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Abstract

The inflammatory response in the injured spinal cord, an immune privileged site, has been mainly associated with the poor
prognosis. However, recent data demonstrated that, in fact, some leukocytes, namely monocytes, are pivotal for repair due
to their alternative anti-inflammatory phenotype. Given the pro-inflammatory milieu within the traumatized spinal cord,
known to skew monocytes towards a classical phenotype, a pertinent question is how parenchymal-invading monocytes
acquire resolving properties essential for healing, under such unfavorable conditions. In light of the spatial association
between resolving (interleukin (IL)-10 producing) monocytes and the glial scar matrix chondroitin sulfate proteoglycan
(CSPG), in this study we examined the mutual relationship between these two components. By inhibiting the de novo
production of CSPG following spinal cord injury, we demonstrated that this extracellular matrix, mainly known for its ability
to inhibit axonal growth, serves as a critical template skewing the entering monocytes towards the resolving phenotype. In
vitro cell culture studies demonstrated that this matrix alone is sufficient to induce such monocyte polarization. Reciprocal
conditional ablation of the monocyte-derived macrophages concentrated at the lesion margins, using diphtheria toxin,
revealed that these cells have scar matrix-resolving properties. Replenishment of monocytic cell populations to the ablated
mice demonstrated that this extracellular remodeling ability of the infiltrating monocytes requires their expression of the
matrix-degrading enzyme, matrix metalloproteinase 13 (MMP-13), a property that was found here to be crucial for
functional recovery. Altogether, this study demonstrates that the glial scar-matrix, a known obstacle to regeneration, is a
critical component skewing the encountering monocytes towards a resolving phenotype. In an apparent feedback loop,
monocytes were found to regulate scar resolution. This cross-regulation between the glial scar and monocytes primes the
resolution of this interim phase of spinal cord repair, thereby providing a fundamental platform for the dynamic healing
response.
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Introduction

Every year, spinal cord injury (SCI), a debilitating condition

with a limited prognosis for recovery, paralyzes around 130,000

people. The poor recovery of the central nervous system (CNS), a

delicate tissue that cannot tolerate toxic conditions, is generally

attributed to the hostile local milieu created at the trauma site.

Two major barriers to repair that have been identified include the

local inflammatory response, acknowledged for its neurotoxic

potential, and the creation of the glial scar, known to impair

regeneration [1,2,3]. The axonal growth inhibitory effects of the

scar matrix were supported by numerous in vitro studies

demonstrating that such molecules cause neurite retraction and

growth cone collapse [4], along with their well-defined develop-

mental role in formation of boundaries. Accordingly, research

efforts and clinical manipulations were directed at attempts to

eliminate and reorganize the chemical components of the glial scar

[5,6] and to suppress the ensuing immune response [7]. Recent

studies, however, indicated that the scar and some immune cell

populations each have independent, though transient, positive

roles. The glial scar was shown to provide an ‘SOS’ response, a

distress signal initiated by the tissue in response to the trauma that

demarcates the lesion site and restores the isolation of the CNS

from the circulation [8,9]. Likewise, leukocytes were demonstrated

to promote removal of tissue debris, secrete neurotrophic factors,

and support axonal regeneration [10,11,12,13,14,15].

Recently, a pivotal role for recovery was attributed to

monocytes that infiltrate the damaged CNS due to their non-

classical anti-inflammatory/resolving properties [11,14]. These

cells were shown to produce the anti-inflammatory cytokine,

interleukin 10 (IL-10) and to terminate the local microglial

response. Based on their inflammation-resolving properties, these

monocyte-derived cells correspond to the previously identified

macrophage subset with immunoregulatory properties, the

resolving/regulatory macrophages (rMW), observed in wound

healing [16,17], or myeloid derived suppressor cells (MDSC),

which occur in cancer. Comparable suppressive monocytes were

identified also in other pathologies, including myocardial infarc-

tion [18,19]. Advances in the field of myeloid cells, revealing

macrophage heterogeneity and monocyte plasticity, brought this
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often neglected population back into the spotlight. Until now, the

main factor determining the phenotype of the monocytes was

thought to be the surrounding cytokine milieu [16,17,20]. While a

pro-inflammatory milieu, enriched in either IFN-c or TNF-a,

skews monocytes towards a classical pro-inflammatory (M1)

phenotype, a Th2/anti-inflammatory environment, composed of

IL-4 and IL-13, or IL-10 and TGFb, generates alternatively-

activated (M2) or rMW, endowed with healing properties [11,14].

Given the pro-inflammatory environment at the site of trauma

[21], in the current study, we aimed to identify the factors that

maintain the healing properties of the infiltrating monocytes under

such pro-inflammatory conditions. In light of the immunomodu-

latory effects recently attributed to the glial scar matrix

component, chondroitin sulfate proteoglycan (CSPG), in microg-

lial education [9], together with the spatial association between the

infiltrating monocytes and this glial scar component [9], we

investigated here the mutual regulation between these two key

processes in the course of the response to injury. We show that

CSPG is an essential platform, skewing the infiltrating monocytes

towards their resolving anti-inflammatory phenotype. In an

apparent reciprocal loop, the monocyte-derived cells acquire

matrix-degrading properties enabling their resolution of the glial

scar; this function was found to be critically dependent on their

expression of the matrix metalloproteinase 13 (MMP-13), thereby

creating a more permissive environment for axonal regeneration.

