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Abstract

Although G-protein coupled receptors (GPCRs) are a common element in many chemosensory transduction pathways in
eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a
GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of
putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete
knockout of a gene that we call GPCR6 (TTHERM_00925490). Based on sequence comparisons, the Gpcr6p protein belongs
to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from
Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing
ions Ba2+ and K+, suggesting a decrease in basal excitability (decrease in Ca2+ channel activity). The other major phenotype
of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA) and proteose peptone (PP), two known chemoattractants
in Tetrahymena. Using microsomal [35S]GTPcS binding assays, we found that wild-type (CU427) have a prominent basal G-
protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor), addition of
chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that
this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause
attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased
excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes) towards the
attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a
pertussis-sensitive G-protein.
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Introduction

The ciliated protozoan Tetrahymena thermophila shows chemosen-

sory responses to many different stimuli but no chemoreceptors

have been fully verified from gene to ligand. As free-swimming

cells, Tetrahymena change their swim speed and swimming direction

in response to many types of chemorepellents [1,2,3,4] and

chemoattractants [5,6,7,8]. These changes in swimming behaviors

allow them to generate directed movement away from hazardous

locations and towards preferred areas of their fresh water

environment. The general model from studies of the related

ciliate, Paramecium, is that chemoattractants cause somatic

hyperpolarization, faster forward swimming speed, and less

directional changes [9]. Chemorepellents in Paramecium cause

depolarizations that elicit repetitive bouts of backwards and

forwards swimming called ‘‘avoiding reactions ‘‘ (AR) by

generating Ca2+-based action potentials and inward Ca2+ currents

through the ciliary voltage-dependent Ca2+ channels [10]. As

intraciliary free Ca2+ rises, the beat frequency slows and when the

free Ca2+ exceeds 1026 M, the cilia reverse their direction of beat

[10,11]. Therefore, these unicells integrate sensory information in

the form of changes in membrane potentials to generate an

appropriate ciliary response. The intracellular electrophysiological

measurements in Tetrahymena have shown that they are generally

similar to those of Paramecium, establishing Tetrahymena as a suitable

tool for studies of membrane excitation and chemosensory

transduction mechanisms [12,13].

Many chemosensory reception systems in eukaryotic cells

commonly start with ligand activation of a G-protein coupled

receptor (GPCR) [14,15]. GPCRs are seven-transmembrane

spanning proteins that typically affect the function of a

chemosensory transduction pathway through a change in the

associated heterotrimeric G-protein activity [16] and they are

predicted to be present throughout the majority of sequenced

eukaryotic genomes [17]. Sensory cells from nematodes to

vertebrates express hundreds of GPCR genes that play critical

roles in both olfaction and gustation through heterotrimeric G-

protein activation [18]. In yeast, GPCRs have been shown to play

important roles in their nutrient and pheromone sensing pathways

[19,20]. Dictyostelium has also been shown to possess several

GPCRs involved in chemotaxis, cellular aggregation, and

sporulation [21].
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Several studies have provided evidence supporting the hypoth-

esis that canonical GPCRs are present in several ciliates but no

GPCR or regulated G-protein activity has been described in any

ciliate. Antibodies to homologous and cloned fragments have

implied the existence of G-proteins in Tetrahymena, Paramecium, and

Stentor [22,23,24]. Alterations in behavior have been reported by

treatment with both PTX and CTX in several ciliates

[6,23,24,25]. PTX induced ADP-ribosylation of specific proteins

has been demonstrated in Paramecium [23] and the distantly related

fellow alveolate Plasmodium [23,26]. It has also been suggested that

the ciliary voltage-dependent Ca2+ channels in Paramecium are

modulated by PTX sensitive G-proteins [23,27]. This provides a

possible link between constitutive GPCR activity and membrane

excitability in the ciliates.

Although the original GPCR model was that agonists exert their

effects on GPCRs that have little or no basal activities, there are

now many GPCRs that have been shown to have constitutive

activities in the absence of added ligands [28,29]. In addition,

constitutive GPCR activities have been shown to be modulated by

inverse agonists, generating differential signals by decreasing basal

G-protein activities [30,31,32]. Gene knockout techniques have

provided great insights in the functions of GPCRs in many

eukaryotic organisms [21,33,34]. Therefore, we have used this

approach to study the functions of GPCRs in Tetrahymena.

It is important to note that Tetrahymena are different from many

eukaryotic cells because they possess two distinct nuclei, a

polyploid macronucleus and diploid micronuclei. The micronuclei

are the sexual genetic repository of the cell and their DNA is not

normally transcribed. The macronucleus is the somatic nucleus

where genes are actively transcribed. As a result of conjugation

(mating) of two different mating types, the old macronucleus is

degraded and a new micronucleus is generated from the old

micronuclear DNA. Therefore, there are two types of genetic

knockouts in Tetrahymena, micronuclear [35] and macronuclear

[36]. Micronuclear knockouts are made by introducing linearized

knockout constructs into mating cells while macronuclear

knockouts can be made from vegetative, non-mating cells.

Micronuclear knockout heterokaryons require an additional sexual

cycle between two different mutant mating types to create a

homozygous complete knockout in the macronucleus and

micronucleus. Since different mating types can show strikingly

different behavioral phenotypes (personal observations), we have

chosen to make macronuclear gene knockouts to provide a clear

uniparental control.

Results

Characterization and amino acid sequence analysis of the
putative GPCRs in Tetrahymena thermophila

Nine candidate GPCRs were selected from the Tetrahymena

Genome Database (TGD, http://www.ciliate.org/). There may be

more GPCRs in the Tetrahymena genome but this represents the

strongest group of candidates. A phylogram depicting the

relationship of these nine putative GPCR amino acid sequences

is presented in Figure 1. The phylogram depicts two clades that

are not only supported by the topology of the resulting tree but

also by domain annotations from the PFAM server (http://pfam.

sanger.ac.uk/). One clade shares varying homology to Dictyostelium

cAMP (CAR) receptors [21]. The second is divided into two

smaller clades, one rhodopsin-like [37] and the other related to the

yeast nutrient receptors [19]. The amino acid sequence of the

Gpcr6p protein (TTHERM_00925490, XP_001031166) shares

significant homology with the Git3 nutrient receptor from

Schizosaccharomyces pombe [20].

