite for

such discovery is to be able to either detect patterns in sites of

known functionality, or the opposite, to interrogate and annotate

the function of sites with specific patterns. Both of these

approaches require a method for clustering the ChIP profile

patterns, and for this purpose we developed CATCHprofiles - a

ChIP profile clustering and alignment algorithm integrated in a

Java tool to visualize and browse the results.

We designed the CATCH algorithm specifically to handle the

structure of ChIP profiling data, including taking advantage of the

genome-wide coverage for unbiased discovery: Firstly, CATCH

performs an exhaustive comparison and clustering based solely on

the signal patterns in the profiles, thus eliminating the need to

incorporate pre-existing knowledge, like the presence of Tran-

scription Start Sites, into the search for patterns. Secondly,

because the CATCH clustering includes alignment of the profiles,

we do not need e.g. annotated Transcription Start Sites (TSS) to

align the promoters, and we can actually improve the resolution of

annotation-based profiles. When comparing, for known promot-

ers, the average profile based on a TSS alignment with one based

on a Chip-profile based alignment using CATCH, the resolution

of the average profile improved markedly after CATCH alignment

(Figure 2). Thirdly, because CATCH by default compares the

Figure 3. Dendrogram with overview of H2A.Z clusters. The tree of the 37456 H2A.Z profiles has been collapsed to show only the relation and
patterns of the seven main clusters. Cluster profile patterns are shown in detail in Figure S6.
doi:10.1371/journal.pone.0028272.g003

Table 1. Correlation of pattern orientation with orientation of
CTCF motif for each of the H2A.Z clusters.

Cluster
name Brief description Cluster size

CTCF Motif
correlation

36899 Low H2A.Z+CTCF+H3K4me1 615 0.040

36884 H2A.Z+CTCF 2,618 0.326

35517 H2A.Z alone 12,206 0.098

37112 H2A.Z+met 10,793 0.075

37163 H2A.Z+Promoter 7,898 0.019

36426 H2A.Z+CTCF+met 1,244 0.390

36420 H2A.Z+Promoter+CTCF 1,192 0.285

Only the CTCF containing patterns with a clear H2A.Z peak show correlation
with the orientation of the CTCF motif. Promoter: Marks of active promoters
including PolII, histone acetylation and histone methylation marks. Met: Histone
methylation.
doi:10.1371/journal.pone.0028272.t001

CATCHprofiles
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profile regions by both their forward and reverse (mirrored)

orientation during the alignment procedure, we can detect

asymmetric patterns even if we have no prior knowledge about

their direction, as shown for both promoters (Figure 2) and H2A.Z

patterns (Figure 3). Fourthly, since the ChIP profiling signal can

vary between experiments depending on e.g. the difference in

affinity of the various antibodies, CATCH incorporates options for

normalizing the signal between the experiments included in the

clustering to prevent the dominance of e.g. a single high signal

track (Figure S3). Finally, Chip profiling data can have various

resolutions and coverage and the internal interpolation in

CATCHprofiles allows seamless combination of data of various

resolution and coverage.

Next to discovering and characterizing individual binding

patterns, CATCH may also be applied to compare binding

patterns between cell types. Or, within one cell type, to compare

temporal variation in binding patterns by combining the ChIP

profiling experiments from different time points. It should thereby

be noted that the CATCH algorithm is not limited to ChIP

profiling data, but can just as easily be applied to e.g. DNA

methylation or DamID [26] profiles. In fact, CATCHprofiles is

not dependent on the platform used to produce the data, and the

pattern analysis can be applied for any genomic data where shape

and the relative genomic location of the signals adds to the

biological interpretation of the result.

The challenge for many high-throughput analysis techniques is

the handling and visualization of the high-dimensional data. Often

a viable solution is abstraction, as when plotting in the space of

principal components when using principal component analysis

[27] for clustering. But in the cases where representative and

intuitive visualization is feasible, the tools that provide a graphical

visualization often achieve the highest resonance in the scientific

community, as was the case with the alignment program ClustalW

which has had a full graphical interface since 1997 [28].

CATCHprofiles provides the ChIP profiling community with an

efficient implementation of an exhaustive alignment and clustering

algorithm alongside an easy-to-use interactive graphical display of

the results.

CATCHprofiles - with example datasets and installation

instructions - is available for download from http://catch.cmbi.

ru.nl.

Methods

Implementation
The CATCHprofiles tool is implemented using a combination of

two programming languages; Java and C. The graphical user

interface is implemented in Java, while the CATCH clustering and

alignment algorithm is implemented in C as the CATCHprofiles

clustering engine. To accommodate the computational load of

large-scale analysis we have optimized the CATCHprofiles

clustering engine for parallel efficiency and achieved a close-to-

linear, inverse scaling with the number of cores (Figure S9). The

speed-up plot was produced from benchmarks on an 8-core system.

Based on the algorithm design and the parallel implementation, the

running time of the CATCHprofiles clustering engine scales

quadratically with the number of profiles and linearly with the

number of signal tracks. A more detailed description of the parallel

implementation is available in Supplementary Methods: Parallel

implementation.

