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Abstract

Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for
subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment
results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework
(named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the
genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities
using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust
across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets
from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-
sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the
over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for
metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or
composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful
as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of
reference genomes.
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Introduction

Microbial organisms are ubiquitous dwellers of the earth’s

biosphere whose activities shape the earth’s biogeochemistry.

Through pathogenesis and symbiosis, they also play important roles

in the health and metabolism of macro-organisms. For example, the

human body is inhabited by trillions of microbes, affecting our

digestive system, immune system, and physiology [1]. Thus, the

knowledge of their presence and abundance in nature is of great

relevance to ecology as well as to human well-being. To study

microbes in natural environments, researchers frequently apply

whole genome shotgun sequencing to uncultured samples to generate

genomic sequence reads reflecting the structure of microbial

communities [2,3]. Using the sequencing data, investigators try to

address basic community questions such as: who they are, how many they

are, and what they do. As a consequence of the random sampling and

sequencing scheme of the shotgun metagenomics approach, the

presence and abundance information of metagenomes is preserved in

raw reads although some studies have shown that biases in sampling

can occur, as is true for virtually all approaches [4]. However, the

subsequent analysis of metagenomic data remains a challenging

computational problem because of the mixed nature of metagenomes

and the fact that we only sequence a small fraction of them.

Several computational methods have been developed to extract

taxonomic information from metagenomic sequence reads. These

existing methods can be separated into two classes: composition-

based and alignment-based. In the composition-based approaches,

similarity measures based on oligonucleotide composition, also

known as k-mer frequencies, are used to classify metagenomic

reads. For instances, TETRA, CompostBin, TACOA, and

AbundanceBin are all reference-free methods and they cluster

sequences with different binning strategies [5,6,7,8]. PhyloPythia

uses pre-trained composition-based classifiers to group sequences

[9] and Phymm trains interpolated Markov model-based classifiers

[10,11]. However, none of these binning or classification

approaches is designed to estimate the relative abundance of

genomes for microbial communities (or the genome relative

abundance (GRA)).

In the alignment-based approaches, alignment and mapping

tools, such as BLAST, are commonly used to find similarity hits of

the query reads to the references [12]. Some of them, such as Sort-

ITEMS, use BLASTX for amino acid sequence similarity search

[13]. However, we will only focus on similarity search based on

nucleic acid sequence only. The MEGAN software parses BLAST

results and traces back the lowest common ancestor of ambigu-

ously assigned reads to generate a phylogenetic distribution of the

reads [14]. An intuitive way of estimating GRA based on MEGAN

is using the normalized read distribution along the leaves of the

phylogenetic tree, leaving out the reads assigned to multiple

references. However, estimation of abundance levels by this
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method, which discards reads with multiple origins, can be biased

by many factors, including the variation of genome size [15,16].

The latest Genome Abundance and Average Size (GAAS) tool

weighs hits by their E-values and gives a direct estimation of

genome relative abundance [15]. However, its accuracy and

reliability are still hindered by the prevailing existence of read

assignment ambiguities and the oversimplified estimation scheme.

In parallel with computational developments, significant

improvements in sequencing technology have also been underway.

Traditional metagenomic read sets are based on Sanger

sequencing, which has an average read length at about 800 bp

or above. At these lengths, taxonomic origin identification for the

reads is relatively easy when the reference genomes are known.

However, there was only limited availability of reference genomes

as well as limited sequencing depth. Therefore, the relative

abundance levels could not be accurately estimated, especially for

complex communities in the past. Recent wide spread adoption of

next generation sequencing (NGS) technologies in the metage-

nomics research community has led to the emergence of several

massive, but short, read sets from Roche/454 (millions of 100–

400 bp reads), Illumina/Solexa and ABI/SOLiD platforms (tens

of millions of 50–100 bp reads) [17,18].

The paradigm shift in sequencing technologies has impacted

downstream analyses. Specifically, the identification of the origin

of a read becomes more difficult for several reasons. First, a large

number of short reads cannot be uniquely mapped to a specific

location of one genome. Instead, they map to multiple locations of

one or multiple genomes. These ambiguities are directly associated

with the read length reduction in NGS technologies. Second,

communities usually consist of many microbes with similar

genomes, different only in some parts, making it indeed impossible

to determine the origin of a particular short read based solely on its

sequence.

Despite these difficulties, NGS read sets have brought us richer

abundance information of microbial communities than traditional

datasets because of the significant increase in the number of reads.

Along with the increase of read set size, efforts to assemble more

reference genomes are ongoing [19,20]. In addition, new

experimental techniques, such as single-cell sequencing approach-

es are being developed to sequence reference genomes directly

from environmental samples [21,22]. Thus, in view of the

constraints of current computational tools and the fast expanding

sequencing capacities, we are motivated to develop a new method

for accurate and reliable GRA estimation, one that can meet the

challenges of short reads and the growing number of reference

genomes.

In this paper, we introduce GRAMMy, a unified Genome

Relative Abundance (GRA) estimation framework using Mixture

Model theory (MMy)-based modeling of shotgun metagenomic

reads. Our GRAMMy framework is a reference-based method

and utilizes the nucleic acid sequence similarity or composition.

We first tested GRAMMy using our simulated reads as well as

some synthetic communities with real reads from other studies (the

FAMeS datasets) [23]. Compared to other reference-based

methods, including GAAS and the abundance estimates from

MEGAN, GRAMMy shows greatly improved accuracy in

abundance estimations. Furthermore, with a reasonable sequenc-

ing depth, GRAMMy’s estimates converge to the true abundance

levels and remain stable. We then analyzed 34 real metagenomic

read sets with GRAMMy, the results of which yielded interesting

and new insights in biology. Finally, we packaged the GRAMMy

tools as a C++ extension to Python, which can be downloaded

freely from GRAMMy’s homepage (http://meta.usc.edu/softs/

grammy).

