
Early Induction of Oxidative Stress in Mouse Model of
Alzheimer Disease with Reduced Mitochondrial
Superoxide Dismutase Activity
Hyun-Pil Lee1., Neel Pancholi1., Luke Esposito2¤, Laura A. Previll1, Xinglong Wang1, Xiongwei Zhu1,

Mark A. Smith1, Hyoung-gon Lee1*

1 Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America, 2 Department of Neurology and Neuroscience, Gladstone

Institute of Neurological Disease, University of California San Francisco, San Francisco, California, United States of America

Abstract

While oxidative stress has been linked to Alzheimer’s disease, the underlying pathophysiological relationship is unclear. To
examine this relationship, we induced oxidative stress through the genetic ablation of one copy of mitochondrial
antioxidant superoxide dismutase 2 (Sod2) allele in mutant human amyloid precursor protein (hAPP) transgenic mice. The
brains of young (5–7 months of age) and old (25–30 months of age) mice with the four genotypes, wild-type (Sod2+/+),
hemizygous Sod2 (Sod2+/2), hAPP/wild-type (Sod2+/+), and hAPP/hemizygous (Sod2+/2) were examined to assess levels of
oxidative stress markers 4-hydroxy-2-nonenal and heme oxygenase-1. Sod2 reduction in young hAPP mice resulted in
significantly increased oxidative stress in the pyramidal neurons of the hippocampus. Interestingly, while differences
resulting from hAPP expression or Sod2 reduction were not apparent in the neurons in old mice, oxidative stress was
increased in astrocytes in old, but not young hAPP mice with either Sod2+/+ or Sod2+/2. Our study shows the specific
changes in oxidative stress and the causal relationship with the pathological progression of these mice. These results
suggest that the early neuronal susceptibility to oxidative stress in the hAPP/Sod2+/2 mice may contribute to the
pathological and behavioral changes seen in this animal model.
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Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative

disorder and the increase of oxidative stress has been linked to the

progression of the disease. Interestingly, transgenic mouse models

of AD also readily display increases in oxidative stress [1–3].

Specifically, the indicators of oxidative stress lipid peroxidation

and heme oxygenase-1 (HO-1) induction are found to be increased

in a transgenic mouse model overexpressing mutant amyloid-b
precursor protein (APP) [1]. While the role of amyloid-b (Ab) in

AD development is supported by many studies [4], the long-

standing hypothesis that mitochondrial dysfunction and oxidative

stress also play fundamental roles in the disease has recently gained

experimental traction and renewed interest [5–8]. In fact,

oxidative damage is now recognized as one of the earliest changes

in both familial and sporadic forms of AD [9–11].

Superoxide dismutase 2 (Sod2) is an antioxidant enzyme which

detoxifies superoxide radicals within the mitochondrial matrix.

Mice that have disruptions in the Sod2 gene accumulate nucleic

acid oxidative damage in the brain [12] while fertility and lifespan

of these hemizygous Sod2+/2 and wild type animals are identical

[13,14]. Interestingly, combining the reduction of Sod2 activity

with hAPP transgenic mice accelerates several features of AD-like

pathology including behavioral changes and development of

cerebrovascular amyloidosis [15]. However, specific changes in

oxidative stress and the causal relationship with the pathological

progression of these mice has not been fully analyzed [15,16]. In

this study, therefore, we assessed the effect of Sod2 reduction in

this animal model of AD by measuring the extent of oxidative

stress in both young mice at 5–7 months of age, in which amyloid

deposition is not yet apparent, as well as in aged mice, at 25–30

months of age. Levels of the lipid peroxidation adduct 4-hydroxy-

2-nonenal (HNE) pyrrole and HO-1, which are increased during

periods of oxidative stress, were analyzed in the brains of old and

young mice. Parallel to the finding in AD where the level of HNE

and HO-1 is dramatically increased in the vulnerable neurons

[17,18], reduced Sod2 in mice overexpressing APP results in

significantly increased oxidative stress, most notably in younger

mice. Thus, reduced Sod2 activity together with mutant hAPP

overexpression increases oxidative stress and may facilitate the

disease progression and increase the severity of AD-like pathology

found in this APP transgenic mouse model.
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Materials and Methods

Transgenic mice
All the transgenic mouse strains used in this study (Sod2+/+,

Sod2+/2, hAPP/Sod2+/+, and hAPP/Sod2+/2) has been described

in the previous study [19]. All protocols involving the use of mice

were approved by the Institutional Animal Care and Use

Committee of the University of California, San Francisco.