This scar remodeling function of the infiltrating monocyte-derived

cells reveals a novel and crucial property of these essential cells,

which was found to be fundamental to recovery, by resolving not

only inflammation but scar deposition, as well.

Results

Resolving macrophages are embedded in a
pro-inflammatory milieu and are confined to the region
of glial scar deposition

Since the cytokine milieu is a major determinant of the

differentiation fate of monocytes [17,20,22], we tested the cytokine

profile that these cells encounter when reaching the injured spinal

cord parenchyma. To this end, we examined the cytokine profile

at the lesion site during the first week post injury. Pooled spinal

cord tissues, 4 mm in length that included the lesion site, margins

and surrounding undamaged parenchyma, were homogenized and

freeze-thawed to extract the proteins. The extracts were tested for

production of cytokines using a Multiplex system that simulta-

neously analyzes an array of cytokines in the same sample.

Multiplex analysis of M1/M2-skewing cytokines revealed that

following trauma to the CNS, the local environment at the lesion

site becomes biased towards a pro-inflammatory milieu, dominat-

ed by the most characteristic cytokine that determines the M1

skewing, TNF-a (Fig. 1A). The same tendency was observed at all

tested time points, and for all repetitions, but the fold change

varied. Immunostaining of spinal cord sections for IL-10, a

predominant M2- skewing cytokine, revealed its basal expression

by neurons of the healthy tissue, its downregulation following

injury, and its specific induction at later time points by

macrophages surrounding the lesion site (Figure S1). The

constitutive expression of IL-10 by neurons, and the loss of this

expression following injury, explains the small post injury

reduction seen by the Luminex analysis, which was reproduced

using an ELISA specific to IL-10.

Since these results suggest that the cytokine milieu was unlikely

to account for the differentiation of the infiltrating monocytes to

rMW, we hypothesized that other predominant factor(s) are likely

to play a fundamental role in this process. Matrix molecules

influence immune cell behavior during autoimmune disease [23],

and robust alterations in the extracellular matrix are observed in

the traumatized CNS [24]; thus, in light of the recently identified

immunomodulatory role of CSPG, the predominant extracellular

component of the glial scar matrix that endows microglia/

macrophages with neuroprotective properties characterized by

their production of insulin like growth factor 1 (IGF-1) [9], we

assessed the contribution of this matrix to monocyte skewing

towards their essential resolving properties.

Although the monocyte-derived macrophages and activated

resident microglia are functionally distinct, there is currently no

differential morphological marker that can distinguish between

them. Thus, in the present study, we used a well-established bone

marrow (BM) chimera model [25], in which the BM of irradiated

(using head shielding) host mice, is replaced in adulthood by

genetically labeled BM expressing green fluorescent protein (GFP)

under the control of the myeloid promoter, Cx3cr1 [26], enabling

the clear distinction of infiltrating monocyte-derived macrophages

(GFP+) from resident microglia (non-fluorescent), as reported

previously [14,27]. The mice were analyzed for their chimerism 8

weeks following transplantation, and were subjected to spinal cord

injury. Immunohistochemical analysis of the injured spinal cord

parenchyma 7 days post injury revealed that the skewed

monocyte-derived cells (Cx3cr1GFP) that acquired a rMW pheno-

type (demonstrated by the high expression of the anti-inflamma-

tory cytokine, interleukin (IL)-10, the hallmark of this subset [17],

as previously shown [14], and as verified here Fig. 1B), were

found to concentrate at areas enriched with the glial scar-matrix

molecule, CSPG (Fig. 1C). As was previously demonstrated [14],

no resolving IL-10 producing monocyte-derived macrophages

accumulated in the epicenter of the lesion, despite the abundant

accumulation of other macrophages there; notably, this area is

devoid of scar tissue.

The glial scar matrix molecule, chondroitin sulfate
proteoglycan, determines the resolving phenotype of the
monocytes that encounter it

The spatial association between the glial scar matrix CSPG and

the infiltrating monocyte-derived cells, in light of the immuno-

modulating properties attributed to this scaffold [9], prompted us

to test whether this matrix is involved in the immune-skewing of

the infiltrating monocyte-derived cells towards their resolving,

anti-inflammatory phenotype. Using de-novo inhibition of CSPG

biosynthesis via the administration of the pharmacological

inhibitor xyloside, previously used in both in vitro and in vivo

studies [28], we have previously shown that CSPG is fundamental

for the repair following spinal cord injury, when restricted to the

acute phase post-injury [9]. In the same study, we suggested that

this matrix modulates the macrophages/microglia that encounter

it to attain non-cytotoxic neuroprotective properties, characterized

by reduced TNF-a and increased IGF-1. In our previous study we

noted that such treatment disrupted the spatial organization of the

monocyte-derived cells relative to the injury site; however, the

impact on the phenotype of these cells was not addressed. As we

found that the resolving monocyte-derived macrophages were

concentrated at the lesion margins in association with CSPG

deposition, we next tested whether the same in vivo strategy for

inhibition of CSPG biosynthesis would affect not only the location

of these cells but also their phenotype.

