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Abstract

Aluminum (Al) toxicity is the major stress in acidic soil that comprises about 50% of the world’s arable land. The complex
molecular mechanisms of Al toxicity have yet to be fully determined. As a barrier to Al entrance, plant cell membranes play
essential roles in plant interaction with Al, and lipid composition and membrane integrity change significantly under Al
stress. Here, we show that phospholipase Dcs (PLDcs) are induced by Al stress and contribute to Al-induced membrane lipid
alterations. RNAi suppression of PLDc resulted in a decrease in both PLDc1 and PLDc2 expression and an increase in Al
resistance. Genetic disruption of PLDc1 also led to an increased tolerance to Al while knockout of PLDc2 did not. Both RNAi-
suppressed and pldc1-1 mutants displayed better root growth than wild-type under Al stress conditions, and PLDc1-
deficient plants had less accumulation of callose, less oxidative damage, and less lipid peroxidation compared to wild-type
plants. Most phospholipids and glycolipids were altered in response to Al treatment of wild-type plants, whereas fewer
changes in lipids occurred in response to Al stress in PLDc mutant lines. Our results suggest that PLDcs play a role in
membrane lipid modulation under Al stress and that high activities of PLDcs negatively modulate plant tolerance to Al.
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Introduction

Aluminum (Al) toxicity is the major stress in acidic soil mainly

because it increases plant susceptibility to other stresses such as

nutrient deficiencies and mineral toxicities [1,2]. Acid-soil regions

comprise more than 50% of the world’s arable land, and Al toxicity

causes large losses in agricultural production [1,2]. Multiple

mechanisms have been implicated in plant response and resistance

to Al stress [1–3]. Al exposure rapidly inhibits root elongation and

subsequently alters root morphology. Some of Al’s effects include

alteration of cell wall properties, disruption of membrane integrity,

alteration in lipid composition, perturbation of Ca2+ homeostasis,

dysfunction of mitochondria, denaturation of cellular proteins,

damage to DNA, and blockage of cell-cycle progression [1,4–8].

Given the wide range of cellular effects, it is thought that multiple

factors, both constitutively expressed and induced, are involved in

plant response to Al stress and contribute to Al resistance [2]. The

primary line of defense is likely secretion of Al-chelating organic

acids including malate or citrate into the rhizosphere by transporters

from the Al-activated malate transporter (ALMT) and multidrug

and toxin extrusion (MATE) families [9–12]. A large number of

other genes are likely involved in the response to Al stress, and only a

few have been characterized [8].

While the Al stress alters the cell wall, the plasma membrane is

the barrier for Al entry into cells and probably the first site of Al

damage to the cell. Al stress causes a significant decrease in levels

of glycolipids and phospholipids and a loss of membrane integrity

[7,13,14]. The total amount of lipids in maize roots and shoots

decreases under Al stress, although several phospholipids increase,

including phosphatidylcholine (PC), phosphatidylinositol (PI), and

monogalactosyldiacylglycerol (MGDG) [15]. Under Al stress, the

activities of phosphatidylinositol 4,5-bisphosphate (PIP2)-specific

phospholipase C (PLC) and inositol 1,4,5 trisphosphate (IP3) levels

decrease whereas those of phosphatidylinositol 4-kinase, phospha-

tidylinositol phosphate 5-kinase, and diacylglycerol kinase in-

crease, suggesting alterations in levels of signaling phospholipids

[16,17]. In addition, Al stress enhanced the peroxidation of

membrane lipids and inactivated membrane proteins because

reactive oxygen species accumulated in response to Al stress [6,18–

20]. One possible mechanism for Al-induced lipid changes may be

that Al binds to negatively-charged lipids, such as PIP2, PG, and

PI; this binding may alter the ability of proteins to interact with

lipids, altering membrane enzyme activities and initiating

membrane lipid turnover, or causing changes in membrane

permeability and cellular processes [16]. These changes in turn
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could alter membrane composition and properties, as well as the

activity of membrane-integrated transporters [21–23].

One potential approach for altering plant responses to Al is

changing the membrane lipid composition. Elevation of (8Z)-

unsaturated long-chain base levels in plant sphingolipids, by

constitutively expressing (8E/Z)-desaturase, reversed Al induced

root inhibition [7]. Overexpression of a wheat phosphatidylserine

synthase gene (TaPSS1) increased PS and PC content in transgenic

Arabidopsis and yeast, while deletion of the PSS gene decreased Al

resistance in yeast [24]. Al was shown to inhibit the PLC and

phospholipase D (PLD) pathways and reduce the formation of

phosphatidic acid (PA) in plant tissue cultures [25–28]. However,

the effect of PLDs on plant tolerance to Al and the identities of the

specific PLDs involved remain unknown.