Results

The GRAMMy framework
The GRAMMy framework is based on a mixture model for the

short metagenomic reads and an Expectation Maximization (EM)

algorithm, as outlined in the model schema and the analysis

flowchart in Figures 1 and 2. GRAMMy accepts a set of shotgun

reads, as well as some references (e.g. genomes, scaffolds or contigs)

as inputs and subsequently performs the Maximum Likelihood

Estimation (MLE) of the relative abundance levels. In the typical

GRAMMy workflow, which is shown in Figure 2, the end user

starts with the metagenomic read set and reference genome set

and then chooses between mapping-based (‘map’) and k-mer

composition-based (‘k-mer’) assignment options. In either option,

after the assignment procedure, an intermediate matrix describing

the probability that each read is assigned to one of the reference

genomes is produced. This matrix, along with the read set and

reference genome set, is fed forward to the EM algorithm module

for estimation of the genome relative abundance levels. After the

calculation, GRAMMy outputs the GRA estimates as a numerical

vector, as well as the log-likelihood and standard errors for the

estimates. If the taxonomy information for the input reference

genomes is available, strain (genome) level GRA estimates can be

combined to calculate high taxonomic level abundance, such as

species and genus level estimates.

We implemented the computation-intensive core of GRAMMy

in C++ with Standard Template Library (STL) for best perfor-

mance and compatibility, and we integrated the typical workflow

tools into a Python extension. Compared to other methods included

in our study, we showed the superior accuracy and robustness of

GRAMMy’s estimates, as detailed in the following sections. Other

choices of read assignment schema, such as NGS mapping tools and

Markov Model-based read assignment [24], can also be incorpo-

rated into GRAMMy, since they produce a reasonable read

assignment probability matrix. The GRAMMy package is open

source, and users are able to implement other workflow variants.

Simulated read benchmarks
We first tested GRAMMy by using a series of simulated read

sets. By using read sets generated from a collection of genomes

included in the FAMeS study [23], we were able to assign the true

relative abundance levels and confirm the estimation accuracies by

analyzing the errors between the estimates and true values. The

numerical error measure RRMSE (Relative Root Mean Square

Error), which computes the root mean square average of relative

errors, was used to assess the accuracy and robustness of estimates.

The detailed discussion of the simulation studies is provided in the

Text S1 and the results are presented in Figures S1, S2, S3, S4.

Figure S1 shows that all the error measures decrease to 0 as the

number of reads increases. Figure S2A shows that effect of

sequencing errors on the GRA estimation accuracy and it shows

that sequence errors have a significant effect on short reads

(,200 bp) while the effect is minimal for long reads. Figure S2B

shows that missing reference genomes in the reference genome set

does not significantly affect the estimation accuracy for the

genomes in the reference data set even if 50% of the genomes in

the community are unknown. Figure S2C shows the effect of

different abundance distribution on the estimation accuracy and it

shows that such an effect is not significant although we do see a

slight increase in the measurement errors for communities with

uneven abundance distributions compared to that for the even

abundance distributions. In summary, our simulations show that

the GRAMMy estimates are accurate and stable across a range of

anticipated scenarios.

GRAMMy Based on Shotgun Metagenomic Reads
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Interestingly, a relatively small number of short reads is sufficient

to obtain an accurate estimate of relative abundance of the

genomes, thus eliminating the need for an excessively ‘deep

sequencing’ scheme in certain richness assessing scenarios. As

shown by all panels in Figure S1, RRMSEs start to stabilize when

the number of reads (RN) surpassed 105, indicating the existence of a

threshold for the number of reads needed to recover the community

abundance structure. The trend also shows that a relatively small

number of read sets could still provide substantial information for

the abundance estimation, when the read assignment ambiguity is

properly handled. However, the number of required reads depends

on the number of organisms in the community and the distribution

of relative abundances of the different organisms.

We also compared GRAMMy to other methods. With the

objective of estimating the GRA of communities, we first

benchmarked GRAMMy with GAAS. In addition, we included

MEGAN, which produces a read profile that summarizes the

number of reads assigned to their lowest common ancestors (LCA).

We estimated the GRA based on MEGAN using the normalized

percentages from the reads distributed on leaf taxon. In the

benchmark, we used a series of simulated read sets generated from

genomes randomly selected from the FAMeS study [23] (see

details in Text S1). The same genomes used in read generation

were also used as our reference genomes. We then used BLAT to

align the reads to the reference genomes and fed the output into

GRAMMy, GAAS and MEGAN. The default options of GAAS

and MEGAN were used in our study. Figure S3A shows the results

from the simulation read sets with read lengths (RLs) equal to 100

or 400 bp generated from MetaSim [25] using the ‘with

sequencing errors’ option. We see that GRAMMy (‘map’)

significantly outperformed GAAS, MEGAN and GRAMMy (‘k-

mer’) in all settings. Among all the methods tested, GRAMMy

(‘map’) is the only method with RRMSEs decreasing to zero as the

number of reads increases.

To account for the poor performance of other methods, we can

point to several possible reasons. For GAAS, assigning ambiguous

hits based on their E-value weights is ad hoc and may reduce its

accuracy because the E-value is only a statistical measure for the

quality of the alignment. For MEGAN, its arbitrary cutoff at the

top five percent hits and its non-probabilistic handling of

ambiguous hits may reduce the accuracy of GRA estimates. In

addition, for both MEGAN and GAAS, there is also the possibility

of losing accuracy when changing from BLAST hits to BLAT hits.

While it has been argued that BLAST alignment is the best way to

assign reads [11], it is too computationally intensive for BLAST-

aligning every read to references [18]. Instead, fast mapping tools

like BLAT only keep a small number of high-similarity hits, while,

at the same time, possibly reducing the accuracy of both GAAS

Figure 1. The GRAMMy model. A schematic diagram of the finite mixture model underlies the GRAMMy framework for shotgun metagenomics. In
the figure, ‘iid’ stands for ‘‘independent identically distributed’’.
doi:10.1371/journal.pone.0027992.g001

GRAMMy Based on Shotgun Metagenomic Reads
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and MEGAN. In contrast, the superior performance of GRAMMy

(‘map’) shows that the probabilistic way of handling ambiguous

hits could help to improve the estimation, which also gives

GRAMMy an advantage over other methods when encountering

incoming short read sets of very large sizes.