To that end, [Cx3cr1GFP/+.wt] BM chimeric mice, created

following irradiation and reconstitution with labeled BM, were

subjected to spinal cord injury 8 weeks post transplantation, and

were treated twice a day for 5 consecutive days with either PBS or

xyloside, starting immediately following the contusion (Fig. 2A).

Cross Talk between the Glial Scar and Monocytes
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In line with our previous report [9], such treatment with xyloside,

which led to a 50% reduction in CSPG deposition at the lesion

margins when analyzed immediately after the last xyloside

injection (Fig. 2B), resulted in monocyte infiltration into the

epicenter of the lesion at day 7 post injury, an area from which

they were excluded in the presence of CSPG (Fig. 2C). Notably,

the changes in the spatial compartmentalization of the infiltrating

GFP monocytes were not accompanied by any alteration in their

cell numbers (Student’s t-test; p = 0.365). Yet, this early inhibition of

CSPG production had a negative impact on their acquisition of an

Figure 1. Resolving macrophages are restricted to a region enriched with glial scar matrix. (A) Luminex analysis of the cytokine profile at
the injured spinal cord. The results are presented as the ratio of expression levels relative to non-injured animals. Pooled samples (n = 3) were
analyzed. The results are presented as change relative to the non-injured tissue. One representative experiment is shown out of two repetitions, each
conducted at three different time points during the first week post injury (d1,3,7). The same tendency was observed for each time point tested, and in
each repetition. The injury skews the local environment towards a pro-inflammatory milieu. (B) Spinal cord sections of injured [Cx3cr1GFP/+.wt] BM
chimeras, isolated at day 7 post injury, were co-stained for the infiltrating monocytes by GFP (green), and for the anti-inflammatory cytokine, IL-10
(red), or the glial scar matrix component, CSPG (CS-56; blue). (C) Injured spinal cord sections, isolated at day 7 post injury, co-stained to reveal the
glial scar (astrocytes appear in green, and CSPG matrix protein in blue) and IL-10 (red), showing that resolving macrophages (rMW) are restricted to
the CSPG-enriched area. Scale bar; 50 mm.
doi:10.1371/journal.pone.0027969.g001
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anti-inflammatory phenotype, manifested by reduced IL-10

expression at day 7 post injury, as quantified using the ImagePro

software on 2 mm2 antibody-labeled spinal cord sections that

included the lesion site, margins and surrounding parenchyma

(Fig. 2D, E). We next tested whether this reduction in IL-10

expression was associated with a suppression of the activated

microglial response, as previously described by us [14]. We found

that the reduction of the suppressive potency of the monocyte-

derived cells was accompanied by enhanced activation of the

resident microglia, as indicated by IB-4 immunoreactivity at day

14 post injury, and its evaluation by ImagePro, as above (Fig. 2F).

The fact that partial inhibition of CSPG had a dramatic effect on

the resolving phenotype of the infiltrating monocyte-derived cells

suggests that this matrix has a fundamental biological significance

in determining the fate of these cells. As the extracellular matrix

around the site is a complex branched structure, it is likely that

such partial inhibition has dramatic effect on the local organiza-

tion of the perineuronal network created around the lesion site

following injury. It is probable that the complex structure limits the

spread of the toxic material concentrated at the epicenter, and

prevents the infiltrating cells from coming into contact with this

milieu enriched with M1- skewing cytokines. In this manner, even

partial inhibition would breach this matrix capacity to serve as a

structure insulating the two compartments from each other.

Notably, the observed alterations following xyloside treatment

were not due to non-specific effects of the drug, as slightly delayed

administration of xyloside, starting at day 2 post injury (for 5

consecutive days), as was previously shown [9], did not lead to

increased microglial activation, nor did it affect the spatial

organization of the infiltrating monocytes. In addition, such

delayed administration did not affect IL-10 production by these

monocytes (Figure S2). As the levels of IL-10 immunoreactivity at

the site measured on day 7 post injury were not affected by the

delayed application of xyloside, the reduced activation of the

resident microglia, as indicated by IB-4 immunoreactivity at day

14 post injury, could not be attributed to the anti-inflammatory

nature of the infiltrating monocytes. We thus suspect that the

delayed inhibition has other effect(s) that result in such IB-4

regulation.

As the injured spinal cord is known to contain a large amount of

myelin debris, factors that were previously shown to have

modulatory M1/M2 effects following their engulfment by

macrophages [29,30], we next tested whether such myelin uptake

might be responsible for monocyte skewing towards their IL-10-

expressing phenotype. Phagocytosis by macrophages of degrada-

tion products of myelin was tested using Oil Red O (ORO)

staining, as previously described [10,31]. ORO staining of spinal

cord sections taken at day 7 post injury revealed equal distribution

of macrophages that engulfed myelin in the lesion epicenter and at

its margins (Figure S3). This uniform distribution of macrophage

uptake of myelin was not in spatial correlation with the resolving,

IL-10 producing phenotype of the macrophages, and thus was not

likely to participate in their skewing. To verify that the observed

effect seen following immediate xyloside treatment could not be

attributed to changes in myelin engulfment, we ORO stained

spinal cord sections isolated from either PBS or xyloside- treated

mice (day 7 post injury). Although significant reduction was

observed in IL-10 immunoreactivity following xyloside treatment,

no noteworthy differences were observed between the two groups

in the myelin engulfment by macrophages. This suggests that while

an M1/M2 modulating effect has been attributed to myelin

engulfment [29,30], the acquisition of the resolving phenotype by

the monocyte-derived cells at the injured spinal cord, character-

ized by the expression of the anti-inflammatory cytokine IL-10,

does not seem to be related to uptake of myelin.