PLD catalyzes the hydrolysis of phospholipids to generate PA

and a free head group [29,30]. PLD is a major family of lipid-

hydrolyzing enzymes in plants and 12 PLDs have been identified

in Arabidopsis, including 3 PLDcs that are highly homologous.

PLDs are activated under various stress conditions and specific

PLD family members have been shown to play roles in plant

responses to different stresses [31–32]. However, the biological

functions of PLDcs are not well understood. PLDc1 and PLDc2

are PIP2-dependent and require micromolar Ca2+ for activity

[33,34]. PLDc1 and PLDc2 are 90% identical in amino acid

sequences, but they differ in the effect of PIP2 and Triton X-100

on their activities [34]. Here, we investigated the effect of PLD

mutation on Arabidopsis Al sensitivity, and the results indicate that

PLDcs negatively affect plant resistance to Al stress.

Results

PLDc expression in response to Al stress and production
of PLDc-deficient mutants

To obtain clues about the physiological functions of different

PLDs, we examined the expression patterns of PLDs in detached

leaves treated with various hormones and abiotic stresses for 3 and

20 h. The level of PLDc was induced by treatment with AlCl3,

cadmium (Cd), H2O2, salicylic acid (SA), and methyl salicylate

(MeSA) at 3 h of treatment. The induction of PLDcs by Al-was

transient and PLDc expression fell close to the basal level by 20 h

(Fig. 1A). At 20 h, the induction of PLDcmRNAalso occurred in

response to NaCl, mannitol, CdCl2, MeSA, SA, and abscisic acid

(ABA) (Fig. 1A). In contrast, the basal level of PLDa1 expression

was high and some increase in its expression occurred at 3 h after

all treatments, but no induction of mRNA was detectable with 20-

h treatments (Fig. 1A). To determine whether both of the two

individual PLDcs were induced by Al stress, Arabidopsis seedlings

were treated with 100 mM AlCl3 (pH 4.0) and sampled at various

time points to examine PLDc expression with PLDc1 cDNA and

the PLDc2 59UTR as probes (Fig. 1B) [34]. Both PLDc1 and

PLDc2 were induced transiently by Al stress; the induction peaked

earlier for PLDc1 than PLDc2, and both fell close to the basal level

at 20 h. A survey of EST-based gene expression in Al-stressed rye

also identified PLDs as responsive genes [35].

To characterize the biological functions of the PLDcs, we

generated PLD-RNAi transgenic plants (Fig. 2). Two selected

lines, PLDcRNAi1 and PLDcRNAi2, had decreased levels of PLDc
transcripts (Fig. 2A). Quantification of the RNA blotting data

indicated that the PLDc mRNA levels in PLDcRNAi-1 and

PLDcRNAi-2 plants were reduced by approximately 70–85% and

90%, respectively, compared with wild-type controls (Fig. 2B).

Two T-DNA insertion mutants were isolated from Salk T-DNA

insertion lines (Fig. 2C, D). Sequencing indicates that pldc1-1 contains

a T-DNA insert at the 8th exon of PLDc1, 1912 bp from the start

codon (Fig. 2C). Mutant pldc2-1 has a T-DNA insert at the 6th intron

of PLDc2, 1635 bp from the start codon (Fig. 2D). Because PLDcs

share more than 90% identity at the DNA level; distinguishing their

transcripts in these mutants was difficult. However, PLDc2 has a

longer 5-UTR than PLDc1 [34] so we used the PLDc1 full-length

cDNA and the long 5-UTR of PLDc2 cDNA as probes to detect their

transcripts in pldc1-1 and pldc2-1 mutants. Under strict hybridization

conditions, pldc2-1 plants did not exhibit the higher band, whereas

pldc1-1 did not exhibit the lower band (Fig. 2E). The result indicates

that PLDc1 and PLDc2 transcripts are absent or decreased

substantially in pldc1-1 and pldc2-1 mutants, respectively.

Altered responses of PLDc mutants to Al stress
Root elongation of PLDc mutants and wild-types was measured

at different pHs (Fig. 3) and different concentrations of AlCl3
under acidic pH conditions (Fig. 4). The seedling root growth of