In conclusion, when the reference set is available, the

GRAMMy framework based on mapping or alignment gave the

best result for GRA estimation. Thus, the ‘map’ approach is

generally the method of choice in most application settings. Only

when assembled reference genomes are absent, GRAMMy (‘k-

mer’) is needed as a still viable solution for GRA estimation, since

at RL equal to 400 bp its performance is comparable to the

estimates from GAAS and MEGAN. However, the k-mer

composition approach has limited power to distinguish the

different genomes, as the compositions of k-mer are usually

heterogeneous across the genomes. In addition, there is no genome

size bias correction if ‘k-mer’ method is used without prior

knowledge of genome lengths.

In addition to the above methods, relative abundance estimation

based on ribotype (retrieving rRNA sequences and classifying into

taxonomic bins, e.g. 16S rRNA), protein marker (similar to ribotype

method except replacing rRNA by protein marker, e.g. rpoB) and hit

counting (counting the total number of all hits in each taxonomic

bin) has been used to estimate relative abundance [26,27,28]. We

compared the 16S-based (adapted from Biers et al. [28]), rpoB-based

and BLAT hit counting estimates to GRAMMy estimates using our

simulated read set. Figure S3B shows that GRAMMy outperformed

all other methods in this controlled setting. All other methods show

three obvious drawbacks: a persisting bias, significant variation and

a strong dependence on the number of reads.

In fact, 16S rRNA and rpoB genes are only very small parts of

genomes; therefore, even if the total number of reads is large, the

reads covering these genes are barely about 1/1000 of all reads. If

the total number of reads is small and there are not enough reads

covering 16S rRNA genes, then the method is not viable as a result

of its substantial instability. Even if the total number of reads

increases, due to gene copy number and genome size variations,

the estimates still do not converge to the true abundance values.

Similar trends were also observed when BLAT mapping hit counts

were directly normalized and used for abundance estimation. On

the contrary, GRAMMy always produced much more accurate

and reliable estimates.

For the estimates at different taxonomic levels, the estimation

errors gradually decrease from the strain level to the kingdom level

and are mostly small given a relatively large number of reads (see

Figure S4).

Artificial metagenomes with real reads
We further compared the estimates of GRAMMy with those of

GAAS and MEGAN, using the third party FAMeS dataset [23].

The FAMeS data are comprised of three synthetic metagenomic

read sets constructed by random sampling from real whole

genome shotgun sequencing reads. These constructed read sets are

labeled ‘simLC’, ‘simMC’ and ‘simHC’, according to different

complexities of the communities. Each set is composed of

approximately ten thousand Sanger reads from 113 microbial

genomes. These artificially created metagenomes have consider-

ably different abundance distributions, ranging from uniform-like

in the ‘simLC’ set to steep power-law-like in the ‘simHC’ set, with

the ‘simMC’ set in between. We ran GRAMMy (‘map’), MEGAN

and GAAS on all three data sets.

The results, which are summarized in Table 1, show that the

measured Relative Root Mean Square Error (RRMSE) and

Average Relative Error (AVGRE) for GRAMMy (‘map’) are

approximately 10–20%, while those for MEGAN-based estimates

are approximately 40–50%, and those for GAAS are even larger.

The benchmark further substantiates that GRAMMy (‘map’)

yields the most accurate estimates for all these sets. Although the

errors are not close to zero, the results are still respectable,

considering that the overall sequencing depth is low in all these

sets, which is, on average, less than a hundred reads per genome.

The highest accuracies reachable are certainly affected by the

limited number of reads and the presence of sequencing errors in

these read sets. Nonetheless, recent real read sets are frequently

two to three orders of magnitude larger than the FAMeS data,

making accurate GRA estimation more feasible.

Meta-analysis of human gut metagenomes
The human gastrointestinal tract harbors the largest group of

human symbiotic microbes. Several shotgun metagenomics studies

on these communities have been published. With more than six

hundred human-related bacteria reference genomes publicly

available, we are well positioned to use these datasets to illustrate

the practical uses of GRAMMy. We collected ‘gut’ data from three

Figure 2. The GRAMMy flowchart. A typical flowchart of GRAMMy
analysis pipeline employs ‘map’ and ‘k-mer’ assignment.
doi:10.1371/journal.pone.0027992.g002

GRAMMy Based on Shotgun Metagenomic Reads
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major human gut metagenome projects including two U.S. human

distal guts (,800 bp Sanger reads, ,100,000 reads per sample,

labeled ‘hg’), 18 U.S. adult samples from twin families (,250 bp

454 reads, ,500,000 reads per sample, obese and lean, labeled

‘uhg’), and 13 Japanese gut samples (,800 bp Sanger reads,

,100,000 reads per sample, weaned or unweaned infants and

adults, labeled ‘jhg’) [17,29,30].

For the reference set for the 33 human gut samples, we used a

comprehensive collection of human gut microbes (labeled ‘HGS’),

containing 388 currently available human gastrointestinal micro-

bial genomes from multiple sources (see Table S1A). BLAT was

used to assign metagenomic reads to the ‘HGS’ set according to

their alignment similarities, and the overall study was labeled using

the combination of the read set name, the reference genome set

name, and the cut-off identity rate, such as ‘hg_HGS_90’,

‘uhg_HGS_90’, ‘jhg_HGS_90’. The results with cut-off at ‘90

percent’ identity rate are summarized in Table 2 and that from

both ‘75’ and ‘90’ are provided in Tables S2, S3.

Table 2 gives the mapped rates and ambiguity rates for each

data set. The mapped rate is the proportion of reads mapped at

least once to the reference genomes. It can be seen from the table

that 45–60%, in median, of human gut metagenomic reads were

mapped to the references for all these studies. This value suggests

that the reference genome set provides a good homolog resource

for the human gut metagenomic reads, even though there are still

several sets only showing less than 40% mapped rate.

Another quantity, ambiguity rate, is the proportion of reads that

are mapped at least twice to the references. As we can see, about

21–65% of the reads were ambiguously mapped to the reference

genome set across the human gut samples. While ‘uhg_HGS’ is a

collection of 454 short reads, we also noticed that it has a

comparable median ambiguity rate to the other two Sanger read

sets. This indicates that at 250 bp, a 454 read is already as specific

as a Sanger read. However, because of the ambiguities arising

from the intrinsic composition of the communities, we still

encountered a significant portion of reads having multiple hits

regardless of their read lengths.