To reveal the direct effect of CSPG on monocyte skewing, we

employed an in vitro assay using primary cultures of naı̈ve CD115+

monocytes seeded on CSPG or on an inert substrate, Poly-D-

lysine (PDL), as a basal reference. Flow cytometric analysis of the

cultured cells showed that these substrates induced the develop-

ment of two populations that differed in their morphology (based

on size and granularity) as well as in their IL-10 expression levels

(Fig. 2G). However, the CSPG cultures became enriched with the

population comprised of cells expressing higher levels of IL-10

(R2; Fig. 2G, H). Similarly, increased overall IL-10 expression

was observed in CSPG-cultured monocytes (Fig. 2I, J). Enhanced

expression of this anti-inflammatory cytokine was also observed in

the presence of IFN-c, a potent M1-skewing factor (Fig. 2K),

suggesting that the glial scar matrix plays a dominant role

determining the phenotype of the monocytes that encounter it,

even in a pro-inflammatory setting. Thus, our data demonstrate

that the glial scar matrix molecule, CSPG, is a critical

immunoregulatory scaffold, inducing the monocytes towards the

rMW subset, characterized by their production of the anti-

inflammatory cytokine, IL-10.

Infiltrating monocytes promote glial scar matrix
resolution via the production of matrix
metalloproteinase 13

The well recognized matrix degrading properties and tissue

remodeling of MW as part of peripheral wound healing [32], and

especially of the resolving monocyte-derived cells [18,19],

prompted us to examine whether the infiltrating monocytes are

not only affected by CSPG, but might in turn regulate the

resolution of this scar matrix molecule, which is known to be a

major obstacle for CNS regeneration in the chronic phase

[3,5,33].

To this end, we adopted an in vivo cell ablation strategy that

targets the monocyte-derived cells in close proximity to the glial

scar matrix. Approximately 50% of the monocytes infiltrating the

lesioned spinal cord were found to be CD11c+ at day 7 post injury

(Fig. 3A), and those CD11c+Cx3cr1GFP monocyte-derived cells

resided at the margins of the site in close association with CSPG

enriched areas (Fig. 3B). We therefore used a previously

employed [14] conditional in vivo cell ablation strategy targeting

the monocyte-derived cells in virtue of their CD11c promoter

activity [34]. Specifically, we generated [CD11c-DTR: Cx3cr1GFP/+

. wt] BM chimeras, using head protection during irradiation, as

previously described [14]; GFP expression in the transferred cells

allowed us to trace the infiltrating monocytes, and the Diphtheria

Toxin Receptor (DTR) transgene enabled us to specifically deplete

this cell population upon their upregulation of CD11c (Fig. 3C).

The chimeras were tested for their chimerism 8 weeks following

the BM transplantation, and then were immediately subjected to

spinal cord contusion, and treated with Diphtheria Toxin (DTx).

As previously reported, such treatment resulted in the specific

depletion of GFP+ cells, corresponding to the infiltrating

monocytes, without affecting their CNS counterparts, the resident

microglia (GFP2) (Fig. 3D). DTx-dependent depletion of

monocyte-derived cells in close proximity to scar deposition

resulted in a higher level of CSPG immunoreactivity, as evaluated

on day 14 post injury, the peak of CSPG accumulation, using

computerized ImagePro analysis of images of 2 mm2 spinal cord

sections (Fig. 3E,F). We restored the monocyte pool of DTx-

treated chimeras by intravenous injection of wt CD115+

monocytes (carrying the allotypic marker, CD45.1; injected on

d0 and d3 post injury) that did not harbor the CD11c-DTR

Cross Talk between the Glial Scar and Monocytes
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transgene, and whose descendants were therefore resistant to the

toxin treatment. The monocytes infiltrated the injured spinal cord

(Fig. 3G; as previously reported [14]), and were found to be

sufficient to restore the lost regulation of the glial scar matrix

deposition observed in the depleted mice (Fig. 3H,I). According-

ly, while DTx-treated chimeras showed massive accumulation of

CSPG around the lesion epicenter at day 14 post injury,

reconstitution of DTx-treated mice with monocytes resistant to

the depletion resulted in decreased accumulation of this scar

matrix component. These results demonstrate a novel aspect of the

resolving properties of the recruited monocytes associated with the

resolution/termination of the glial scar deposition.