H2A.Z enriched sites
The binding sites were defined by peak calling on the H2A.Z

ChIP-seq data from Wang et al [15] using the peak calling

program MACS with default settings resulting in a total of 37456

sites. We then defined the profiles for the analysis as the 5000 bp

windows around the H2A.Z sites and we selected 11 ChIP-seq

tracks of histone modifications (H3K18ac, H3K9ac, H4K5ac,

Figure 4. The orientation of the CTCF/H2A.Z pattern is correlated with the orientation of the CTCF binding motif. (a) Of the eleven
zincfingers in CTCF, only four are required for strong binding. The orientation of the binding with respect to the CTCF motif was determined by
Renda et al [23]. (b) The dominant orientation of the CTCF/H2A.Z pattern with respect to the orientation of the underlying CTCF motif. (c) The CTCF
motif as derived from motif detection in genome-wide CTCF peaks in the ChIP-seq dataset of Barski et al [6].
doi:10.1371/journal.pone.0028272.g004

CATCHprofiles
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H4K8ac,H2BK5me1, H3K27me1,H3K4me1, H3K4me2, H3K4me3,

H3K9me1, H4K20me1) together with H2A.Z, CTCF and PolII

as input to the CATCH algorithm. The computation was

executed in parallel on a 64-core machine. Determination of

genomic context and the comparison of genomic distributions

were done using the online tool PinkThing based on Ensembl

NCBI 36 gene annotation (http://pinkthing.cmbi.ru.nl).

Supporting Information

Figure S1 The alignment of two signal sequences SA and
SB is characterised by an integer r denoting the shift of
sequence SB. If r is positive, SB is shifted r positions to the left,

relative to SA. If r is negative, SB is shifted -r positions to the right

as shown in this figure. As a function of r, noverlap is the length of

the sequence overlap and ntotal is the total length of the alignment.

(PNG)

Figure S2 Conceptual illustration of the CATCH clus-
tering algorithm. Example of clustering four profiles with two

tracks of ChIP profiling data, plotted in red and blue respectively.

All pairs of profiles are aligned to find the alignment of highest

similarity. In each iteration, the profile pair of highest similarity is

clustered and their cluster is represented by their average aligned

profile. The hierarchical clustering continues until all profiles and

clusters are included in the dendrogram.

(PDF)

Figure S3 Normalization affects the clustering and the
resolution of the patterns. (a) with normalization of the signal

strength the profiles cluster by the intensity and shape of all tracks

equally, resulting in a clear split between patterns of active and

inactive promoters as highlighted in the dendrogram with green

and red respectively. The inactive promoters pattern is low signal

for all the tracks shown. Within the cluster I of active promoters

subclusters arise with variations of the active promoter pattern, e.g.

cluster II. (b) Without the use of normalization, the intensity of the

signals dominates the clustering. Most of the inactive promoter

patterns of low signal intensity are still clustered together,

highlighted in red. However, the biggest cluster with a pattern

resembling the active promoter pattern is cluster I, and it is

clustered separately from e.g. cluster II which differs mainly in

signal intensity. Clustering using normalization is the recom-

mended and default option for clustering in CATCH to avoid the

dominance of high signal tracks in the clustering.

(PNG)

Figure S4 CATCH Graph view. After loading a data set of

ChIP profiles, the Graph view shows plots of all profile regions.

On the left the track names and colours can be adjusted for easy

distinction.

(PNG)

Figure S5 Screenshot CATCH cluster view. The result of

the CATCH clustering algorithm is shown on the right as a

dendrogram. The tree can be interactively browsed to examine the

average profile patterns at any level in the tree. Individual profiles

and subclusters can be exported by right-clicking on the cluster

node in the tree. Below the tree, the average profile is shown for

the currently selected cluster.

(PNG)

Figure S6 Detailed view of the H2A.Z genome-wide
cluster patterns. Each pattern represents the average profile

pattern for the profiles in the cluster. The patterns of clusters

36420 and 37163 contain high signals for PolII, methylation and

acetylation marks correlating with active transcription. Four

clusters (36420, 36426, 36884 and 36899) have a CTCF peak

close to the H2A.Z. The genomic distributions corresponding to

these clusters are shown in Figure S7.

(PDF)

Figure S7 Genomic distributions of the seven clusters of
H2A.Z binding sites. Each plot shows the distribution of the

categories: exon, intron, 59near, 59far, 39near, 39far and distant.

The limit for ‘near’ regions is 5 kb, the limit for ‘far’ regions is

25 kb. The categories are shown as numbers relative to the H2A.Z

genomic distribution with p-values indicating significant differenc-

es per category. The clusters with CTCF, but no acetylation

marks, e.g. clusters 36426, 36884 and 36899, are all significantly

enriched in the 39 regions of genes.

(PDF)

Figure S8 CATCH algorithm flow diagram indicating
concurrent computation. Score computation: the initial

comparison and similarity score computation for all profile pairs.

Find highest score: the selection of the highest scoring profile pair.

Merge i and j having the highest score: the merging of the selected

pair into a representative profile. Dependencies are visualized by

arrows and parallel parts marked with the order of concurrency

available.

(PNG)

Figure S9 Speedup plot of the relative performance
increase in the CATCHprofiles clustering engine. The

parallel implementation of the CATCH clustering engine results in

a near-linear speedup of computation time with increased number

of threads. The y-axis shows the speedup, and the x-axis the

number of threads used. The profiles contain 8 tracks and the

alignment was set to use a minimum overlap of 50%, the other

parameters were set to default as listed in Error: Reference source

not found.

(PNG)

Figure S10 Running time dependence on alignment.
Running time of clustering 1480 profiles with 8 tracks, when the

minimum overlap is varied. Results are shown for executions with

1, 4 and 8 threads.

(PDF)

Table S1 CATCH algorithm options as described in
Supplementary Methods. Options indicated with an asterisk

are the default selected options.

(DOC)

Table S2 Time spent in the different parts of the
CATCH algorithm as measured on three benchmark
data sets.

(DOC)

Supplementary Methods S1 Detailed description of: The
CATCH algorithm, profile similarity measures, signal
normalization, representative profile of a cluster and
parallel implementation.

(DOC)
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