The top NCBI BLAST hits for the predicted Gpcr6p amino

acid translation are displayed in Figure 2A. All of the BLAST

results are weakly significant, even for the hit from the most closely

related Paramecium genome. The Arabidopsis GPCR is the best

reciprocal blast hit (BRH) outside of the Phylum Ciliophora. This

result could have been predicted as there is evidence that ciliates

are more related to plants than they are to animals and fungi [38].

Membrane prediction algorithms were also used to define the

GPCR associated seven-transmembrane-domain topology for

Gpcr6p (see methods). The consensus transmembrane prediction

was used to deduce the membrane topology of the protein

(Figure 2B). The black circles represent identical residues, shaded

circles represent conservative substitutions of an amino acid

sequence alignment between Arabidopsis gcr1 and Tetrahymena

Gpcr6p. There is little overall homology except for transmem-

brane regions VI and VII. These transmembrane domains have

been reported to be involved in the interaction and altering of Ga
activity [39]. In addition, these transmembrane domains are also

the most conserved regions between all the candidate Tetrahymena

GPCRs (Figure S2A).

The short amino terminus of the predicted Gpcr6p peptide is

indicative of Class A, Rhodopsin-like Family GPCRs. The ligand

binding region for this class is generally within the core of the

receptor [17,40]. Two different GPCR prediction and classifica-

tion servers were utilized and they both supported placing Gpcr6p

in the Rhodopsin Family [41,42]. Moreover, the Gpcr6p amino

acid sequence contains a cysteine residue in the first and the

second extracellular loops. Cysteine residues in these two

extracellular loops have been demonstrated to be essential in

maintaining the structural integrity of GPCRs; specifically

Rhodopsin Family proteins via disulfide bonds [43]. Beyond the

Rhodopsin-like family GPCRs, these cysteine residues are also

conserved in the fungal nutrient receptor family [20]. These

cysteine residues are conserved in all the Tetrahymena GPCR

candidates and thus provide additional support for a Tetrahymena

GPCR family containing multiple genes (Figure S2B).

Construction and confirmation of the GPCR6
macronuclear knockout

Once the biolistic knockout transformation was complete, the

resulting resistant cell lines were grown under increasing

concentrations of paromomycin. The cell lines were kept in

paromomycin until selection led to fixation of the knockout allele

[35,36,44]. For confirmation of the G6 knockout mutant, genomic

DNA was compared to wild-type (WT) using PCR. The DNA

primers used are depicted in Figure 3A in relation to the knockout

locale. Use of the Neo and OF (outer flanking) primers in PCR

reactions on G6 derived DNA demonstrates both the presence of

the neo3 sequence as well as the correct insertion in the intended

genomic location (Figure 3B). The Gsp’s (gene specific primers)

demonstrates that the GPCR6 sequence is still present in the

mutant because the DNA preparation contains both macronuclear

and micronuclear (which is wild-type in G6) genomic DNA.

Southern blotting using a probe designed to hybridize to the Neo

ORF was used to assure that no other recombination events

occurred. The neo probe hybridized to a band in the range of the

6,728 bp predicted restriction fragment of the recombined

knockout locale (Figure 4A). This blot was stripped and re-probed

for RPL21 (a ribosomal protein gene), a control that appeared in

both WT and G6 lanes.

The extent of the knockout mutation was analyzed by RT-PCR

to see if there was any expression of the GPCR6 gene in G6. The

cDNA of both WT and G6 cells was subjected to PCR using

specific primers to the predicted GPCR6 mRNA sequence.

A GPCR Knockout in Tetrahymena
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Figure 4B shows the results of two sets of different gene specific

primers. No GPCR6 PCR products are observed for the G6

cDNA, suggesting G6 is a complete knockout of GPCR6. The

RPL21 primers confirmed the correct processing and stability of

the isolated mRNA because the PCR products showed the correct

sizes for the predicted spliced products. G6 showed no detectable

Figure 2. Gpcr6p homologies to sequenced genomes. A. The GPCR6 translated animo acid sequence shows a limited homology to other
eukaryotic GPCRs. This protein may have evolved to specifically address a ciliate function from an ancestral proto-GPCR. B. Several algorithms were
used to identify potential membrane spanning segments of the Gpcr6p protein. Based on these predictions, the membrane topology of the receptor
was deduced (Figure 2B). All prediction methods arrived at a heptahelical membrane protein. The results of a ClustalW alignment between Gpcr6p
and the gcr1 receptor from Arabidopsis thaliana is represented by the filled circles: grey are similar and black are identical amino acids from the
alignment. The strongest homologies were observed in transmembrane domains VI and VII. The top side represents the extracellular side.
doi:10.1371/journal.pone.0028022.g002

Figure 1. Putative Tetrahymena GPCR amino acid sequence analysis. Neighbor-Joining phylogenetic tree depicting the relationship of the 9
Tetrahymena GPCR candidates. Two major clades are evident and supported when analyzing the sequences through the PFAM database: cAMP
Receptor Family (specifically the Dictyostelium CARs) and the Rhodopsin family. The Gpcr6p protein falls into the Rhodopsin Family clade with a
significant domain related to fungal nutrient receptors (Git3). Scale bar represents substitutions per site.
doi:10.1371/journal.pone.0028022.g001

A GPCR Knockout in Tetrahymena
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level of GPCR6 expression compared to WT from several

samplings over months out of paromomycin selection, showing

that the knockout was complete and stable.