We estimated the relative abundances of reference genomes for

these datasets and the results are summarized in Table S4. Based on

these estimates, we calculated the average genome lengths for these

metagenomes. The medians of genome lengths range from 2.8 Mbp

to 3.7 Mbp, as shown in Table 2 and Table S3. These statistics

show that the average genome lengths for the three human gut

datasets are comparable. Indeed, there is no statistically significant

difference in the medians of average genome length between ‘jhg’

and ‘ugh’ samples (Wilcoxon test, two-sided, P = 0.3539). The test

involving ‘hg’ set is not suitable since it only contains two samples.

Next, we identified the most frequent species across all the

metagenomes. In Figure 3, we show the 99 species with at least

0.05% of relative abundance in at least 50% of the metagenome

samples in the order of their median relative abundance. Among

the top ten most common species, there are eight from the

Firmicutes phylum including members of Faecalibacterium, Eubacterium

and Ruminococcus genera, and two from the Bacteroides genus of

Bacteroidetes phylum. It shows the predominance of Firmicutes and

Bacteroidetes in the human gastrointestinal tract. In general, these

frequent species display a long-tail distribution in relative

abundance levels, meaning that most species are detected across

many samples, though they are not highly abundant. We also

found that the abundance levels of some species are highly

variable, while most others are relatively constant (see the quantile

boxes and outliers in Figure 3). In choosing the minimum

occurrence rate and minimum abundance threshold for a typical

human gut read set (,100,000 reads, 800 bp), the 0.05% of

relative abundance roughly corresponded to a sequencing size of

40 Kbp from the genome. This size was 25-fold more than the size

coverage per genome using 16S RNA sequencing according to Qin

et al. [18]. We used a different identity rate cut-off (75%) for

parsing BLAT hits and similar frequent species results were

obtained. They are shown in Figure S5.

We compared our results to the 75 non-redundant, frequent

species identified in a recent study [18]. Although we used

different datasets and methodologies, our study shows comparable

results. For example, between the two identified sets, five of the top

ten common species are shared and so are eleven of the top

twenty. The criteria they used (§1% genome coverage and

§50% presence), if converted, roughly correspond to 0.05% in

minimum relative abundance levels in our study.

Table 1. Comparison of estimation accuracy.

simLC simMC simHC

RRMSE AVGRE RRMSE AVGRE RRMSE AVGRE

GRAMMy 20.0% 14.0% 25.6% 19.7% 21.6% 14.7%

MEGAN 48.6% 39.3% 50.0% 40.6% 50.2% 40.8%

GAAS 433.8% 152.5% 171.4% 111.6% 507.9% 165.8%

Table 1: Comparison of estimation accuracy. A summary of Relative Root Mean
Square Error (RRMSE) and Average Relative Error (AVGRE) measured from
MEGAN-based, GAAS and GRAMMy (‘map’) estimates of simLC, simMC and
simHC subsets of the FAMeS data. GRAMMy (‘map’) has the lowest error rate for
both error measures across all the subsets.
doi:10.1371/journal.pone.0027992.t001

Table 2. Summary statistics for the metagenomic datasets.

Mapped rate (%) Ambiguity rate (%) Average Genome Length (bp)

Data (# Sets) Med. Min. Max Med. Min. Max. Med. Min. Max.

hg_HGS(2) 46.65 43.15 50.15 31.65 30.32 32.98 2890092 2660792 3119393

jhg_HGS(13) 59.61 35.99 76.92 45.11 22.53 65.71 3745629 2268438 5657331

uhg_HGS(18) 52.35 37.49 72.51 35.90 21.65 59.81 3619072 3047940 4752910

amd_AMD(1) 45.64 46.64 45.64 1.48 1.48 1.48 2163584 2163584 2163584

Table 2: Summary statistics for the metagenomic datasets. Median (Med.), minimum (Min.) and maximum (Max.) of mapped rate, ambiguity rate and estimated average
genome length for the samples: two from U.S. adult human gut (‘hg’), 13 from Japanese human gut (‘jhg’), 18 from U.S. twin families human gut (‘uhg’) and1 from acid
mind drainage (‘amd’) are shown. Two reference genome sets, ‘HGS’, ‘AMD’, were used for human gut samples (‘hg’, ‘jhg’, ‘uhg’) and the acid mine drainage sample
(‘amd’), respectively.
doi:10.1371/journal.pone.0027992.t002

GRAMMy Based on Shotgun Metagenomic Reads
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However, we had some improvements over their results. They

used a smaller (195) reference genome set and did not consider the

genome size bias and the ambiguous hits. Consequently, their

result might have missed some of the top frequent species and

misplaced some species into the top rankings. In fact, the Bacteroides

species, with genome lengths ranging from 5 Mbp to 8 Mbp, well

above the median average genome lengths of human gut samples,

are constantly ranked higher in their ranking. In our results,

however, this bias is corrected, and the rankings are accordingly

lowered, with some of their top 20 ranked Bacteroides species

dropping out of the top 40.

Next, we used the GRA estimates for frequent species as the

basis for hierarchically clustering all the human gut samples, as

shown in Figure 4. It can be seen that most of the frequent species

belong to Firmicutes, Bacteroides and Actinobacteria (see column color-

coding). We also see that the unweaned infants (ƒ6 months) are

all grouped closely together (see row color-coding), possibly

indicating their distinct gut microbial communities in comparison

to that for the weaned infant and adult samples. This phenomenon

was noticed in the original paper [30], and our results further

strengthened their claim by incorporating data from more human

gut metagenomics studies. A close look at the top 20 most

abundant strains revealed that the unweaned infants’ community

profiles were dominated by only a few strains from Actinobacteria.

The lack of diversity of infant gastrointestinal tract has also been

reported in other studies, for example, see Vaishampayan et al. [31].

The pattern might be related to the microbial colonization process

of infant gastrointestinal tract; however, no clear explanation for

this interesting phenomenon is available to date.

On the other hand, there is no clear-cut evidence showing that

samples from the same dataset or Body Mass Index (BMI) category

are grouped together, even though there is such a trend. Note that

the clustering results depend on the criterion of identifying

frequent species. These species were chosen as a trade-off between

the number of frequent species required for resolution power and

the number that would risk including too many unreliable

estimates from less abundant species. The parameters we had

chosen were based on Qin et al. [18]. We did the same analysis with

a different identity rate cut-off (75%) for BLAT hits and two

different minimum relative abundance thresholds (0.01% and

0.1%) for frequent species selection. Similar results were obtained.