Matrix degradation enzymes have been suggested to mediate

the tissue-remodeling properties of macrophages [32]. We next

asked whether this crucial matrix-resolving function of the

entering monocytes is mediated via the regulation of the matrix-

degrading enzymes, matrix metalloproteinases (MMPs). While the

majority of the matrix degrading enzymes tested showed increased

Figure 2. The glial scar component chondroitin sulfate proteoglycan determines the resolving/anti-inflammatory phenotype of the
encountering monocytes. (A) Schematic illustration showing the experimental design. Spinal cord-injured [Cx3cr1GFP/+.wt] BM chimeras were
subjected to spinal cord injury 8 weeks following BM transplantation. Immediately post injury, mice were treated with PBS or xyloside, an inhibitor of
CSPG production, twice a day for 5 consecutive days. (B) Quantification of CSPG immunoreactivity at the lesioned spinal cord following treatment
with xyloside, as assessed immediately after the last injection (Student’s t-test; ***p,0.001). (C) Labeling of spinal cord sections for detection of CSPG
(red) and GFP (green). Inhibition of CSPG synthesis disrupted the spatial compartmentalization of the infiltrating monocytes (GFP+), which are now
located at the epicenter of the lesion. (D) Representative pictures of IL-10-expressing cells (red) and their location relative to the lesion epicenter,
demarcated by GFAP expression (green), at day 7 post injury. Xyloside treatment abolished expression of this anti-inflammatory cytokine at the
margins. (E) Quantitative analysis of IL-10 immunoreactivity (left panel, Student’s t-test; **p = 0.004) and number of IL-10 expressing cells (right panel,
Student’s t-test; *p = 0.04), at day 7 post injury, in 2 mm2 isolated tissue sections, including lesion site, margin and surrounding parenchyma. (F)
Quantification of activated microglia/MW according to IB-4 immunoreactivity (Student’s t-test; **p = 0.007), as measured at day 14 post injury in 2 mm2

tissue sections, including lesion site, margin and surrounding parenchyma. (G–K) In vitro cultures of naı̈ve CD115+ monocytes seeded on poly-D-
lysine (PDL) or CSPG-coated flasks (3–4 cultures per group were analyzed in each experiment). The results presented are representative of several
independent experiments performed. (G, H) Flow cytometric analysis for intracellular expression of IL-10. Two populations that differed in their size
and granularity were identified (R1, R2), expressing differential levels of IL-10. CSPG seeded monocytes became enriched with the R2 population,
which expressed higher levels of IL-10 (Student’s t-test; *p = 0.025). (I, J) Cultures were harvested for analysis of Il10 gene expression by Real-Time PCR
(I; Student’s t-test; *p = 0.05), and the supernatants analyzed by ELISA for IL-10 protein expression (J; Student’s t-test; **p = 0.0021; following
replacement of media *p = 0.015). (K) Higher Il10 mRNA expression was observed in the CSPG coated dish even in the presence of IFN-c, indicating
that CSPG is a strong inducer of the resolving phenotype, even under pro-inflammatory/M1-skewing conditions. Scale bar; 50 mm. y-axis error bar
represents SEM.
doi:10.1371/journal.pone.0027969.g002
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levels following injury (Figure S4), only the matrix metallopro-

teinase (MMP)-13 was negatively affected as an outcome of the

depletion of the monocyte-derived cells by DTx, as evaluated at

day 5 post injury by RT-PCR of tissue spinal cord samples

(Fig. 4A). Immunostaining of spinal cord sections confirmed that

CD11c+ monocyte-derived MW that localized to the lesion

margins are a major source of MMP-13 (Fig. 4B–D). MMP-13

showed highly restricted expression around the lesion site. This

location at the margins of the injury site appears to be ideal for

mediating glial scar-matrix degradation.