Alterations in excitability
Behavioral responses to Ba2+ and K+ have been historically used

in analyzing excitability changes in behavioral mutants of

Paramecium [45] and barium paralysis has been used to screen for

possible mutants in calcium channel activity [46]. The barium

paralysis assay solution is a modification of the Dryl’s medium

containing 10 mM Ba2+. When G6 was incubated in the Ba2+

paralysis solution, the cells were resistant as measured by changes

in swim speed (Table 1), suggesting a possible defect in excitability.

In high concentrations of Ba2+ or K+, cells swim backwards for

several seconds. These long durations of backward swimming are

due to continuous ciliary reversals (CCR). The G6 mutant shows a

decreased duration of backwards swimming (CCR) in either

20 mM K+ or 1.0 mM Ba2+ (Table 1). The duration of CCR in

Ba2+ is almost completely lost in the G6 mutant while the duration

of K+-dependent CCR is decreased but not eliminated. These

Figure 3. Creation of the GPCR6 knockout mutation. A. Diagram of the genetic construct used for homologous recombination in disrupting
the GPCR6 coding sequence. The genomic coding regions of GPCR6 (TTHERM_00925490), along with about 1 kb of flanking sequences on both sides,
were cloned into a TOPO vector for modifications. Restriction sites (SalI and XmaI) were added near both the 59 and 39 ends of the coding regions by
site-directed mutagenesis. The neo3 antibiotic resistance cassette was cut from its vector with the same restriction enzymes and was ligated into the
TOPO vector to replace the coding regions with the antibiotic resistance cassette. The completed GPCR6 knockout construct is shown above. The
linearized knockout construct was introduced into vegetative CU427 wild-type cells by biolistic transformation. B. Genomic PCR was used to confirm
the correct disruption of the GPCR6 coding sequence. Lanes 1–4 are PCR products from wild-type (WT) DNA and lanes 5–8 are from G6 DNA. GPCR6
gene specific primers were used in lanes 1 and 5. The wild-type product (252 bp) is seen in Lane 1. Lane 5 shows the same band because the wild-
type GPCR6 sequence is still present in the micronucleus of G6 (it is a macronuclear knockout). Neo3 primers in lanes 2 and 6 shows that neo3 is
present in G6 (lane 6) but not wild-type (lane 2). Lanes 3 and 7 paired a 59 neo3 primer with a 39 outer flanking primer showing that G6 has this
1,753 bp product (lane 7) but the wild-type doesn’t (lane 3). Lanes 4 and 8 are bands generated from control primers (RPL21) for a ribosomal protein
gene.
doi:10.1371/journal.pone.0028022.g003

A GPCR Knockout in Tetrahymena
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results suggest a constitutive role of GPCR6 in regulating

excitability and Ca2+ channel activity.

Resting membrane potential recordings demonstrated that

under basal and Ba2+ depolarizing conditions the somatic

membrane potential of G6 is similar to wild-type (Table 1),

suggesting no major changes in resting conductances. This is also

reflected in the observation that the swim speeds in these solutions

also did not differ between G6 and wild-type (Table 1). The cell’s

ability to show avoiding reactions (AR) is a bioassay for their

ability to generate action potentials. The percent of cells showing

AR in Ba2+ and in K+ were not significantly different between the

wild-type and the G6 mutant (Table 1), showing that they are

capable of generating AR. Since there were no differences

between G6 and wild-type AR but there were differences in their

durations of CCR in higher Ba2+ or K+, it appears that the defect

in G6 is not in their ability to generate action potentials but rather

in their ability to sustain them.

Gpcr6p signaling is required for chemoattraction in
Tetrahymena

Our model is that both chemoattractants and chemorepellents

have their behavioral effects by changing basal excitability,

reflected in the percent of cells showing directional changes

(PDC). If chemoattractants and chemorepellents are to have

opposite effects on the PDC of Tetrahymena, then the basal

excitatory behavioral state should be maintained between these

two states. In this manner, chemoattractants can decrease basal

PDC to bias the swimming paths to be straighter towards the

attractant while repellents increase PDC to send these cells away

from noxious stimuli [1,6,47]. We propose that Gpcr6p is required

for a constitutive signal that is integral in maintaining proper basal

swimming behavior in Tetrahymena.

The G6 mutants showed no measurable chemoattraction

(compared to wild-type) to either lysophosphatidic acid (LPA) or

proteose peptone (PP) in three different behavioral bioassays. The

first is a two-phase spectrophotometric assay that shows chemoat-

traction as an increase in A600 as cells move past the light path in a

Figure 4. Confirmation of the G6 knockout cell line. A. Southern blot of genomic DNA from wild-type (WT) and G6. An epitope labeled DNA
probe was made to recognize the neo3 cassette sequence with the DIG probe labeling kit by Roche (top gel). Another probe was made to recognize
the ribosomal protein subunit gene RPL21 as a control (bottom image). Restriction digests were performed with EcoRI before agarose electrophoresis
and blotting. Hybridization of the probe to a blot was visualized by exposing the blot to film. The G6 mutant had only one band at the size predicted
for the neo3-containing EcoRI fragment (6.7 kb) showing that the mutant was generated by homologous recombination into only one gene. B. RT-
PCR on RNA extracted from WT and G6 cell lines followed by PCR on cDNA using gene specific primers to examine gene expression. Lanes 1 and 4 are
RPL21 controls. Lanes 2 and 5 are gene specific primers, gsp1 for GPCR6 while lanes 3 and 6 are a different set of Gsp’s for GPCR6. Both GPCR6 specific
primer sets show that GPCR6 is not expressed in G6 mutants.
doi:10.1371/journal.pone.0028022.g004

Table 1. Physiological Screen for G6.

Condition WT G6

Basal Swim Speed 0.4360.07 mm/sec. 0.4460.08 mm/sec.

Swim Speed in Ba2+ 0.1060.04 mm/sec. * 0.4060.04 mm/sec.