both ecotypes, Col-0 and WS, was retarded compared with

controls, when the plants were transferred to plates containing

100 mM AlCl3 (Fig. 3). The retardation by Al was greater at

pH 4.0 than at pH 5.6 (Fig. 3). Low pH (around 4.0) is required

Figure 1. Expression of PLDs in response to various stresses. (A)
RNA blotting of PLDa1 and PLDc transcripts in Arabidopsis leaves
exposed to different stress treatments. Arabidopsis Col-0 (3–week old)
leaves were detached and floated on water without or with indicated
concentrations of chemicals, 1% NaCl, 0.6 M mannitol, 0.2 mM AlCl3,
0.2 mM CdCl2, 2 mM H2O2, 0.1 mM salicylic acid (SA), 0.1 mM methyl
salicylate (MeSA), 0.1 mM abscisic acid (ABA), or 0.1 mM methyl
jasmonate (MeJA) in a growth chamber at 22uC. Leaves were collected
at the indicated times for RNA extraction and northern blotting with
[a-32P]-labeled PLDa1 or PLDc1 full-length cDNA as a probe. (B) RNA
blotting of PLDcs using the coding region of PLDc1 (upper panel) or
PLDc2-specific 59-UTR (lower panel) under Al stress. Two week-old wild-
type seedlings grown in K MS medium were treated with 100 mM AlCl3,
and roots of seedlings were collected at the indicated time for RNA
extraction. [a-32P]-Labeled PLDc1 cDNA or PLDc2- specific 59-UTR was
used as a probe for northern blotting. EtBr-stained ribosomal RNA was
used as a loading control.
doi:10.1371/journal.pone.0028086.g001
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for Al toxicity, because Al3+ is not chelated and precipitated at low

pH. Roots of PLDc RNAi and pldc1-1 seedlings at 50 and 100 mM

Al lengthened significantly more than wild-type controls (P,0.01),

whereas pldc2-1 did not (Fig. 4A). In addition, PLDc RNAi

mutants showed increases in the number and length of hairy roots

under Al stress conditions (data not shown). The effect of PLDc
mutants on root growth under Al stress was dependent on Al

concentration; the root length was similar between PLDc mutants

and wild-types in media without Al, at Al levels higher than

200 mM and media where the pH was raised to pH 5.6, where Al

is not toxic (Fig. 3 and 4A).

Callose deposits on cell walls are another commonly observed

phenomenon in plants in response to Al stress and have been used

as a marker of Al stress intensity and damage [19,36,37]. By

staining with aniline blue, callose production in Al-treated roots

was visualized. The roots of wild-type plants of both ecotypes show

a strong brown fluorescent signal, indicating increased callose

accumulation. PLDc RNAi and pldc1-1 mutants had reduced

yellowish fluorescent signals compared to the wild-type controls,

whereas the staining intensity of pldc2-1 was close to that of its

wild-type control (Fig. 4B).

Effect of PLDc mutations on Al-induced organic acid
secretion and Al content

Al stress also induces plasma membrane transporters to secrete

organic acids that can chelate Al, and the release of citric acid and

malic acid to root environments is closely associated with Al-

tolerance in plants [9–12]. After treatment of roots of wild-type and

PLDc mutants with 50 mm AlCl3 for 5 h, the secretion of citric acid

and malic acid into the media was measured. The roots of pldc1-1

excreted significantly higher levels of citrate and malate into the

media (Fig. 5A). Al accumulation in Al-treated pldc mutants and

wild-type was measured in Al-treated roots by inductively coupled

plasma mass spectrometry (ICP-MS). We did not detect significant

differences in root Al accumulation between pldc1-1, pldc2-1, and

Col-0 roots treated with 50 mM Al for 5 h (Fig. 5B).

Altered oxidative stress in PLDc mutants in response to
Al stress

Al stress induces oxidative stress in plant roots, and increases

in oxidative stress are regarded as one of the causes of root

damage by Al [6,18,20,37]. The reactive oxygen species (ROS)-

detecting agent, 6-carboxy-2,7-dichlorodihydrofluorescein diac-

etate (2,7-DCFDA), was used to examine whether there is any

alteration in ROS production in PLDc mutants compared to

wild-type plants under Al stress. Roots of seedlings grown in 50

and 100 mM AlCl3 displayed strong 2,7-DCFDA fluorescence

(Fig. 6A). The signal was much stronger in roots than in other

tissues (data not shown), which is consistent with the observation

that the Al-induced formation of ROS occurs first in Arabidopsis

roots [6,18,20]. RNAi1, RNAi2, and pldc1-1 exhibited much

weaker fluorescent staining than wild-type, and the lower signal

intensity occurred in both root cells and throughout the whole

root apex in seedlings grown in 100 mM AlCl3. The fluorescent

staining of pldc2-1 was stronger than the other mutants but

slightly weaker than wild-type Co1-0 (Fig. 6A). Glutathione S-

Figure 2. Generation of PLDc RNAi and T-DNA insertional knockout mutants. (A) RNAi suppression construct. Inverted-repeats of an exon
(gray boxes) and an intron (empty boxes) of PLDc1 with restriction sites were cloned in a tandem and expression was driven by double CaMV 35S
promoters and terminated by an NOS terminator. (B) Northern blotting analysis of PLDc1 gene expression in RNAi1 and RNAi2 lines (right panel). The
same RNA was probed for PLDa1 expression as a control. EtBr-stained ribosomal RNA was used as a loading control. (C) T-DNA insertion mutant of
PLDc1. Grey boxes show exons and lines between boxes represent introns; T-DNA is inserted at the 8th exon of PLDc1 (At4g11830, 1912 bp from the
start codon of the cDNA). The left border (LB), right border (RB), and direction of T-DNA (arrow in T-DNA) are shown. (D) T-DNA insertion mutant of
PLDc2. T-DNA is inserted at the 6th intron of PLDc2 (At4g11850, 1635 bp from the start codon of cDNA). (E) Northern blotting of PLDc1 and PLDc2
transcripts in mutants and Col-0 using PLDc1 cDNA and the PLDc2-specific 59-UTR of as probes. EtBr-stained 18S RNA is a loading control.
doi:10.1371/journal.pone.0028086.g002
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transferase (GST) is up-regulated in oxidative stress caused by