They are shown in Figures S6.

The acid mine drainage data set
In samples from other environments where reference genomes are

not well characterized, such as soil, ocean and some extreme

environments, assemblages like contigs and draft genomes from the

sample itself can be used in addition to available known genomes.

Acid mine drainage sites are extreme environments where only a few

species of specially adapted microbes can survive. We downloaded

the raw read set (labeled ‘amd’), which contains 103,462 Sanger

shotgun reads (,750 bp) from one environmental sample of a

biofilm [3]. The genome sequences of coexisting species were

partially assembled using the metagenomic reads, among which are

two dominant ones: Ferroplasma sp. Type II and Leptospirillum sp. Group

II 5-way CG. The genome assemblages are in the draft state, but we

roughly know their genome sizes [3]. To study the community

structure, we constructed an acid mine drainage reference genome

set (‘AMD’) using the two draft genomes and other currently

available bacterial genomes of acid mine habitats (Table S1B). We

mapped the read set ‘amd’ to this reference genome set and

subsequently labeled the result ‘amd_AMD’.

Out of the reads mapped to the references, only a slight portion

of them (,2%) had multiple hits (Table 2). We then estimated the

GRA for the acid mine drainage community using GRAMMy.

Figure 5 shows the relative abundance of the six strains we

included in the ‘AMD’ reference. It confirms that the community

is dominated by the two draft genomes (98% in total relative

abundance) with only marginal fraction of the other acid mine

strains. The dominance of the two strains is consistent with the

results from the genomic study in the original work, even though

their fluorescence in-situ hybridization (FISH) result only reveals

the dominance of Leptospirillum sp. Group II species [3].

Discussion

We have developed the GRAMMy framework for estimating

genome relative abundance with shotgun metagenomic reads. It

has three unique features. First, it is unique in providing a rigorous

probabilistic framework for estimating Genome Relative Abun-

dance (GRA). The estimation can be easily extended to higher

taxonomic levels by simply adding up the relative abundance of

genomes affiliated with the specific higher-level taxon while

maintaining the accuracy, since the estimated GRA is already

properly normalized and corrected for genome size bias.

Figure 3. Frequent species for human gut metagenomes. The 99 species occurring in at least 50% of the 33 human gut samples with a
minimum relative abundance of 0.05% were selected. ‘gut_HGS_90’ indicates that the human gut (‘gut’) read sets were mapped to the reference
genome set (‘HGS’) with an identity rate cut-off at 90% (‘90’).
doi:10.1371/journal.pone.0027992.g003
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Second, GRAMMy provides users with a wide choice of mapping

and alignment tools. Its ability to use the results from linear time

NGS mapping tools helps to reduce the computation burden for

analyzing current massive metagenomic read sets. The GRAMMy

program currently supports tabular BLAST formats, however, the

mapping results from other popular mapping tools, such as MAQ,

Bowtie and PerM [32,33,34], can be easily adapted to the

GRAMMy framework. The algorithm is also linear in time and

space with the input data size and the current implementation is

much faster than MEGAN and GAAS in handling large read sets,

processing one million of reads in seconds (see Figure 6, the BLAT

mapping time is excluded for all compared tools). In addition,

GRAMMy is memory efficient and we have not encountered

problems in processing read number in the order of millions with

hundreds of microbial genomes with our 12GB nodes. However, if

memory bottleneck is reached, we can always divides the reads into

sub-samples and use GRAMMy in a bootstrap fashion, because a

certain number of reads can already provide substantial amount of

abundance information as indicated by our simulations.

Third, the method is especially suitable for short read datasets

due to its better handling of read assignment ambiguities. In

typical cases of a short read set, there are 10% to 40% of reads

having assignment ambiguities [14]. The source of assignment

ambiguity can be sequencing errors, genetic variations, horizontal

Figure 4. Heatmap biclustering of human gut metagenomes. ‘gut_HGS_90’ indicates that the human gut (‘gut’) read sets were mapped to
the reference genome set (‘HGS’) with an identity rate cut-off at 90% (‘90’). The bottom labels indicate human gut samples. The top right legend
shows the color-coding for columns indicating the sample age category and dataset origin. The bottom right legend shows color-coding for rows
indicating the top 4 most abundant phyla in human gut. The relative abundance for each sample is normalized by a rank transformation.
doi:10.1371/journal.pone.0027992.g004
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gene transfers or closely related genomes. By taking into account

the information from the ambiguously assigned part of the read

set, our study showed that we can improve the genome abundance

estimation for metagenomic data.

In applying the GRAMMy framework to the real metagenomic

datasets, we used two different identity rate cut-offs: 75% and

90%. While the results from 90% were shown, we also kept the

75% results in the supplementary files. Lowering the thresholds

will certainly increase the mapped rate as well as the ambiguity

rate, as shown in Table S2. However, in our analysis of human gut

metagenomes, the average genome size estimates and abundance

estimates were not significantly changed by using different cut-offs,

as shown in Tables S3 and S4. Still, in other applications,

researchers have to trade off between ambiguity rate and mapped

rate to obtain reasonable GRA estimates for their data.

There is also the practical question of how many genomes to be

included as reference. This, however, is always the choice of users.

As long as the read-to-genome associations found by mapping

tools are reliable and the coverage rate is high (as in our

simulations), GRAMMy can reliably estimate low abundance

levels and the concern of over-fitting can be alleviated. In real

data, the estimation accuracy of the GRA of the low-abundance

genomes depends on the number of reads mapped to each genome

and the reliability of mappings. The estimated variance of the

GRAs can give some ideas about the accuracy of the estimates.

In summary, with the experimental side of shotgun metage-

nomics accelerating its pace, the GRAMMy method we proposed

has the potential to produce more accurate taxonomic abundance

estimations for downstream computational analyses.