Swim Speed in PP 0.6460.09 mm/sec 0.6360.07 mm/sec

Basal Vm 228.562.70 mV 227.461.52 mV

Vm in Ba2+ 220.263.96 mV 219.962.82 mV

AR in 0.1 mM Ba2+ 100610% 9066%

AR in 2.5 mM K+ 8065% 8766%

CCR in 1 mM Ba2+ 17.562.00 sec. * 3.3763.80 sec.

CCR in 20 mM K+ 22.262.60 sec. * 12.661.99 sec.

*p,0.05, students t-test.
Swim speeds: n = 3 experiments ,30 cells each.
Vm: basal; n = 6, Ba2+; n = 5.
AR/CCR: n = 3 experiments, 10 cells each.
doi:10.1371/journal.pone.0028022.t001

A GPCR Knockout in Tetrahymena
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cuvette [5,8] (Figure 5A). The second chemoattraction assay is the

three-way stop cock assay used in Paramecium [47] (Figure 5B). The

G6 cells’ basal mobility is the same as in wild type in both of these

chemoattraction assays (Figure S3). The third is an assay that

measures the percent of cells showing direction changes (PDC)

[6,9] (Figure 5C). Although all three rely on different criteria for

chemoattraction, they all show that wild-type cells respond well to

the attractants LPA and PP but G6 cells do not. The G6 mutant

could change their swim speed in response to stimuli. In response

to PP, the membrane potential hyperpolarized in the G6 mutant

(Figure 6) and their swim speed increased from 0.44 mm/sec. to

0.63 mm/sec. (Table 1). These results are the same as the wild-

type responses to these chemoattractants. Even though the G6

mutants were able to hyperpolarize and increase their swim speeds

in response to PP, they still did not show an attractant response,

suggesting that swim speed changes are not always necessary for

chemoattraction in Tetrahymena [6,48].

Changes in the G-protein activity in microsomes
[35S] GTPcS binding to isolated cell membranes is an established

method for measuring G-protein activity from both cells and tissues

preparations, specifically in reference to GPCR signaling [49].

Tetrahymena microsomes from two-day starved cells were prepared in

order to examine G-protein activity in relation to reported behavior.

Microsomes isolated from G6 and wild-type cells treated with PTX

both displayed a significant decrease in GTPcS binding compared

to wild-type control (Figure 7A). Pertussis toxin causes ADP-

ribosylation of G-proteins and thus prevents the interaction with

GPCRs [50]. Addition of the chemoattractant LPA to the

microsome binding reactions also decreased the basal G-protein

Figure 5. Chemoattraction behavior is altered in the G6 knockout cell line. A. The chemoattraction assay commonly used in Tetrahymena
(two-phase assay) showed that proteose peptone (PP, 1 mg/ml) and lysophosphatidic acid (LPA, 10 mM) are chemoattractants for wild-type two-day
starved cells. Data represents the % of cells that accumulated in the lower phase after 30 min., n = 3 separate cultures. Chemoattraction responses
were not present in the G6 mutant cell line. B. Three-way stop cock assay typically used for ciliate behavior analysis. While wild-type showed
chemoattraction to either 1 mg/ml PP or 10 mM LPA, G6 is significantly less than wild-type in both cases. The G6 mutant showed no attraction
towards either PP or LPA, n = 5. C. Transfer of cells from the control solution (Tris) to either PP or LPA significantly decreases the percent of directional
changes (PDC) in wild-type. A decrease in PDC has been associated with chemoattraction responses in ciliates. The G6 mutant does not show a
significant decrease in PDC because the PDC level is already low. n = 3 experiments, ,30cells each. Significance determined by student t-test,0.05
with bonferroni correction where applicable.
doi:10.1371/journal.pone.0028022.g005

A GPCR Knockout in Tetrahymena
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activity to a similar extent. LPA added to G6 microsomes, LPA

added to PTX treated wild-type cell microsomes, and PTX treated

G6 cells all showed no significant difference in the level of decreased

G-protein activity (ANOVA): %WT control = 6565%, 6468%,

6565%, 6463% for LPA, G6+LPA, PTX+LPA, and G6+PTX

respectively (n = 3 microsome preparations). These results suggest

that all three of these conditions affect the same PTX-sensitive G-

protein activity. The addition of 1 mg/ml proteose peptone further

decreased the GTPcS binding in wild-type (data not shown). Due to

the complex composition of this proteose peptone solution, we did

not pursue these results further. Figure 7B provides support for the

specificity of the proposed G-protein binding of GTPcS to

membranes by competition.

Treatment of microsomes with activated PTX also provided

additional support for these conclusions. The activated toxin can

be used to treat duplicate samples of the same membrane

preparation to remove any variability between microsome

isolations. Treatment of wild-type membranes with activated

PTX decreases the G-protein activity to the same extent as when

whole living cells were treated with the toxin (compare Figure 7A

and Figure 8). Unlike the wild-type, the G-protein activity in the

G6 microsomes was not significantly decreased by activated PTX

treatment (Figure 8). This provides further support that the basal,

constitutive activity of wild-type Gpcr6p most likely engages PTX-

sensitive G-proteins.

Discussion

Evidence supporting GPCR6 placement in the GPCR
Superfamily

Since members of the GPCR Superfamily are utilized in

chemosensory transduction for many types of eukaryotic cells

[15,18], we screened for possible GPCRs in the Tetrahymena

Genome [51]. Although the known members of the GPCR

Superfamily all possess a seven transmembrane topology, an

apparent seven transmembrane domain structure does not

necessarily indicate heterotrimeric G-protein signaling. There

are many studied ‘‘GPCRs’’ that have been reported to initiate a

wide range of intracellular signaling events through G-protein-

independent effector molecules [52].