We next tested if MMP-13 expression by the infiltrating

monocytes is essential for their scar remodeling capacity. To this

end, we took advantage of MMP-13 knockout (KO) mice [35]. We

first used [MMP-132/2.wt] BM chimeras, in which the host BM

is replaced with BM isolated from the knockout mice. In the

resulting chimeras, the hematopoietic lineage is MMP-13

deficient, while the CNS tissue is of host (wild-type) origin. These

mice were subjected to spinal cord injury 8 weeks post BM

transplantation. Comparative analysis for CSPG immunoreactiv-

ity in spinal cord sections 14 days post trauma revealed higher

Figure 3. Infiltrating monocytes resolve glial scar matrix accumulation. (A) Flow cytometry analysis of spinal cord tissues isolated from
spinal cord injured [Cx3cr1GFP/+.wt] BM chimeras at day 7 post trauma. The histograms were pre-gated according to the presented topography plot,
following gating on CD11b+ cells. GFP and CD11c expression are approximately 50% correlated. (B) Representative confocal micrograph of
longitudinal sections isolated at day 7 post injury from injured spinal cord of [Cx3cr1GFP/+.wt] BM chimeras, labeled for CS-56 (blue), GFP (green), and
CD11c (red). Lower panel: z-axis projection of a single cell. (C) Schematic illustration of the experimental design: [CD11c-DTR:Cx3cr1GFP/+.wt] BM
chimeras were subjected to SCI, 8 weeks post BM transplantation; half of them received DTx. (D) Flow cytometric analysis of cells from the lesion site
of DTx-treated and non-treated [CD11c-DTR: Cx3cr1GFP/+.wt] BM chimeras, demonstrating depletion of CD11c-expressing monocytes but not of their
resident counterparts, the microglia. The histograms were pre-gated according to the presented topographic plots. (E, F) Labeling of the spinal cord
tissues sections, isolated at day 14 post injury, with CS-56 (white). Quantitative analysis of CSPG immunoreactivity is presented. Depletion of
monocytes by DTx dramatically increased CSPG accumulation (Student’s t-test; ***p = 0.0001). (G–I) Spinal cord injured [CD11c-DTR:Cx3cr1GFP/+.wt]
BM chimeric mice were treated with DTx and were adoptively transferred with wt CD115+ monocytes (resistant to DTx treatment). Control groups
included chimeric animals without monocyte transfer, with and without DTx treatment. (G) Flow cytometric analysis of the spinal cord lesion site with
or without adoptive transfer of CD115+ monocytes (CD45.1+) following DTx treatment. (H,I) Spinal cord tissues sections, isolated at day 14 post injury,
labeled with CS-56 (CSPG; white), with and without reconstitution of wt monocytes is presented in H. Quantitative analysis of CSPG immunoreactivity
is presented in I. Depletion of monocytes dramatically increased CSPG accumulation, which was prevented by adoptive transfer of naı̈ve monocytes
(ANOVA; F2,10 = 5.46; p = 0.05). Scale bar: (B) 100 mm (bottom panel; 10 mm); (E,H) 50 mm. y-axis error bar represents SEM.
doi:10.1371/journal.pone.0027969.g003

Cross Talk between the Glial Scar and Monocytes
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CSPG accumulation in the MMP-13 KO chimeras (Fig. 4E,F).

To further attribute this functionality to MMP13 expression by

monocytes, we used the depletion-restoration strategy. DTx-

depleted [CD11c-DTR.wt] BM chimeras, were replenished with

CD115+ monocytes (via intravenous administration on d0 and d3

post injury), isolated from either wild-type mice, or from MMP-13

KO mice. Non-DTx treated chimeric mice served as a control.

The mice were tested for CSPG immunoreactivity 14 days post

injury. As reported above (Fig. 3H,I), monocyte depletion via

DTx treatment resulted in increased CSPG accumulation,

whereas reconstitution with wt monocytes led to a reduction in

CSPG levels relative to the non-reconstituted mice (Fig. 4G,H).

Figure 4. Infiltrating monocytes resolve glial scar matrix accumulation via the production of matrix metalloproteinase 13. (A)
Analysis of expression of various Mmp genes in excised spinal cord tissues of [CD11c-DTR:Cx3cr1GFP/+.wt] BM chimeras, with or without DTx
treatment. (B–D) Immunohistochemical labeling of the injured spinal cord sections of [Cx3cr1GFP/+.wt] BM chimeric mice for MMP-13, together with
IB-4 (B), or GFP and CD11c (C; D). (E,F) [wt.wt] or [MMP-132/2.wt] BM chimeras were subjected to spinal cord injury 8 weeks following
transplantation, and analyzed 14 days post trauma for CSPG immunoreactivity. Representative pictures are presented in E. Quantification of CS-56
(CSPG) immunoreactivity in 2 mm2 sections, including the lesion site margin and surrounding parenchyma is shown in F. Deficiency in MMP-13
resulted in increased accumulation of CSPG (Student’s t-test; ***p = 0.0002). (G,H) [CD11c-DTR.wt] BM chimeric mice were subjected to spinal cord
injury 8 weeks following BM transplantation. Four groups were used: one group left untreated, one group was treated with DTx alone, and the other
two groups received DTx in parallel to transfer with DTx-resistant monocytes isolated from either wt or MMP-13 KO mice; CSPG immunoreactivity was
evaluated 14 days post injury. Representative pictures are shown in G. Quantification is shown in H (ANOVA; F3,22 = 15.4; p,0.0001). While
reconstitution with wt monocytes restored the regulation of CSPG accumulation, MMP132/2 monocytes failed to do so. Scale bar representation;
50 mm.
doi:10.1371/journal.pone.0027969.g004
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Importantly, while reconstitution with wt monocytes restored the

regulation of CSPG accumulation, replenishment with MMP-13

KO monocytes failed to do so (Fig. 4G,H). Altogether, these

results highlight the importance of monocytes as critical regulators

of scar deposition, in particular its extracellular matrix CSPG, via

the expression of the matrix degradation enzyme, MMP-13.

Production of MMP-13 by monocytes is essential for the
functional recovery from spinal cord injury