many adverse environments [38]. AtGST1 expression increased

upon Al stress; AtGST1 expression in both pldc1-1 and RNAi

mutants was higher than their respective wild type controls and

pldc2-1 (Fig. 6B and C).

To examine the potentially altered balances in oxidative stress

and antioxidant systems, the ascorbate-glutathione antioxidant

cycle system was examined by assaying the activities of ascorbate

peroxidase (APX) and glutathione reductase (GR) in PLD mutants

and wild-type plants that were exposed to Al for 5 h. RNAi

Figure 3. Root growth of PLDc mutants and wild-type Arabidopsis under Al stress. (A-D) PLDc RNAi mutants and wild-type WS in 1/8 MS
medium containing 100 mM AlCl3 (A and B) or in 1/8 MS medium without AlCl3 (C and D) at two different pHs. (E–H) Col-0, pldc1-1, pldc2-1 mutants
on 1/8 MS plates containing 100 mM AlCl3 (E and F) and 1/8 MS medium without AlCl3 (G and H). Photos are representatives from at least three
independent experiments (7 day-old seedlings post treatment).
doi:10.1371/journal.pone.0028086.g003
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mutants and pldc1-1 plants had higher APX and GR enzymatic

activities than wild-types, while activities of the two enzymes in

pldc2-1 were comparable to those in wild-type plants (Fig. 6D and

E). In addition, PLDc RNAi and PLDc1mutants had significantly

lower levels of lipid peroxidation, as assayed by the thiobarbituric

acid reaction (TBARS), whereas the lipid peroxidation value of

pldc2-1 was similar to that of wild-type (Fig. 6F). Of all the

genotypes, PLDcRNAi2 had the highest APX and GR activities

and lowest lipid peroxidation value (Fig. 6).

Membrane lipid changes upon Al stress
To examine lipid changes occurring as a result of Al stress and

PLDc–deficiencies, seedlings of PLD mutants and corresponding

wild-types were transferred to 100 mM AlCl3 for two days. Roots

and shoots (including stems and rosette leaves) under the Al-

stressed and normal conditions were collected separately for

phospholipid and glycolipid analysis by an ESI-MS/MS method

described previously [39]. Compared with untreated roots, the

levels of several phospholipids, PC, PE, PI, and PS, were increased

in roots of both WS (Fig. 7A) and Col-0 seedlings under Al

treatment (Fig. 7C). Changes in response to Al treatment of

plastidic lipids, DGDG, MGDG, and PG, were minor (Fig. 7A

and C), but a significant drop in MGDG levels was observed in the

roots of Col-0 plant under Al stress (Fig. 7C). In shoots of wild-type

plants, the most consistent change due to Al treatment, occurring

in both ecotypes, were decreases in the levels of DGDG and

lysoPC (Fig. 7B and D).

Without Al stress, PA was lower in pldc-1 and pldc2-1 roots and

RNAi lines leaves (Fig. 7A and B), suggesting that PLDc1 and

PLDc2 play a role in the basal accumulation of PA. With Al stress,

the level of PA tended to increase in Col-0 and the mutants pldc1-1

and pldc2-1, and the percentage of increase was greater in the

mutants, particularly in pldc2-1. The results suggest that these

PLDs are not responsible for Al-induced PA increase. This

observation is consistent with an earlier finding that Al inhibits

phosphoinositide-dependent PLD activity in vitro [27].

PLDc mutants show fewer significant changes in all major

phospholipids and glycolipids than wild-types under Al stress (Fig.

6B and D). All mutants and wild type controls showed a decrease in

MGDG/DGDG ratio after Al treatment in roots (Fig. 8). On the

contrary, the MGDG/DGDG ratio in shoots was increased in all

wild-types and mutants under Al stress. The results suggest that

lipids in roots and shoots change differently in response to Al stress.

Discussion

The study shows that the suppression of PLDcs renders

Arabidopsis seedlings more tolerant to Al stress. Analysis of the

single gene knockouts suggests that PLDc1 is the gene responsible

for most of the observed Al tolerance in the PLDc RNAi lines.