Hydropathy analysis and amino acid alignments to the

transmembrane domain of known GPCRs provides strong support

for Tetrahymena GPCR6 encoding a heptahelical membrane

protein. The reciprocal BLAST results between Gpcr6p of

Tetrahymena and current sequences in other databases showed that

Gpcr6p has similarities to Paramecium and to possible GPCRs in

plants (Figure 2A). Similarities to gcr1 of Arabidopsis suggests that

this gene could be part of the family of receptors sharing a most

recent common ancestor prior to the divergence of Archaeplastida

and Chromoalveolates [53].

GPCR pathways have been well studied in plants but the

ligands and most of the downstream signals have yet to be fully

elucidated [33,54]. The putative Arabidopsis GPCR called GCR1

interacts with prototypical G-proteins and gene disruption

experiments induced phenotypic defects in development and

transpiration [33,55]. The transpirational aspects have been linked

to cation channel regulation by G-protein signaling in plants [56].

This suggests a possible role for Ca2+ regulation by GPCRs.

Two cellular functions that are essential to many protozoan

species are the acquisition of nutrients and sexual reproduction.

Not surprisingly, these are essentially the two GPCR pathways

that have been elucidated in Saccharomyces species. The PFAM

annotations of the two main clades in the Tetrahymena GPCR

phylogram appear to suggest homologies to the Git3 nutrient

receptors of yeast and the cAMP receptors required for sexual

development in Dictyostelium (Figure 1). All of the genes in the

Tetrahymena cAMP clade show substantial changes in expression

during mating while the expression of GPCR6 is relatively

unchanged during growth, starvation, and mating [57]. G6 cells

also showed normal conjugation and mating behaviors, thus

further separating the G6 pathway from the mating signaling

events (data not shown). But, as the knockout mutation is in the

macronucleus there may be GPCR6 dependent events further into

sexual reproduction that would only be observed with a

micronuclear knockout.

Based on the domain similarity with the fungal nutrient receptors,

one hypothesis would be that Gpcr6p is directly responsible for

detection of carbohydrates, amino acids, lysolipids, or other

nutrients [19,20,58,59]. The nutrient GPCRs in yeast may detect

a variety of nutrients, with low affinities for each, allowing for broad

range nutrient detection [19]. This type of broad nutrient reception

receptor system might also be advantageous to Tetrahymena. The

results of this study do provide evidence that suggests a mechanism

in which Gpcr6p is a nutrient receptor. Chemoattractants like the

amino acids in proteose peptone or LPA may act as inverse agonists

for constitutive G-protein activation by Gpcr6p. Cell motility

alteration and chemoattraction occurring through inverse agonist

effects on constitutive GPCR signaling has been previously reported

in cultured vertebrate cells [31,32]. LPA is known to be an

attractant for many cells that are prokaryotic predators [59,60].

Therefore, LPA could represent a reasonable nutrient chemoat-

traction signal for Tetrahymena. Binding of 3H-LPA to the G6 mutant

cells was examined, but the lipophilic nature of the compound

produced high nonspecific binding to the samples. Therefore, at

present it is not possible to decided unequivocally whether Gpcr6p is

the LPA receptor or if LPA modulates the basal activity of G-

proteins downstream of the receptor [61].

G-protein activity and behavioral responses altered by
GPCR6 KO

The importance of endogenous inverse agonists and antago-

nists in GPCR signaling is only recently being truly appreciated.

Figure 6. The electrophysiological responses to proteose
peptone (PP) and lysophosphatidic acid (LPA) of G6. PP causes
a large and reversible hyperpolarization in both wild-type and in the G6
mutant. However, the G6 mutant cannot show chemoattraction to PP.
LPA does not cause any changes in membrane potential in both wild-
type and G6 cells. The large upward and downward spikes are perfusion
artifacts that were unavoidable during changes in bathing solutions.
Figure representative of three similar traces.
doi:10.1371/journal.pone.0028022.g006
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The discoveries that constitutive GPCR signaling is much more

prevalent than previously predicted and the description of the

effects of inverse agonists have changed the classical view of

GPCR functions [30,62]. The constitutive nature of Gpcr6p is

seen by comparing wild-type with the G6 mutant because the

knockout phenotypes are seen without the addition of known

ligands. Gpcr6p also has the lowest level of relative expression

compared to the other eight candidate GPCRs [57]. A low level

of basal expression is indicative of many constitutive GPCRs

[17,63]. The prototypical plant G-protein possesses intrinsic

constitutive activity and the specifics of its signaling mechanisms

are still unknown [64]. As this G-protein is known to interact

with a putative plant GPCR this may represent a novel

paradigm of how a receptor will regulate the activity of a G-

protein [33].

In our model (Figure 9) wild-type Gpcr6p affects the basal

voltage-dependent Ca2+ channel activity through the activation of

a PTX-sensitive G-protein. We suggest that this could be a Ga
because there are some possible candidates in the database but no

G-protein has been molecularly identified yet in Tetrahymena. This

model is supported by the observations that the G6 mutant, which

does not express Gpcr6p, has a decreased basal G-protein activity

(Figures 7,8), lower basal PDC (Figure 5C), loss of chemoattraction

(Figures 5A,B) and decreased responses to Ba2+ and K+ (Table 1).

These same effects can be seen in wild-type with PTX

(Figures 5,7,8) [6], suggesting that the G6 mutant is lacking the

PTX-sensitive component of the wild-type basal G-protein

activity. The behavioral responses of G6 (Figure 5) suggest an

effect on the voltage-dependent Ca2+ channels [65] because these

channels are required for generating ciliary reversals [45].