Immunohistochemical analyses
For immunohistochemical analysis, 8 mm paraffin-embedded

sections from the brains of 26 young mice (5–7 months of age;

n = 627 per group) and 20 old mice (25–30 months of age;

n = 426 per group) were prepared and blinded for the analysis. All

experiments were carried out by an experimenter blinded to

genotype. Slides of all mice were immunostained simultaneously

under identical conditions, using the peroxidase-anti-peroxidase

method. Initially, slides were deparaffinized in xylene and then

transferred through a graded ethanol series followed by incubation

in Tris-buffered saline (50 mM Tris, 150 mM NaCl, pH = 7.6,

TBS) to rehydrate the tissue. Subsequently, the tissues were

incubated overnight with the primary antibodies directed against

HNE-pyrrole [17], HO-1 [18], GFAP (Zymed Laboratories). The

following day, species-specific secondary antibodies and PAP

complex were applied, then the slides were rinsed in Tris buffer

and developed for 5 minutes with the chromagen 39-39-diamino-

benzadine (Dako) as previously described [20]. Finally the slides

were dehydrated, mounted with a coverslip and analyzed.

For double immunohistochemistry, the brain sections were

incubated overnight at 4uC with anti-HO-1 rabbit antibody or

anti- HNE pyrrole rabbit antibody in addition to anti-GFAP

mouse monoclonal antibody. Alexa Fluor 488- and 568-coupled

secondary antibodies (Invitrogen, Carlsbad, CA) were used for

detection. Images were acquired through an AxioCam camera on

an Axiovert 200 M microscope (Zeiss, Thornwood, NY). Images

were then analyzed with the Axiovision software (Zeiss).

Image analysis
Quantitative analysis of the neuronal accumulations of the

oxidative stress markers HNE and HO-1 was performed using

Axiovision image analysis software (Zeiss). Images of the entire

hippocampus were prepared and all neurons of the CA1 and CA2

regions were analyzed and their relative densitometric values,

minus the mean level of the surrounding neuropil, were

determined. The mean neuronal staining levels for each mouse

were calculated. The data was then decoded and the values for all

the mice in the different genotype groups were averaged, and

statistical significance of differences between the means was

determined with one-way ANOVA or student’s t-test.

Results

In young mice (5–7 months), we compared the accumulation of

the oxidative stress markers in the brain of mice representing the 4

different genotypes. Genotype-dependent differences in neuronal

levels of the HNE adduct were readily apparent between the

groups of young mice (Figure 1A–D). Specifically, quantification

revealed neuronal densities of the HNE adduct were significantly

increased in the hippocampus of hAPP transgenic mice with

reduced Sod2 activity (hAPP/Sod2+/2), but not in hAPP

transgenic mice with normal Sod2 activity (hAPP/Sod2+/+), or

in Sod2+/+ and Sod2+/2 controls. However, HNE staining in mice

without hAPP was unaffected by the ablation of one Sod2 allele

(Figure 1E). Notably, neither hAPP expression alone (compare

Sod2+/+ mice to hAPP/Sod2+/+ mice) nor Sod2 reduction alone

(compare Sod2+/+ to Sod2+/2 mice) was sufficient to increase

neuronal HNE accumulation in young mice.

Upon qualitative assessment, levels of neuronal HO-1 in the

young mice (5–7 months of age) appeared higher in hippocampal

neurons of mice with ablation of one Sod2 allele, irrespective of

hAPP expression (Figure 2A–D). Quantification, however, re-

vealed only a slight increase in neuronal staining in these young

mice with the Sod2+/2 mutation (Figure 2E) that did not reach

significance.

Unexpectedly, the results obtained for the older mice (25–30

months of age) contrasted with the results from the younger mice.

For example, neuronal HNE (Figure 3A) and HO-1 (Figure 3B)

staining in old mice revealed no significant differences between the

groups. Whereas the levels of both HNE and HO-1 tended to

Figure 1. Sod2 reduction, in synergy with hAPP/Ab expression,
results in increased levels of the lipid peroxidation product
HNE, in young (5–7 month-old) mice. Pyramidal neurons in the CA1
region of the hippocampus exhibit similar levels of HNE immunostain-
ing in the hAPP-/Sod2+/+ (A), hAPP-/Sod2+/2 (B), and the hAPP+/Sod2+/+

(C) mice, whereas the hAPP+/Sod2+/2 mice exhibit increased levels of
HNE (D). Quantification of the intensity of the neuronal HNE levels using
densitometric analysis reveals the hAPP+/Sod2+/2 mice have signifi-
cantly higher levels of neuronal HNE adducts as compared to hAPP+/
Sod2+/+, as well as the hAPP-/Sod2+/+, hAPP-/Sod2+/2 mice (E). Bars
represent mean + SEM, n = 527 per group *p,0.05, **p,0.01 by one-
way ANOVA + Tukey Kramer post hoc analysis. ***p,0.05 by a one-
tailed student’s t-test.
doi:10.1371/journal.pone.0028033.g001

Reduced Sod2 in Disease Progression of AD Mice
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increase slightly with hAPP expression, there was no effect on

levels of these oxidative damage markers with the ablation of one

Sod2 allele at this age in the pyramidal neurons.