Materials and Methods

A finite mixture model
We developed a finite mixture model for the GRAMMy

framework. Following Angly et al. we used genome relative

abundance (GRA) as the relative abundance measure of mostly

unicellular microbial organisms [15]. We describe the sampling

and sequencing procedure as follows: First, randomly choose a

genome gj with probability pj proportional to ajlj , where aj is the

abundance and lj is the genome length. Second, randomly

generate a read ri from it. Without loss of generality, we further

assume that for the given genome gj we can reasonably

approximate the generation of shotgun reads by some component

distribution fgj
such that the probability of generating a read ri

from gj is fgj
(ri). With a reasonable assumption of independence

between the two sampling steps, the whole procedure is

probabilistically equivalent to sampling from a mixture distribu-

tion M : M~
Pm
j~1

pj fgj
, with the mixing parameters denoted by

p~(p1,p2, . . . ,pm),
Pm
j~1

pj~1 and the component distributions

denoted by f ~(fg1
,fg2

, . . . ,fgm
), where m is the number of

genomes. Subsequently, each read set, denoted by
R~(r1,r2, . . . ,rn), can be regarded as a realized independent,
identically distributed (iid) sample of size n from the mixture M.
The relative abundance of known genomes is exactly a
transformation of the mixing parameters p, which can be
estimated based on the read set R. A schematic view of the finite

mixture model is shown in Figure 1. With the component

distributions properly set up, we can find the maximum likelihood

estimate (MLE) of the mixing parameters.

In many studies, our knowledge of the genomes present in the

community is limited. Under these circumstances, we can define

the mixture with the first m{1 components for known genomes

and the last m-th component for the collective of unknown

genomes. Note that for the m{1 known components, we suppose

that their genome sequences G~(g1,g2,:::,gm{1) and genome

sizes L~(l1,l2, . . . ,lm{1) are known. Therefore, the GRA for

known genomes a~(a1,a2, . . . ,am{1) is the normalized abun-

dance, where the relative abundance for the j-th known genome is

Figure 5. GRAMMy estimates of GRAs for the acid mine drainage data. Estimated relative abundance for each strain is shown as a
percentage. The first two strains dominate the sample.
doi:10.1371/journal.pone.0027992.g005
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aj~
# j-th genome

# known genomes
, where

Pm{1

j~1

aj~1. In the biological

setting, we want to estimate vector a, which is a measure of

organism relative abundance. In the transformed mixture

problem, a is related to the mixing parameters p by:

aj~
pj

lj
Pm{1

k~1

pk

lk

ð1Þ

or the inverse:

pj~(1{pm)
ajljPm{1

k~1

aklk

, ð2Þ

for j[f1,2,:::,m{1g. The number of sampled reads is both

proportional to the genome relative abundance and the length.

Because the two factors are confounded, the missing knowledge of

the genome length lj prohibits the estimation of aj from the data.

Since the effective genome length lm for the unknown genomes is

not available, we cannot estimate the relative abundance of the

unknown component. However, the relative abundance of known

genomes can still be estimated using our procedures.

Estimation of GRA using Expectation Maximization (EM)
algorithm

To estimate the mixing parameters, we adopted the EM

algorithm to calculate the maximum likelihood estimate (MLE). In

the EM framework, we assume a ‘missing’ data matrix Z, in which

each entry zij is a random variable indicating whether ri is from gj

or not. Then we can solve for the parameters by iteratively

estimating p and Z using Algorithm 1 (see supporting Methods).

Note that a variable with superscript (t) stands for its value at the t-
th iteration, e.g., p(t) is the estimate of p at the t-th step. The EM at

the t-th iteration is:

N E-step

Assuming p(t) known, Z(t) can be updated by the corresponding

posterior probabilities:

z
(t)
ij ~

p(rijzij~1; G)p(t)
jPm

k~1

p(rijzik~1; G)p(t)
k

: ð3Þ

Figure 6. Running time comparison. GRAMMy is the fastest in all cases as compared to MEGAN and GAAS in processing time. The BLAT mapping
time is excluded for all compared tools.
doi:10.1371/journal.pone.0027992.g006
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N M-step

Assuming Z(t) known, the new mixing parameters p(tz1) are

updated by:

p(tz1)
j ~

Pn
i~1

zij
(t)

n
: ð4Þ

When the MLE of p is found, using Equation (1), the MLE of a
can be calculated, thereby solving the original problem.

The space complexity of the EM algorithm is O(c1n) and the

time complexity of the EM algorithm is O(c1c2n), where c1 the

average number of associated genomes for one read and c2 is the

time cost related to the convergence criteria for EM. Since c1 and

c2 are both constants not related to n, the algorithm is linear in

space and time complexity with the read number n. Further, the

concavity of the log-likelihood function can be shown and the EM

algorithm is guaranteed to converge to global maximum (see Text

S1).

Read probability approximations
The probability p(rijzij~1; G) is assessed based on fgj

. Ideally,

it is the probability that ri is generated when read being uniformly

sampled from genome gj . Let sij be the number of copies of read ri

in gj . Then the probability is approximated by:

p(rijzij~1; G)&
sij

lj
ð5Þ

However, due to sequencing errors and natural genetic variations,

the sij ’s are not readily observable. When the mapping or

alignment results from BLAST, BLAT, or other mapping tools are

available, the number of high quality hits of ri on gj can effectively

be used as sij ’s. To keep only these reliable and statistically

significant hits, raw hits are filtered by E-value, alignment length

and identity rate. We refer to the finite mixture model with the

read probability from mapping and alignment results as ‘map’ in

the remainder of the paper.

An alternative way to assess the read probabilities is by using k-

mer composition. For the j-th genome, we calculate the fraction of

a k-word w by pwj~
# of w in gj

lj
, the normalized frequency of the

word w in genome gj . For a read ri, we define pseudo-likelihood

for ri by:

p(rijzij~1; G)~ P
w[Wi

pwj , ð6Þ

where Wi is the set of words formed by sliding windows of size k

along ri. This probabilistic assignment captures the overall

similarity between reads and genomes, an idea adopted in other

composition-based studies such as in Sandberg et al. [35]. It is

especially useful when a large number of reads do not have reliable

hits with reference genomes. We will refer to the finite mixture

model with the read probability from the multinomial k-mer

composition as ‘k-mer’ in the remainder of the paper.