Figure 7. Analysis of G-protein activity in Tetrahymena microsomes. A. 0.1 nM [35S]GTPcS binding to G6 microsomes shows a significant
decrease in G-protein activity compared to wild-type. Microsomes from PTX treated cells showed a similar decrease in G-protein activity. This
suggests that both conditions affect GPCR signaling by decreasing the coupled G-protein activity. n = 3 determinations of 3 different membrane
preparations (* p,0.05, t-test). B. While GTPcS, GTP and GDP competed well for [35S]GTPcS binding, ATP shows little competition and therefore
strengthens the support for specific GTP binding proteins. ANOVA and Dunnet’s test (95 and 99% C.I.’s) were used to determine significance
compared to control.
doi:10.1371/journal.pone.0028022.g007
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Presumably, this also happens in Tetrahymena because a mutant

that lacks Ca2+ action potentials also has defective responses to

Ba2+ [66]. Consistent with this, it was shown in Paramecium [27]

that G-protein activation increased the amplitude of the inward

Ca2+ current without changing the voltage sensitivity. Since Ba2+

or K+ can still produce reliable responses in the G6 mutant

(Table 1), they are obviously capable of Ca2+ channel activation.

However, their low basal PDC suggests a reduced Ca2+ activity

and decreased excitability. There are also suggestions that some

GPCRs may themselves be ion channels [67,68] and yet they may

function through both direct ion conductance and heterotrimeric

G-protein regulation [69,70]. Since neither intracellular voltage

clamp or patch clamp procedures are well described in

Tetrahymena, further detailed analysis of Ca2+ channel properties

in intact cells is not currently feasible.

The [35S]-GTPcS binding of microsomes was decreased reliably

by either addition of PTX to wild-type or by the G6 mutation. To

control for possible variability between microsome preparations,

each of the [35S]-GTPcS binding assays were done with the same

microsome preparation except that activated PTX was added to

one half. This way, the effects of PTX could be directly evaluated

in identical microsome samples. This was repeated with three

different microsome preparations and summarized in Figure 8,

showing that PTX causes a reliable decrease in [35S]-GTPcS

binding in wild-type but not in the G6 mutant. There was also no

difference between wild-type with PTX and G6. All together, this

suggests that it is the PTX sensitive component of wild-type that is

missing in Gpcr6p.

For Gpcr6p to be defined as a prototypical GPCR, ligand-

induced changes in G-protein activity must be shown. To address

possible G-protein activity, [35S]GTPcS binding assays were

performed on Tetrahymena microsomes. These experiments showed

that Gpcr6p signals through a PTX sensitive G-protein pathway

(Figures 7,8). Moreover, it appears to be the same G-protein

component that is decreased when the chemoattractant LPA is

present. These results can explain the behavioral results of the G6

and PTX treated wild-type cells (Figure 5) (Table 1) [6] as follows.

Wild-type have a constitutive Gpcr6p activated, PTX-sensitive G-

protein activity that is decreased by the chemoattractants LPA and

PP. This causes decreased Ca2+ channel activation, fewer ciliary

calcium fluxes and less random directional turns. This results in

longer bouts of straight-forward swimming towards an attractant.

This concept is similar to the tumble and run model for bacterial

chemotaxis [71] because both involve changes in the frequency of

direction changes.

Although Tetrahymena have the advantages of free-living

unicellular simplicity, high cell yields from axenic cultures, gene

knockouts and a strong history of biochemical, molecular and

behavioral characterizations they also have a disadvantage of

difficulties in heterologous expressions. Because they have a

different genetic code [72], heterologous expression requires

extensive site-directed mutagenesis. In addition, differences in

RNA and protein processing, protein trafficking, and other cellular

differences create additional problems for functional heterologous

expression of Tetrahymena gene products. Since very few Tetrahymena

membrane proteins have been shown to be heterologously

expressed, properly localized and functional, this approach is

currently problematic. However, since the Tetrahymena genome

contains at least eight additional putative GPCRs, several possible

G-proteins and many other likely effectors, this current study can

provide the basis for future research that could produce insights

into both the functions of GPCR pathways in Tetrahymena and the

evolution of the GPCR Superfamily in eukaryotes.

Materials and Methods

Cell stocks, culture, and maintenance
Tetrahymena thermophila, stock CU427 (Cornell University Tetra-

hymena Stock Center) were used for wild-type controls and creation

of the biolistic transformed knockout mutants. All cells were

cultured in 5 ml SPP media (1% proteose peptone, 0.2% glucose,

0.1% yeast extract) in standing tubes at 25uC. Transformed cells

were maintained in SPP supplemented with 100 ng/ml paromo-

mycin and 0.5 mg/ml CdCl2. Mutant cell lines were kept under

increasing paromomycin selection until expression of the targeted

gene was no longer observed. Several of the assays required the

Figure 9. Proposed signaling model. The wild-type Gpcr6p causes
constitutive activation of a pertussis sensitive G-protein that modulates
the opening of the ciliary voltage-gated Ca2+ channels (VGCC). Since
these channels provide the Ca2+ for Ca2+-dependent ciliary reversals,
this makes the basal percent of cells showing direction changes (PDC)
relatively high in unstimulated wild-type. Chemoattractants act as
inverse agonists to decrease G-protein activation, lower the basal PDC
and cause straighter forward swimming towards the attractant. Strong
depolarizations cause prolonged Ca2+ channel activation, continuous
ciliary reversals (CCR) and backward swimming. In both the G6 mutant
and the wild-type with pertussis toxin, this G-protein activation is
missing so there is a lower basal PDC, no chemoattraction and
decreased CCRs in high concentrations of either Ba2+ or K+.
doi:10.1371/journal.pone.0028022.g009

Figure 8. Activated pertussis toxin treatment on the G-protein
activity of microsomes. As an alternative to treating whole cells with
PTX, Tetrahymena microsomes were treated with activated toxin. As
before, G6 microsomes showed decreased binding but there was no
decrease when treated with activated PTX. This suggests that the
Gpcr6p pathway is working exclusively through a PTX sensitive G-
protein. (n = 3 determinations for 3 membrane preparations). Signifi-
cance determined by ANOVA, Tukey multiple pair wise analysis (95%
and 99% C.I.’s).
doi:10.1371/journal.pone.0028022.g008
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cells to be washed and starved for varying periods of time in assay

buffer (10 mM Tris, 50 mM CaCl2, pH 7.2 with MOPS). For the

5 ml cultures, cells were washed in 100 ml sterile assay buffer at

500 g. The cell pellet was removed and left in this buffer for at

least 30 min. before using in assay. Other assays required 50 ml

cultures which were washed in the same way except the pellet was

then placed back into a sterile flask containing 50 ml of the assay

buffer. These cells were then placed aside to starve for a period of

time. Cells for chemoattraction experiments were starved for

40 hours at 25uC without agitation.