This is not surprising given that PLDc1 is expressed in the roots

where most of the Al toxicity is observed while PLDc2

predominantly expressed in the inflorescence [34]. This suggests

that Al stress is similar to other abiotic and biotic stress conditions,

such as drought, hyperosmotic stress, and phosphorous starvation

where PLDs have been implicated in mediating dynamic changes

of membrane phospholipids and glycolipids [31,32,40].

The increased Al tolerance in PLDc RNAi and pldc1-1 plants is

accompanied by the decreased levels of ROS, lipid peroxidation,

and callose deposition in roots, and by the increases in the

expression of protective GST and activities of redox enzymes APX

Figure 4. Root length and callose accumulation of PLDc
mutants and wild-type roots. (A) Quantification of root length of
PLDc mutants and wild-type seedlings at various concentrations of
AlCl3 (pH 4.0). Four day-old seedlings were transferred to 1/8 MS
containing indicated levels of AlCl3. Roots were measured 5 days after
transfer. The values of RNAi1 and RNAi2were significantly different
(P,0.05) from those of WS and the values for pldc1-1 were significantly
different than the values for Col-0 at 50 and 100 mM AlCl3. Data
represent the mean 6 SD (N = 50). (B) Callose staining in roots. Seven
day-old seedlings were treated with 100 mM AlCl3 in 1/8 MS solution
(pH 4.0) for 5 h and roots were stained for callose with anniline blue as
described in ‘‘Materials and Methods’’. Images are representatives of
three experiments and more than 25 roots. Control was Col-0 roots
without Al treatment; all genotypes had no staining without the Al
treatment.
doi:10.1371/journal.pone.0028086.g004

Figure 5. Al content in roots and organic acid released by roots
of PLDc mutants and wild-type. Wild-type, pldc1-1, and pldc2-1
mutant seedlings were treated in 1/8 MS medium (pH 4.0) containing
50 mM AlCl3 for 5 hrs. Media were used for organic acid analysis with
GC-MS (A) and roots were exercised and washed for ICP-MS analysis of
Al content (A). Data are from three samples and presented with means
6 S.D. * indicates p,0.05, significant difference in Student’s t test.
doi:10.1371/journal.pone.0028086.g005
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and GR. ROS generation and oxidative stress are known to be

increased by Al treatment of Arabidopsis [4,6,18,20,37] and

responses such as increasing GST expression and activating redox

enzymes are used to protect membrane lipids from peroxidation

[4,6,18,20,38]. Al stress increases ROS production in all

genotypes, but Al-resistant PLDc mutants accumulate less ROS

than wild-type roots, suggesting that the ROS level is associated

with cell damage. ROS is a double-edged sword: at low levels and

earlier stages of stress, ROS may trigger signaling and defense

responses such as increasing callose production and rigidification

of the cell wall [6,18–20,27,37,38]. However, a large increase in

ROS can result in and/or be indicative of cell damage. Studies

have suggested that mitochondrial dysfunction is an Al toxicity

mechanism due to increased mitochondria membrane permeabil-

ity, excess ROS generation, and redox signals [4,6,20,38,41].

Subcellular localization results indicate that PLDc1 is primarily

associated with membrane fractions, including mitochondrial and

plasma membranes and nucleus [42]. Since the expression of

PLDcs is induced by H2O2 and Al stresses, and PLDc1 can also be

phosphorylated, which might regulate PLDc1 activity in lipid

metabolism [43], it would be possible that PLDcs are involved in

signal transduction and mitochondrial or plasma membrane lipid

hydrolysis under Al stress. Thus, PLDc might be required for

certain Al- activated stress responses such as ROS generation,

redox status change, and lipid peroxidation. PLDc1-deficient

mutants thus have smaller changes in lipid compositions or

oxidative stress damage under Al stress since the suppression of

PLDcs may partially block ROS production and attenuate Al-

induced damage. Furthermore, PLDc RNAi and pldc1-1 mutants

displayed higher ROS-scavenging enzyme activity. APX and GR

are responsible for regeneration of two important antioxidants,

ascorbate and glutathione [41]. The higher activities of these

enzymes in PLDc RNAi and pldc1-1 mutants are consistent with

the decreased lipid peroxidation and membrane damage.

PLDcs could affect membrane lipid metabolism under Al stress

by affecting lipid degradation and/or by lipid remodeling, such as

replacement of phospholipids with glycolipids under phosphorous

starvation [40,44]. Degradation is primarily detrimental and leads

to fatty acid release and oxidation. The treatment of plants with Al

and other metals causes changes in the composition and levels of

phospholipids and glycolipids [4,5,15,28,45–48]. Lipid composition

affects the membrane integrity, fluidity, and biological functions of

proteins intrinsic to and associated with membranes. The biological

significance of the lipid changes is not well understood and enzymes

catalyzing the membrane lipid changes in response to metal stresses

are not defined. Our results suggest that suppression of PLDcs

decreased Al-induced lipid changes and lipid peroxidation. An

increase in lipid peroxidation after Al treatments was associated

with a decrease in polyunsaturated fatty acids in sorghum, and the

decrease on polyunsaturated fatty acids was more severe in an Al-

sensitive sorghum cultivar than in an Al-tolerant one [4,5,15]. A

similar association between decreased lipid peroxidation and

enhanced Al tolerance was also observed in sorghum and rice

cultivars, as well as transgenic Arabidopsis plants [18,19,49,50].