Since previous studies using these mice documented changes in

gliosis in old animals, we measured HNE and HO-1 levels in glial

cells. In Sod2+/+ mice minimal astrocytosis was detected with an

antibodies to glial fibrillary acidic protein (GFAP), HNE, and HO-1

(data not shown). In old mice that lack mutant hAPP expression

there was moderate levels of astrocytosis in Sod2+/2. Consistent

with previous results [15], the greater levels of astrocytosis in old

hAPP transgenic mice was lessened by Sod2 reduction. These

astrocytes also contained significant levels of HNE (Figure 4A) and

HO-1 (Figure 4B). High magnification images of the double-label

fluorescent microscopy confirmed that many of the cells with

accumulated oxidative damage are in fact astrocytes containing

GFAP. In young mice, astrocytosis was minimal as indicated by low

GFAP expression and no significant Ab deposition (data not shown).

Discussion

Oxidative stress emanating from the mitochondria has been

proposed to be a key pathogenic trigger in the progression of the

neuronal deficits that characterize AD. Moreover, the activity of

Sod2 has been reported to be reduced in AD brains [21]. In

support of this hypothesis, previous studies in hAPP transgenic

mice have shown that the reduction of Sod2 activity accelerates

the onset of AD-related behavioral deficits, alters amyloid

deposition, worsens the severity of synaptic density deficits and

neuritic dystrophy, enhances microgliosis and increases the activity

of the redox-sensitive transcription factor NFkB in the brains of

these mice. Overt increase in oxidative damage resulting from the

Sod2 reduction, however, was not initially detected in these mice

using traditional biochemical methods, which suggests that the

oxidative damage might be specific and/or focal. Furthermore,

since aging hAPP transgenic mice undergo further oxidative

changes and also exhibit a myriad of possible compensatory

mechanisms that might mask the effects of the Sod2 mutation, we

hypothesized that it is an earlier event of oxidative stress in the

hAPP/Sod2+/2 mice that likely contributes to the pathology and

behavioral changes seen in this model.

To address this question, we assessed the levels of two widely

accepted and sensitive measures of oxidative damage, the lipid

Figure 2. Neuronal HO-1 immunostaining in the pyramidal
cells of the hippocampus of young (5–7 month-old) mice (A–D).
Densitometric quantitation demonstrates that HO-1 levels tend to be
higher in Sod2+/2 and hAPP/Sod2+/2 mice relative to mice with normal
Sod2 levels (Sod+/+ and hAPP/Sod2+/+) (E). Bars represent the mean +
SEM, n = 527 per group.
doi:10.1371/journal.pone.0028033.g002

Figure 3. Immunostaining and densitometric quantification of HNE(A) and HO-1 (B) in pyramidal neurons in old (25–30 month-old)
mice shows that these oxidative stress markers tend to increase slightly with APP/Ab expression, although levels are not affected
by reduction of Sod2 activity. Bars represent the mean + SEM, n = 527 per group.
doi:10.1371/journal.pone.0028033.g003

Reduced Sod2 in Disease Progression of AD Mice
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peroxidation product HNE and the enzyme HO-1, in the brains of

both young (5–7 month old) and old mice (25–30 month old). We

showed that in the hippocampus neuronal HNE levels were

increased dramatically in young hAPP transgenic mice with

reduced Sod2 activity. This result strongly suggests a possible

synergistic effect of decreased Sod2 activity and mutant hAPP/Ab
expression, yielding significantly increased oxidative damage in

neurons of young mice. Importantly, since no amyloid plaque

deposition was found in young mice, this result indicates that the

increase of oxidative stress at this age is Ab plaque independent

but dependent on Sod2 activity.