Candidate gene selection and in silico analysis
The candidate GPCR genes were selected based on initial

annotation of the Tetrahymena genome database (http://www.

ciliate.org/) [51] and BLAST searches into and out of the

Tetrahymena genome. A total of 9 GPCR candidates were deduced

by BLAST searches into the TGD and genome database

annotations. The Tetrahymena GPCRs were aligned using ClustalW

[73]. The consensus tree was constructed using neighbor joining

and a jukes-cantor genetic distance model. Bootstrap analysis with

1,000 replications and a heuristic search method was used to

create and test the topology of the phylogram in Figure 1. Protein

alignments and phylogram construction was performed in the

geneious bioinformatics software [74]. BLAST searches into

sequenced genomes were also performed to look for distant

homologies (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The trans-

lated amino acid sequence of Gpcr6p was then used to predict

possible structure and function. The consensus seven membrane

spanning regions of Gpcr6p were derived from several available

tools: TMPRED [75], Top-Pred II [76], TMHMM 2.0 [77], TM

Finder [78].

Targeted gene disruption and biolistic transformations
The sequence information from the Tetrahymena Genome

Database was used to identify and amplify the GPCR6 genomic

location by PCR (primers Figure S1). This database was used to

select not only the coding regions of the targeted genes but the

flanking intragenic nucleotide sequences used for homologous

recombination. PCR products were then cloned into the pCR4-

TOPO vector (Invitrogen). The QuickChange site-directed

mutagenesis kit (Stratagene) was used to introduce SalI and an

XmaI restriction sites into the cloned fragment. The neo3 antibiotic

resistance cassette (gift from Martin Gorovsky, University of

Rochester, NY) was cut from its vector with these introduced

restriction sites and ligated into the pCR4-TOPO vector

(Invitrogen). This replaced the GPCR6 coding region with the

cassette which contains a Tetrahymena metallothionein promoter,

neomycin resistance, and a BTU stop site [44]. This insertion

replaced the GPCR6 coding region with the antibiotic resistance

cassette. This knockout construct was introduced into vegetative

CU427 wild-type cells by biolistic transformation [79].

Knockout Genotype
To analyze and compare genotypes, the mutant and wild-type

DNA was extracted using a DNA-easy kit (Invitrogen). The DNA

was analyzed using PCR with primers to both the neo3 region and

to the flanking region of the recombined construct. DNA

sequencing of isolated PCR bands were also used to confirm the

correct mutations in the GPCR6 knockout locale. To assure that

the neo-construct recombined into the correct region, and only

one genomic location, Southern blotting was used with a probe to

the neo3 sequence. The procedure was performed as described by

the DIG High Prime DNA and Detection Kit (Roche). 10 mg of

genomic DNA was digested with EcoRI overnight at 37uC. The

restriction digested DNA was then ran on a 0.8% agarose gel and

transferred to a nylon membrane for Southern blotting. A 747 bp

DIG labeled NEO probe was produced by the provided protocol.

The probe solution was added to the prehybridization buffer

treated membrane and incubated at 42uC with agitation

overnight. Immunological detection with CSPD substrate was

performed the next day. When imaging was complete, membrane

blots were stripped with stripping buffer (0.2 M NaOH, 0.1%

SDS) for 15 min. at 37uC then examined with 839 bp RPL21

probe. The expression of GPCR6 was determined by RT-PCR on

cDNA templates. Total RNA from all cells types was isolated using

Trizol Reagent (Invitrogen) and treated with DNase (Fermentas).

RT-PCR was performed with oligo-dT primers provided with the

Affinity Script kit (Stratagene).

Electrophysiology
Standard single electrode intracellular electrophysiological

analysis was used to measure whole cell membrane resting

membrane potentials under perfusion conditions [13] . Cells were

viewed through an inverted microscope and impaled with a single

microelectrode filled with 500 mM KCl. The assay buffer was

used to flood the recording bath once a cell was impaled by the

electrode. For barium depolarizing conditions, assay buffer with

0.5 mM Ba2+ was released into the perfusion chamber. For

chemoattractant responses perfusion solution contained 1 mg/ml

PP or 10 mM LPA. The perfusion rate was 3 ml/min through a

chamber volume of 1 ml.

Behavioral Assays
For single cell behavioral bioassays, cells were grown in axenic

culture for 40–48 hours then washed in assay buffer by

centrifugation. The washed cells were given a period of 30 min.

to equilibrate to the new control buffer. All tests solutions were also

prepared in this assay buffer. A small fraction of the equilibrated

cells were then transferred to a well slide containing 0.5 ml of the

control buffer. The equilibrated cells were then transferred

individually to a well containing the test solution with a pulled

Pasteur pipette. The behavioral responses were then observed

using a dissection microscope.

For the AR (avoidance response) assay, individual cells were

scored for either showing an AR or not (+ or 2) when placed in a

new test solution. Avoidance responses were defined as any

significant deviation from forward swimming such as brief

reversals, backwards swimming, or whirling. The results are

expressed as a percentage of the sample of cells displaying any of

these avoidance reactions (%AR). The CCR (continuous ciliary

reversal) assay employs similar methods except the results are

quantified in seconds of backwards swimming. For these

experiments, backwards swimming is defined as the period of

time moving backwards, not the time needed to regain forward

swimming.