The results suggest that the suppression of PLDcs decreases lipid

hydrolysis and partially blocks Al-induced membrane damage.

The lipid compositional results indicate that plant roots and

shoots respond differently to Al stress. MGDG/DGDG ratio was

decreased in roots, but increased in shoots in mutants and wild

types after Al treatment. Earlier studies indicated that Al increased

MGDG/DGDG ratio in membranes from maize roots [15] and

from roots of the Al-tolerant wheat cultivar [5]. Thus, our results

in roots are different from those reported in maize and wheat. It is

not clear whether it is due to a difference between monocots and

dicots. In addition, PLDc RNAi mutants had a lower root

MGDG/DGDG ratio than WS control under normal growth

conditions. In pldc1-1, pldc2-1, and Col-0 seedlings, MGDG/

DGDG ratio in roots all decreased in response to Al stress, and

pldc2-1 had a larger decrease than did pldc1-1 and Col-0. Thus,

the present data showing a drop in MGDG/DGDG ratio in all

genotypes and no consistent trend for difference in amount of

change between wild-types and mutants, do not support a positive

association of increased Al tolerance with increased MGDG/

DGDG ratio in roots. In contrast, our data suggest that Al-

resistant lines are likely to maintain a relatively constant MGDG/

DGDG ratio in leaves.

Characterization of various Arabidopsis Al-sensitive mutants

suggests that tolerance of Arabidopsis to Al toxicity involves more

than one mechanism, and the mechanism may be unique to

specific plant species [51]. Secretion of organic acids, such as citric

acid and malic acid [12,52], increase in the rhizosphere pH [53],

relocation of Al to less sensitive tissues [3], and improved integrity

and function of membranes [7] are all potential mechanisms for Al

tolerance. An Al tolerance phenotype may result from one or more

mechanisms. The present results indicate that increased changes in

major membrane glycerolipids are positively associated with Al

sensitivity and that PLDcs are involved in Al-induced cell damage.

The lipid changes in response to Al are distinctively different in

roots and leaves. PLDcs are involved in the Al resistance by

affecting Al-evoked lipid hydrolysis that results in alterations in

oxidative stress. The generation of double and triple mutants of

PLDcs, which has been difficult because the genes are linked in

tandem [54], will aid further elucidation of the role of PLDs in

plant response to Al toxicity.

Materials and Methods

Plant Materials and Mutant Isolation
Arabidopsis thaliana PLDc1 (At4g11850) and PLDc2 (At4g11830)

were cloned as previously described [33,34]. T-DNA insertion

knockouts for PLDc1 and PLDc2 were isolated from Salk lines

SALK_113873 (PLDc1) and SALK_014510 (PLDc2) obtained from

Figure 6. Changes in oxidative stress and antioxidant activity. Seven day-old PLDc mutant and wild type seedlings were treated (white bars)
or not treated (black bars) with 100 mM AlCl3 in 1/8 MS solution (pH 4.0) for 5 h or indicated time (for northern blotting). Then roots were harvested
for imaging, northern blotting, enzyme activity assay, and lipid peroxidation measurments. (A) ROS generation under Al stress. Roots were stained
with 29,79-DCFDA for ROS imaging as described in ‘‘Materials and Methods’’. Images are representatives of three experiments and more than 25 roots.
(B) GST expression in plants with altered PLDc expression under Al stress. RNA extracted from Al-stressed seedling roots for different time was used
for northern blotting with [a-32P]-labeled full-length AtGST1 cDNA as the probe. EtBr-stained ribosomal RNA was used as loading controls. (C)
Quantification of AtGST1 expression. Quantification was based on band intensity and expressed as ratio to the controls (0 h of treatment). (D) APX
and (E) GR activity. Al-treated or control roots were sampled for the enzyme activity assays as described in ‘‘Materials and Methods’’. (F) Lipid
peroxidation. Roots were sampled for assay as described in ‘‘Materials and Methods’’. Data represent means 6 SD (N = 3) from three independent
experiments. Label ‘a’ above the bar indicates that the value of the Al-treated is significantly different from the untreated sample of the same
genotype at P,0.05. Labels ‘b’ or ‘c’ above the bar indicate that the mutant values are significantly different from wild type with the same treatment
at P,0.05.
doi:10.1371/journal.pone.0028086.g006
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ABRC (Columbia OH), by using gene specific primers, 59-

TCATATGGTGAGGTTTTCTTGTAG-39 for PLDc1 or 59-

ATGTCAATGGGAGGAGGG-39 (for PLDc2) with a T-DNA left

border primer. These two homozygous mutants show a co-

segregation between their PLDc deletions with kanamycin resis-

tance, suggesting that these mutants have a single T-DNA insertion.