Standard errors for GRA estimates
We also derived the asymptotic covariance matrix for the

mixing parameters p using the asymptotic theory for MLE

estimates. Because there are m{1 independent parameters in p,

we can choose them as (p1,p2,:::,pm{1) and denote by bpp. Further,

let bpp� and a� be the MLE estimates for bpp and its corresponding

GRA, respectively. Then, the asymptotic standard error for a�j is

approximately:

SE(a�j )~(Cov(a�))jj&((I{1
o (ajR,G))jj)

1
2jbpp~bpp� ð7Þ

for j[f1,2,:::,m{1g, where Io is the observed information matrix.

If only a small number (as compared to number of parameters)

of reads are mapped, the conditions for the asymptotic to hold

cannot be satisfied. We can alternatively use the bootstrap

covariance estimator for the standard error of MLE:

SE(a�j )~(Cov(a�))jj&
1

B{1

XB

b~1

(a�(b){a�)(a�(b){a�)T ð8Þ

for j[f1,2,:::,m{1g, where a�~ 1
B

PB
b~1

a(b)
� is the bootstrap mean

estimator.

Numerical error measures
We use the following measures to evaluate the accuracy of the

GRA estimate. Let the true GRA be t~(t1,t2,:::,tm) and its

estimate a~(a1,a2,:::,am). The first measure is the commonly

used root mean square version of relative error

RRMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m{1

Pm{1

j~1

jaj{tj j
tj

� �2
s

[36]. We also included three

other error measures: AVGRE~ 1
m{1

Pm{1

j~1

jaj{tj j
tj

(the average

relative error), MAXRE~maxj
jaj{tj j

tj

� �
(the maximum relative

error), and DTV~ 1
2

Pm{1

j~1

jaj{tj j (the Total Variation Distance [37]),

which are all commonly used to evaluate the accuracy of an

estimate.

Real read sets and reference genome sets
In preparing the real read sets, we downloaded the FAMeS data

from JGI (http://FAMeS.jgi-psf.org), the ‘hg’ data from TraceDB

(ftp://ftp.ncbi.nih.gov/pub/TraceDB/, NCBI project id: 16729),

the ‘uhg’ data from Sequence Read Archive (http://www.ncbi.

nlm.nih.gov/Traces/sra/, NCBI project id: 32089), the ‘jhg’ data

from BGI (http://gutmeta.genomics.org.cn/) [30] and the ‘amd’

data from TraceDB (NCBI project id: 13696).

In preparing the reference genome sets, we downloaded currently

available complete and draft bacteria genomes from the NCBI

Refseq (http://ftp.ncbi.nih.gov/refseq), MetaHit (http://www.meta-

hit.eu/), HMCJ (http://metagenome.jp), WUSTL Gordon Lab

(http://genome.wustl.edu/) and JGI (http://genome.jgi-psf.org/).

We manually curated genomes to remove redundancy and organized

them into a NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/

Taxonomy) database. We used the genome information available

from IMG/M (http://img.jgi.doe.gov), IMG/HMP (http://www.

hmpdacc-resources.org/cgi-bin/img_hmp) and GOLD (http://

www.genomesonline.org) to group them by habitats [38,39]. Finally,

we obtained 388 human gastrointestinal tract genomes for a human

gut reference genome set (‘HGS’).

Read filtering and assignment procedures
In the ‘map’ read probability backend, we used BLAT to map

reads to reference genomes. We prefer BLAT to BLAST, as BLAT

is tens of times faster in handling low-sensitivity similarity search

for massive number of sequences than BLAST. Since we only kept

alignment results with identity rate greater than 90%, the BLAT

GRAMMy Based on Shotgun Metagenomic Reads
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result should not differ much from what if BLAST was used. For

the human gut and simulated data, we used similar filtering

methods as by Turnbaugh et al. [17,40] (E-value #0.0001, aligned

length more than 75% of its RL and identity $90%). In the ‘k-

mer’ read-probability backend, we used k-mer length k = 6. For

GAAS and MEGAN, we used the same mapping results from

BLAT, as a common starting point. We used GAAS’s default

filtering options (E-value#0.0001, aligned length more than 80%

of its RL, and identity $80%), as well as MEGAN’s default options

(min-score = 35 for RL equal to 100 bp and min-score = 50 for RL

equal to 400 bp; top percent = 5%, min support = 2), for

comparisons.

In evaluating the ribotype and protein marker based method,

we used the E.coli 16S rRNA rrsE and ribosome protein rpoB genes

to retrieve homolog sequences from the simulated reads, which

were then filtered by options (E-valueƒ0.0001, aligned length

more than 75% of its RL and identity §90%), according to [28].

Our validations have shown that variations of these parameters

within a reasonable range had little effect on the results.

Higher level taxonomic statistics
Many downstream analyses can be carried out based on

GRAMMy’s estimates. For example, the average genome length �ll
is readily obtainable:

�ll~
1

m{1

Xm{1

j~1

ajlj ð9Þ

Subsequently, we can test the statistical significance of the median

average genome length difference between two sample groups by

Wilcoxon test (wilcox.test in R).

Since genome size bias has already been corrected, we can use

GRAMMy estimates to calculate the relative abundance of a

higher-level taxon by simple addition. For this purpose, we used

the NCBI Taxonomy, which has the taxonomic assignments for all

reference genomes we used here. To illustrate, for a specific

taxonomic level h, the relative abundance of a i-th specific taxon

T
(h)
i is:

a
T

(h)
i

~
X

j[fj:gj[T
(h)
i
g

aj ð10Þ

and

SE(a
T

(h)
i

)~

P
j[fj:gj[T

(h)
i
g

SE(aj)
2

#fj : gj [T
(h)
i g

0BBB@
1CCCA

1
2

, ð11Þ

where h can be any one of the seven hierarchical levels in the

taxonomy, from species to kingdom.

Hierarchical biclustering
It is possible to use GRAMMy estimates for clustering analysis

and statistical hypothesis testing. We clustered the samples based on

the pairwise similarities (correlations) of their relative abundance

distribution. Because of the long-tailed shape of the distribution, the

signal-to-noise ratio is low for these less abundant genomes.

Therefore, using the thresholds .05% for the minimum abundance

and 50% for the minimum occurrence [18], we selected the

estimates for these more abundant genomes (which are more

reliable for clustering). We used rank transformation, which

normalizes GRAs by taking their ranks and applying score

transformation and R function heatmap for hierarchical clustering.