Tetrahymena swimming behavior was monitored using a

Moticam480 imaging system with a Boreal binocular research

microscope. A 50 ml drop of cells was placed on a slide with wax

circles with an inner circumference of 13 mm. The solution was

spread out to assure complete contact with the inner ring and thus

uniform depth between samples. Videos were taken at 406
magnification in avi-format. Forward swim speed was measured

using ImageJ image processing software (http://rsb.info.nih.gov/

ij/) by analyzing the lengths of the cell paths per second. The same

procedure was used to assay percent directional changes (PDC).

This PDC assay was a modified version of the automated cell path

analysis previously described for Paramecium [9]. This manual

quantification measured the percent of cells deviating from their
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linear path with a change in linearity greater than 17 degrees. The

ImageJ software possesses an angle measuring tool that was used in

assessing PDC.

Chemoattraction Assays
Chemoattraction was assayed using two different experimental

procedures. The first was the two-phase assay and it was

performed as previously described [8]. Briefly, test compounds

were dissolved in assay buffer with 3% histodenz (SIGMA) to a

total volume of 1.5 ml. This was added to a cuvette and it was

placed into the spectrophotometer and zeroed. The cuvette was

removed and 1.0 ml of two-day-old starved cells (in the same assay

buffer) was gently placed on top of the denser test solution with a

Pasteur pipette. The cuvette was then placed back into the

spectrophotometer and the A600 was used to monitor the cell

response over 30 min. The results are expressed as a relative

percentage of the A600 of the cells alone before addition to the

assay.

The second chemoattraction assay was the three-way stopcock

assay commonly used with Paramecium [47] and recently adapted

for use with Tetrahymena [6]. Briefly, one arm of the stopcock is

filled with assay buffer and another arm is filled with test solution

in the assay buffer. Two-day-starved cells are placed into the third

arm of the stopcock. To start the assay, the stopcock is opened and

then closed after 30 min. Cells are removed from the test and

control arm and counted in Lugol’s stain (2% KCl, 1% iodine).

The index of chemotaxis is the number of the cells in the test arm

divided by the cells in the control arm plus cells in the test arm. An

index .0.5 indicates chemoattraction while an index ,0.5

indicates chemorepulsion.

[35S]GTPcS G-protein Activity Assay
[35S]GTPcS binding to cell membranes was performed

essentially as previously described in Dictyostelium [80]. Pertussis

toxin (PTX)(TOCRIS) treatment of whole cell was performed for

5 hrs with 100 ng/ml of the toxin. Tetrahymena microsomes were

generated from two-day starved cells (conditions needed for

optimal chemoattraction) by differential centrifugation. In brief, a

cell pellet from a 50 ml culture was resuspended in 10 ml buffer B

(40 mM HEPES, 0.5 mM EDTA, 250 mM Sucrose, pH 7.2

NaOH) and homogenized with a dounce homogenizer for ,75

strokes. The homogenate was centrifuged at 17,000 g for 5 min.

and then the supernatant was centrifuged at 100,000 g for 30 min.

The microsome pellet was resuspended in 0.75 ml buffer B and

stored in aliquots at 270uC. The BCA protein assay kit was used

to quantitate the protein content in microsomes (Pierce). Each

[35S]GTPcS binding assay experiment contained 5 mg/ml mem-

brane protein. Microsome samples were centrifuged at 10,000 g

for 4 min. and then resuspended in 80 ml buffer A (10 mM

KH2PO4, 10 mM Na2HPO4, 10 mM MgCl2) and allowed to

equilibrate for 10 min. on ice before the assay. The microsomes

were then incubated for 30 min. with appropriate amount of

[35S]GTPcS on ice. The non-specific binding was determined in

the presence of 1 mM cold GTPcS. Labeled microsomes were

then collected by 10,000 g centrifugation and resuspended in

100 ml 1 mM acetic acid for scintillation counting.

As an alternative to treating whole cells with PTX, Tetrahymena

microsomes were treated with activated pertussis toxin. Activated

pertussis toxin was prepared as previously described [50]. First,

20 mg/ml of toxin was added to activation buffer (0.5 M HEPES,

0.1 M DTT, 10 mg/ml BSA, 10 mM ATP) and incubated at

30uC for 30 min. Microsomes were treated for 60 min. with

3.33 mg/ml activated toxin in ADP-ribosylation buffer (0.5 M

HEPES, 0.1 M DTT, 0.1 M EDTA, 0.2 thymidine, 100 mM

NAD) at 30uC. Treated microsomes were then washed with Buffer

A, centrifuged at 10,000 g for 4 min. and then assayed for

[35S]GTPcS binding.

Supporting Information

Figure S1 Primers used in GPCR6 Knockout construc-
tion and confirmation. Primers used for cloning and the

diagnostic assays on genomic DNA and RT-PCR, cDNA

templates.

(DOC)

Figure S2 Conserved domains and residues in Tetrahy-
mena GPCRs. A. ClustalW alignment between all 9 Tetrahymena

GPCRs for transmembrane domains VI/VII. The Tetrahymena

Gpcr6p and Arabidopsis gcr1 homologous transmembrane regions

VI and VII share strong homology across all Tetrahymena GPCRs.

B. A common GPCR conserved cysteine residue is seen in

extracellular loops I and II in all predicted Tetrahymena GPCRs. A

star depicts completely conserved residues (100% similar), double

dot signifies high similarity (80–100% similar), whereas a single dot

represents partial conservation (60–80% similar).

(DOC)

Figure S3 Chemoattraction control experiments. A. By

placing cells in the cuvette alone (no attractant) the rate at which

they rise to the top of the solution can be reflected by a decrease in

absorbance. Both wild-type (WT) and G6 cell types have the same

rate of negative geotaxis (n = 3). B. The index of motility, the

number of cells that moves into the experimental region of the

three-way stop cock assay, is the same in the G6 mutant.

(DOC)
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