In light of the tissue remodeling function attributed here to the

infiltrating monocytes, together with the well-established phenom-

enon that CSPG degradation augments functional recovery

following spinal cord injury [3,5,9], we next aimed to test if the

remodeling property of these cells has functional implications to

the repair process. We therefore repeated the experiments in the

MMP-13 deficient mice, as described above, while evaluating the

functional motor recovery of the hind limbs following spinal cord

contusion according to the Basso Mouse Scale (BMS). In this non-

linear scale, 0 represents complete paralysis of the hind limb, while

a score of 9 represents normal mobility [36]. Mice in which the

hematopoietic lineage lacked MMP-13, [MMP-132/.wt], had

worse motor function recovery of the hind limbs, relative to their

control [wt.wt] chimeras (Fig. 5A,B). Evaluation of lesion size

according to myelin staining, using Luxol-Nissl, further confirmed

these results (Fig. 5C,D). To attribute this essential function to the

monocyte subset, we again employed the depletion-restoration

strategy; [CD11c-DTR.wt] BM chimeric mice were subjected to

spinal cord injury 8 weeks post transplantation. Four groups were

used: one group was left untreated, one group was treated with

DTx, and the other two groups received DTx and passive transfer

of DTx-resistant monocytes isolated either from wt or from MMP-

13 KO mice, as described above. The mice were followed for

motor function performance of the hind limbs, and scored

according to the BMS. DTx depletion of monocyte-derived cells

resulted in worse motor function performance following spinal

cord injury, while reconstitution of the depleted mice with

monocytes resistant to the toxin, restored the lost motor function

(Fig. 5E,F). In contrast, replenishment of the monocyte pool with

MMP-13-deficient monocytes failed to restore recovery, and

resulted in similar motor function as that observed in the DTx-

treated mice that did not receive monocytes (Fig. 5E,F).

Evaluation of lesion size confirmed these results (Fig. 5G,H).

These results attribute a critical functional relevance to the

infiltrating monocytes via the expression of the matrix remodeling

enzyme MMP-13.

Importantly, these two characteristics of the infiltrating

monocytes following spinal cord injury, the anti-inflammatory

nature described by us before [14] and the scar degradation

property identified here, are not contradictory. These two

properties should be viewed as two complementary aspects of

their resolving phenotype. These cells are endowed with a panel

of properties to resolve the first phase of the dynamic response

post injury, which is characterized by both intense inflammation

and scar formation. In fact, the connection between the capacity

of monocytes to remodel cellular matrix and promote regener-

ation and between their anti-inflammatory essential properties

was suggested previously in peripheral tissue healing [18,19].

Interestingly, in vitro cultures of naı̈ve monocytes revealed

enhanced expression of the Mmp13 transcript when the cells

were grown on a CSPG substrate (relative mRNA expression; 0.5

on PDL vs. 2.5 on CSPG), raising the possibly of an endogenous

feedback loop, in which the glial scar matrix induces its own

degradation.

Discussion

In this study, we demonstrated that two main phenomena that

occur in the injured CNS, the inflammatory response and

accumulation of glial scar, which were generally assumed to be

independent and separately detrimental, are in fact tightly

connected in an intimate relationship that promotes their mutual

potential to benefit healing (Fig. 6; scheme). The glial scar matrix

was found here to serve as a necessary scaffold, skewing monocytes

towards the resolving phenotype, characterized by the production

of the anti-inflammatory cytokine IL-10, thereby promoting

resolution (termination) of the local inflammation. In a reciprocal

relationship, the monocyte-derived cells were found to produce the

matrix degrading enzyme MMP13 and thereby regulate CSPG

accumulation and promote repair.

The immunosuppressive nature of CSPG in the response to

trauma, as observed here, is consistent with data demonstrating

that scar-associated astrocytes are required to maintain a balanced

inflammatory response [37,38]. The immunoregulatory nature of

this matrix molecule is substantiated by our previous observation

that it promotes neurotrophic factor production by the resident

microglia [9]. In addition, the immunoregulatory features of the

scar appear to be a general feature of tissue healing, as

proteoglycans are key immune-modulators following trauma to

internal organs [8]. Such a function performed by the matrix is

essential under the unfavorable milieu that exists at the site of

trauma, which is laden with factors known to mediate M1 skewing.

As the extracellular matrix around the site is a complex structure,

built like a branched tree, it seems that every component within it

has a dramatic effect on the local organization of the perineuronal

network created around the lesion site following injury. We can

suggest that this complex structure can, on the one hand, have a

direct effect on the encountering cells, and on the other hand

serves as a physical barrier isolating these cells from the material

concentrated at the epicenter, which possesses M1-skewing

properties.

Scar deposition is an essential response to the trauma, that

should be tightly controlled [9]; although it is essential for the

repair at the acute phase [9], the scar becomes an obstacle in the

subsequent steps [3,5,9]. Such timely regulation of scar deposition

is shown here to be achieved by the bi-directional interaction

between the glial scar and the monocytes; MW, which use the scar

for their own education, were identified here as the cellular

component that promotes scar degradation via the production of

matrix degradation enzymes. In support of our in vivo observation,

in vitro skewing of macrophages towards an M2 phenotype was

recently shown to promote axonal regeneration [11]. In addition,

scar resolving properties were recently ascribed to MW in the

resolution of a different kind of collagen-based scar, during hepatic

fibrosis, in which the same MMP described here, MMP-13, plays a

fundamental role, as well [32]. MMP-13 was not previously

proposed to have a role in spinal cord repair. Only recently was it

suggested, based on in vitro studies, to degrade CSPG. In addition

to CSPG, MMP-13 may regulate other components of the

perineuronal net, such as Tenascin and Aggrecan, which are

known to be substrates for this enzyme and critical components of

the glial scar, further highlighting its functional relevance to the

dynamic repair response post trauma. Interestingly, tissue matrix

modulation and regeneration properties were recently attributed

to monocyte-derived macrophages, and more specifically to the

anti-inflammatory subset [18,19]. Thus resolution/termination of

inflammation and tissue remodeling are tightly interconnected,

and seem to be a general property of wound healing macrophages.