PLDc RNAi Construct
The sense cDNA exon (362 bp) and the following intron (283 bp)

were amplified by PCR with forward primer GIR51: 59-

CCGCTCGAGTGGTAATGAGTGTGTAGGAGTTC-39 (Xho

I underlined) and reverse primer GIR31: 59-CCGGA-

ATTCTTGCTACAACAAAACAAAAGCTT-39 (EcoR I under-

lined). Antisense cDNA (362 bp) was amplified with forward primer

GIR52: 59-CCGGAATTCTTTTGAATCCCAGAAGACTC-39

(EcoR I underlined) and reverse primer GIR32: 59-CTAGTCTA-

GATGGTAATGAGTGTGTAGGAGTTC-39 (Xba I underlined).

The two PCR products were digested with EcoR I and then ligated

into a fragment of 1007 bp containing two inverted cDNA repeats

separated by an intron. This fragment was further digested with

XhoI and XbaI restriction enzymes, and the resulting fragment was

purified and then ligated into pKYLX71-35S2 binary vector at XhoI

and XbaI sites. The resulting RNAi construct was confirmed by

sequencing and used to transform Agrobacterium tumefaciens strain

GV301 and then Arabidopsis plants, using the floral dip method. F1

to F3 progeny were screened on kanamycin plates and using PCR.

Two homozygous lines, PLDcRNAi1 and PLDcRNAi2, were

obtained with dramatically decreased PLDc transcripts as indicated

by northern blotting.

Root Elongation Assay
All seeds from PLDc1 and PLDc2 T-DNA knockouts, PLDc

RNAi mutants, or their wild-type controls (WS for RNAi mutants

and Columbia ecotype Col-0 for T-DNA knockouts) were collected

at the same stage for the root elongation test. Seeds were surface-

sterilized and germinated on K Murashige and Skoog (MS) plates

containing 1% sucrose and 0.8% agar. Four to seven day-old

seedlings were transferred to 1/8 MS containing 50, 75, 100, 150,

200, 250, and 300 mM of AlCl3, 1% sucrose, and 0.8% phytagar

(pH 5.6 or pH 4.0, pH was adjusted with 5 mM MES). Plates were

vertically cultivated under cold fluorescent light with a 16 h/8 h

light period at 23uC. The newly elongated roots were measured.

RNA Blotting
Total RNA was isolated from roots or leaves of Arabidop-

sis plants with a cetyltrimethylammonium bromide extraction

method [55]. Equal amounts of total RNA (10 mg) were separated

by 1% formaldehyde agarose denaturing gel electrophoresis and

Figure 7. Lipid changes as affected by Al stress and PLDc
mutations. Seven day-old PLDc mutant and wild type seedlings were
treated with (+Al) or without 100 mM AlCl3 (-Al) in 1/8 MS solution
(pH 4.0) for 2 days. Roots and shoots (rosette leaves and stems) were
harvested separately for lipid extraction as described in ‘‘Material and
Methods’’. Data represent means 6 SD (N = 5). (A) and (B) Lipid profiles
of PLDc RNAi mutants and wild-type (WS) seedlings in roots and shoots,
respectively. (C) Lipid profiles of PLDc1-KO and PLDc2-KO and wild-type
(Col-0) seedlings in roots and shoots, respectively. (Label ‘a’ above the
bar indicates that the value of the Al-treated is significantly different
from that of non-treated control at P,0.05. Label ‘b’ above the bar
indicates that the mutant values are significantly different from wild
type at P,0.05. Label ‘c’ above the bar indicates that the mutant values
are significantly different from wild type and non-Al treatment control
at P,0.05.
doi:10.1371/journal.pone.0028086.g007
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transferred to nylon membranes. The entire coding regions of

PLDc1 and PLDc2 59-UTR, or full-length AtGST1 cDNA were

used as hybridization probes. The DNA probes were labeled with

[a-32P] dCTP by random priming. The hybridization, washing,

and visualization were performed as described previously [35].

Microscopic Observations
Cell death caused by Al treatments was monitored by DAPI

staining. After treatment of 7 day-old seedlings with 100 mM Al3+

in 1/8 MS medium for 5–8 h, roots from different plants were

fixed with ethanol and stained with DAPI for 15 min. ROS

generation in roots was observed by using 2,7-DCFDA as a

detecting agent. Seedlings were treated as above for 5 h and then

were put into a fresh PBS buffer; 5 mg/ml of 2,7-DCFDA were

added to stain the ROS. Roots were imaged under a fluorescence

microscope (Nikon Eclipse 800, Japan) with excitation at 488 nm

and emission at 540 nm to detect green fluorescence intensity.