Supporting Information

Figure S1 The convergence of GRAMMy. The estimation

errors, as measured by different numerical methods: (A) Relative

Root Mean Square Error (RRMSE) in percentage versus Read

Number (RN) for different read lengths (RL). (B) Relative Root

Mean Square Error (RRMSE), Average Relative Error (AVGRE),

Maximum Relative Error (MAXRE), and Distance of Total

Variation (DTV) versus Read Number for read length equal

100 bp. GRAMMy (‘map’) was used.

(TIFF)

Figure S2 Simulated read set benchmarks. Effects of

different perturbations on GRAMMy’s estimation: (A) Effects of

sequencing errors: results from ‘with sequencing error’ and

‘without sequencing error’ read sets are labeled as ‘w. Seq Err’

and ‘wo. Seq Err’, respectively. (B) Effects of unknown genomes:

results from estimation ‘with unknown genomes’ and ‘without

unknown genomes’ read sets are labeled as ‘w. Unknowns’ and

‘wo. Unknowns’, respectively. (C) Effects of different genome

relative abundance distributions: results from more concentrated

abundance distribution and less concentrated read sets are labeled

as ‘steep’ and ‘flat’, respectively. Relative Root Mean Square Error

(RRMSE) as a percentage is plotted against Read Number.

GRAMMy (‘map’) was used.

(TIFF)

Figure S3 Performance comparison of different meth-
ods. The performance comparisons for different estimation

methods: (A) MEGAN-based (‘MEGAN’), GAAS (‘GAAS’) and

GRAMMy (‘map’ and ‘k-mer’) on simulated read sets with

sequencing errors at read length 100 bp and 400 bp. (B) 16S-

based (‘16S’), BLAT hit counting (‘BLAT’), rpoB-based and

GRAMMy (‘map’). Relative Root Mean Square Error (RRMSE)

as a percentage is plotted against Read Number (RN).

(TIFF)

Figure S4 Estimation errors at different taxonomic
levels. Average Relative Error (AVGRE) as a percentage is

plotted against taxonomic level. The errors gradually decrease

from strains to kingdom taxonomic levels.

(TIFF)

Figure S5 Frequent species for the human gut meta-
genomes. The 99 species occurring in at least 50% of the 33

human gut samples with a minimum relative abundance of 0.05%

were selected. ‘gut_HGS_75’ indicates that the human gut (‘gut’)

read sets were mapped to the reference genome set (‘HGS’) with

an identity rate cut-off at 75% (‘75’).

(TIFF)

Figure S6 Heatmap biclustering of the human gut
metagenomes. ‘gut_HGS_90’ indicates that the human gut

(‘gut’) read sets were mapped to the reference genome set (‘HGS’)

with an identity rate cut-off at 90% (‘90’), while ‘gut_HGS_75’

indicates cut-off at 75%(‘75’). The bottom labels indicate human

gut samples. The top right legend shows the color-coding for

columns indicating the sample age category and dataset origin.

The bottom right legend shows color-coding for rows indicating

the top 4 most abundant phyla in human gut. (A) Heatmap

clustering of the ‘gut’ samples, with strains of abundance .0.05%

in at least 50% of samples selected at 75% identity rate cut-off. (B)

GRAMMy Based on Shotgun Metagenomic Reads

PLoS ONE | www.plosone.org 11 December 2011 | Volume 6 | Issue 12 | e27992



Heatmap clustering of the ‘gut’ samples, with strains of abundance

.0.01% in at least 50% of samples selected at 90% identity rate

cut-off. (C) Heatmap clustering of the ‘gut’ samples, with strains of

abundance .0.1% in at least 50% of samples selected at 90%

identity rate cut-off.

(TIFF)

Table S1 Reference genome sets. Columns are NCBI taxon

ID (‘NCBI Taxon ID’), organism name (‘Name’), genome project

status (‘Status’: ‘D’ for draft and ‘F’ for finished), and data source

of genome sequences (‘Source’). (A) ‘HGS’ reference genome set.

(B) ‘AMD’ reference genome set.

(XLS)

Table S2 Mapping rate statistics. Columns are read set

name (‘Set Name’), total number of reads (‘Total Reads’), number of

mapped reads (‘Mapped Reads’), proportion of mapped reads

(‘Mapped rate’), number of ambiguous reads(‘Ambiguous Reads’),

proportion of ambiguous reads (‘Ambiguous rate’). ‘xxx_yyy_zzz’

abbreviation is as specified in Methods, where ‘xxx’ is the read set,

‘yyy’ is the reference genome set and ‘zzz’ is the cut-off for identity

rate. (A) ‘hg_HGS_90’. (B) ‘jhg_HGS_90’. (C) ‘jhg_HGS_90’. (D)

‘amd_AMD_90’. (E) ‘hg_HGS_75’. (F) ‘jhg_HGS_75’. (G)

‘uhg_HGS_75’. (H) ‘amd_AMD_75’. (I) Median (‘Median’),

minimum (‘Min’) and maximum (‘Max’) summary of mapped

ratios in panels (A–H). (J) Median (‘Median’), minimum (‘Min’) and

maximum (‘Max’) summary of ambiguous ratios in panels (A–H).

(XLS)

Table S3 Average genome length. Average genome length

estimates from GRAMMy. ‘xxx_yyy_zzz’ abbreviation is as

specified in Methods, where ‘xxx’ is the read set, ‘yyy’ is the

reference genome set and ‘zzz’ is the cut-off for identity rate.

Median (‘Median’), minimum (‘Min’) and maximum (‘Max’)

summary of GRAMMy estimated average genome length.

(XLS)

Table S4 GRAMMy estimates of GRAs for the human
gut samples. Each row represents a data set and each column

represents a species. The excel file name is abbreviated as

‘xxx_yyy_zzz’ , where ‘xxx’ is the read set, ‘yyy’ is the reference

genome set, and ‘zzz’ is the cut-off for identity rate. A) ‘hg_HGS_90’.

(B) ‘jhg_HGS_90’. (C) ‘jhg_HGS_90’. (D) ‘hg_HGS_75’. (E)

‘jhg_HGS_75’. (F) ‘uhg_HGS_75’.

(XLS)

Text S1 Simulation details and technical derivations.
(PDF)
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