Chronic mitochondrial oxidative stress impairs mitochondrial

function, including oxidative phosphorylation [14], that can, in

turn, cause neuronal energy (ATP) deficits, negatively impact

endogenous cellular repair systems [22], inhibit axonal transport

[23], impair synaptic transmission [24,25] and further increase

reactive oxygen species production [26]. Mitochondrial dysfunc-

tion and oxidative stress occur early in all major neurodegener-

ative diseases, and there is strong evidence that this dysfunction

has a causal role in pathogenesis [27]. Our study supports the

conclusion that hAPP/Sod2+/2 mice are more susceptible at an

early age to the accumulation of oxidative damage (HNE) which

Figure 4. High magnification images of the double immunofluorescence staining in the hippocampus of Sod2+/2, hAPP/Sod2+/+,
and hAPP/Sod2+/2 mice at 25–30 months of age using antibodies against GFAP (Green fluorescence), HNE (Red fluorescence in A),
and HO-1 (Red fluorescence in B). In Sod2+/2 mice there is a moderate level of astrocytic (GFAP) staining, and moderate levels of HNE (A) or HO-1
(B) localized to glial cells (Merged images). In hAPP/Sod2+/+ and hAPP/Sod2+/2 mice there is extensive plaque formation (Asterisk), striking increases
in levels of glial HNE(A), and HO-1 (B) relative to mice without hAPP/Ab expression. The magnification is 206.
doi:10.1371/journal.pone.0028033.g004

Reduced Sod2 in Disease Progression of AD Mice
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may result in their accelerated onset of AD-like phenotypes

relative to hAPP mice with normal Sod2 activity [15].

Another oxidative stress marker, HO-1 induction, was subtly

increased by the Sod2+/2 mutation, irrespective of hAPP/Ab
expression. The HO-1 immunoreactivity was intense in all animals,

which may account for the inability to differentiate between hAPP-

and hAPP+ pathology in different genotypes. Thus, in this study,

HNE proved to be a more sensitive marker for oxidative damage in

young hAPP/Sod2+/2 mice and suggests that lipid peroxidation is

an acutely sensitive measure of oxidative damage in hAPP

transgenic mice. These results are consistent with studies in humans

in which lipid peroxidation products such as HNE, isoprostanes and

neuroprostanes have proven to be reliable biomarkers of AD [28–

30]. Overall, our current and previous data showing that the

reduction of Sod2 activity in younger mice accelerated oxidative

damage and hAPP/Ab-related pathology supports the hypothesis

that decreased Sod2 activity (and hence, increased O2
N2) contrib-

utes to neuronal deterioration and impairment in AD.

In older mice in which Ab deposition is apparent, Sod2

reduction did not significantly impact the oxidative damage that

appears to be occurring as a result of hAPP/Ab expression,

implying that effect of Sod2 reduction on oxidative damage is

saturated by a hAPP/Ab-mediated pathogenic mechanism that

occurs in the old mice. Alternately, it is interesting to note that an

increase in Ab deposition in AD patients brain is inversely

correlated with neuronal oxidative damage measured by the level

of 8-hydroxyguanosine, a major product of nucleic acid oxidation

[31]. Therefore, although the mechanism is still unclear, it is

tempting to propose that the accumulation of Ab might reduce or

hold steady the level of oxidative damage resulting from Sod2

reduction and consequently result in similar total levels of

oxidative damage in both hAPP/Sod2+/+ and hAPP/Sod2+/2

brains. In fact, it is likely that other compensatory mechanisms in

the brain may be upregulated with age and pathological

progression in AD and other neurodegenerative diseases.

Another interesting and important finding is the increase of

oxidative stress in the astrocytes of old mice. The oxidative stress

accumulated within astrocytes is correlated with not only APP/Ab

but with Sod2 reduction, suggesting that the combination of Sod2

reduction and APP/Ab expression augments oxidative stress in

astrocytes although its mechanism and pathological implication

remain to be elucidated. However, it might be possible that

oxidative stress causes astrocytic damage, leading to impaired

function including those functions that support neurons [32], and

ultimately contributing to the development of AD pathology. In

support of this notion, increased oxidative stress and DNA damage

in astrocytes in AD has been reported [33,34].

Our study provides strong support that neurons are the target of

the oxidative insult caused by the partial reduction in the main

mitochondrial superoxide scavenger Sod2, which accelerates the

onset of mutant APP-dependent behavioral abnormalities in J20 mice

[15] that are apparent even at 6–7 months of age [35]. Although the

precise mechanisms by which Sod2 reduction promotes Ab-induced

neuronal deficits remains to be determined, our study suggests that

reduction in the mitochondrial superoxide scavenger leads to the

degeneration of neuronal integrity in the early stage of the disease.

Supporting this hypothesis, the overexpression of Sod2 improved the

cognitive functions and reduced Ab accumulation in mutant hAPP

transgenic mice [36]. Thus, retaining full activity of mitochondrial

antioxidant defenses may be critical in preventing the early onset of

AD symptoms whereas bolstering mitochondrial antioxidant poten-

tial and overall function may halt the progression of AD.
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