Callose production in Al-treated roots was visualized by staining

with aniline blue as described by [3]. The root region of 7 day-old

seedlings was exposed to 1/8 MS medium containing 100 mM Al

for 5 h, fixed with formaldehyde under vacuum, and then stained

with 0.1% (w/v) aniline blue in 0.1 M K3PO4 (pH 9.0). Callose

was imaged with a fluorescence microscope (Nikon Eclipse 800,

Japan) with excitation at 365 nm and emission at 515 nm.

Measurements of Al accumulation and organic acid
secretion

Accumulation of aluminum in roots and secretion of organic

acids into medium upon AlCl3 treatment were determined by

growing seedlings on K MS medium plates oriented vertically.

After 7 days, the plants were transferred to 1/8 MS liquid medium

(pH 4.0) for adaptation for 2 h followed by 50 mM AlCl3 Al-

treatment for 5 h. After treatment, the media were collected for

organic acid analysis by GC-MS. The roots were rinsed in fresh 1/

8 MS medium without AlCl3 for 5 min (medium changed twice),

the roots were roots cut off and put at 90uC overnight; completely

dried roots were used for ICP-MS (inductively coupled argon

plasma mass spectrometer) analysis. Al was analyzed according to

the method described previously [56].

To measure organic acids secreted by plants, medium (50 mL)

was passed through a cation exchange column (15 mm65 cm)

filled with Bio-Rad AG50W-X8 resin (Bio-Rad, Richmond, CA).

The eluent was passed through an anion exchange column

(15 mm68 cm) filled with Dowex-1 1622100 resin. Organic

acids retained on the anion-exchange resin were eluted with

40 mL of 2 M HCl. 2 mL of the eluent were dried completely by

vacuum centrifugation, and the organic acids were methylated

using 0.5 mL of 1.25 M methanolic HCl for 8 h at 50uC. Samples

was dried under nitrogen and reconstituted in 100 mL of pyridine.

Organic acids were quantified using an Agilent 6890 GC coupled

to a 5973 MSD. One mL was injected in a split/splitless injector at

280uC at a split ratio of 15:1. Separation was achieved on DB-

5 MS column (J&W Scientific, 60 m, 0.25 mm i.d., and 0.25 mm

film). Helium was the carrier gas at a constant flow of 1 mL/min.

The GC temperature program was 80uC for 2 min then ramped

to 315uC at 5uC/min was held at 315uC for 12 min. The transfer

line to the mass spectrometer was set to 280uC and the MS source

was set to 230uC. Mass spectra were scanned from m/z 50–550 at

an acquisition rate of 2 spectra/s. Malic and citric acid were

quantified using authentic standard that was methylated and

analyzed using the same procedure.

Enzyme Activity and Lipid Peroxidation Assay
Whole roots of Al-treated plants (100 mM Al treatment for 5 h)

were frozen in liquid nitrogen. Enzyme extraction, activity assay,

and lipid peroxidation determination by measuring the level of

thiobarbituric acid reactive substances (TBARS) were conducted

as previously described [57]. APX activity was expressed as mmol

ascorbate oxidized/mg protein per min; GR activity was expressed

as nmol NADPH oxidized/mg protein min, and lipid peroxidation

was expressed as nmol TBARS/g fresh weight (FW).

Lipid Extraction and ESI-MS/MS Analysis
Wild-type, PLDc knockouts (pldc1-1, pldc2-1), and RNAi

mutant plants were germinated and grown on 1/8 MS plates for

6–7 days in a growth chamber and then transferred to 1/8 MS

medium (pH 4.0) containing 100 mM AlCl3 for 2 days. Roots and

shoots (leaves and stems) from the seedlings were collected and

immediately immersed in isopropanol (preheated to 75uC) to

inactivate lipolytic enzymes. Lipid extraction and ESI-MS/MS

analysis of glycerolipids was performed as previously described

[39]. Five replicates of each treatment for each wild type or

mutant were processed and analyzed.

Statistical Analysis
The Q-test for replicates of lipid data was performed. A

difference between two groups of data is considered significant

when p,0.05 in the Student’s t- test.

Acknowledgments

We thank Mary Roth for technical assistance for lipid profiling and Darla

Boydston for helping in preparation of figures.

Author Contributions

Conceived and designed the experiments: XW. Performed the experi-

ments: JZ CW MB IB. Analyzed the data: JZ CW MB IB. Contributed

reagents/materials/analysis tools: RW LWS IB. Wrote the paper: JZ XW.

References

1. Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the

complexing role of organic acids. Trends Plant Sci 6: 273–278.
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