In fact, one can view the two essential characteristics of the
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infiltrating monocytes for the recovery from spinal cord injury, the

anti-inflammatory properties described by us before [14] and scar

degradation properties of these cells revealed here, as two aspects

of their resolving phenotype. These cells ‘resolve’ the first phase of

the dynamic response to the injury, which is characterized by both

intense inflammation and scar formation.

The identified monocyte-glial scar interplay thus primes the

resolution phase of CNS tissue healing, thereby providing a

platform for the repair response. Revealing the underlying

mechanism behind this essential dialogue might enable the

development of novel therapeutic approaches to fine-tune it.

The recognition of a novel enzyme that modulates CSPG

deposition and has a fundamental contribution to the repair

process indicates a potential target for future therapies. Our

findings harbor significant clinical implications not only for the

repair of CNS injuries, but also for the resolution of autoimmune

diseases of the CNS, in which inflammation goes awry. In

addition, as regulatory MW/MDSCs provide a predominant

tolerance mechanism by which tumors escape the immune system,

a deeper understanding of how monocytes are skewed by matrix

components might suggest additional therapeutic avenues.

Materials and Methods

Animals
Six types of mice were used: (1) C57BL/6J mice; (2) CD45.1

mice (carrying an allotypic marker, CD45.1); (3) heterozygous

mutant Cx3cr1GFP/+ mice (B6.129P- Cx3cr1tm1Litt/J), in which

one of the Cx3cr1 chemokine receptor alleles is replaced with a

gene encoding GFP [green fluorescent protein] [26]; (4) CD11c-

Figure 5. Expression of matrix metalloproteinase 13 by infiltrating monocytes is essential for functional recovery from spinal cord
injury. (A–D) 45D-vaccinated, [wt.wt] or [MMP-132/2.wt] BM chimeras were subjected to spinal cord injury 8 weeks post transplantation. (A,B)
Motor function evaluation was performed according to the BMS. Follow up is shown in A and individual scorings at day 21 are shown in B. Deficiency
in MMP-13 resulted in worse motor function (A-Repeated ANOVA; Fbetween-groups(1,16) = 13.4; p,0.0001; B- Student’s t-test; ***p,0.001). (C,D)
Representative pictures of lesion sites stained for myelin integrity by Luxol-Nissl are presented in C. Lesion size evaluation according to Luxol-Nissl
staining is shown in D. Increased lesion size is observed in MMP-13 deficient chimeras (Student’s t-test; **p = 0.004). (E–H) [CD11c-DTR.wt] BM
chimeric mice were subjected to spinal cord injury 8 weeks post BM transplantation. Four groups were used: one group was left untreated, one
group was treated with DTx alone, and the other two groups received DTx in parallel to transfer with DTx-resistant monocytes isolated from either wt
or MMP-13 KO mice. (E,F) Motor function evaluation was performed according to the BMS. Follow-up is shown in E and individual scorings at day 14
are shown in F. DTx depletion resulted in worse recovery. While reconstitution with wt monocytes restored lost motor function, replenishment with
MMP-13 KO monocytes failed to do so (E-Repeated ANOVA; Fbetween-groups(3,44) = 16.28; p,0.0001; F- ANOVA; F3,39 = 44.15; p,0.0001). (G,H)
Representative pictures of lesion sites stained for myelin integrity by Luxol-Nissl, G. Lesion size evaluation according to Luxol-Nissl staining is shown
in H (ANOVA; F3,25 = 15.6; p,0.0001). Scale bar; 100 mm.
doi:10.1371/journal.pone.0027969.g005
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DTR transgenic mice (B6.FVB-Tg Itgax-DTR/GFP 57Lan/J),

carrying a transgene encoding the human diphtheria toxin

receptor [DTR] under control of the murine CD11c promoter

[34]; Cx3cr1GFP/+ and CD11c-DTR transgenic mice were a

generous gift from Prof. Steffen Jung. (5) CD11c-DTR:

Cx3cr1GFP/+ transgenic mice (heterozygous for both the Cx3cr1GFP

locus and the CD11c-DTR transgene); and (6) MMP-13 knockout

mice [35], a generous gift from Prof. Carlos López-Otı́n. For all

experiments, adult males aged 8–10 weeks were used. Animals

were supplied by the Animal Breeding Center of The Weizmann

Institute of Science. All animals were handled according to the

regulations formulated by the Institutional Animal Care and Use

Committee (IACUC).

Bone Marrow Radiation Chimeras
[Cx3cr1GFP/+.wt], [CD11c-DTR.wt], [MMP-132/2.wt],

[wt.wt] and [CD11c-DTR:Cx3cr1GFP/+.wt] BM chimeras were

prepared by subjecting gender-matched recipient mice (8–10 week

old) to lethal whole-body irradiation (950 rad) while shielding the

brain, as previously described [9,14]. The mice were then

reconstituted with 3–56106 BM cells harvested from the hind

limbs (tibia and femur) and forelimbs (humerus) of the appropriate

donor mice. BM cells were obtained by flushing the bones with

Dulbecco’s PBS under aseptic conditions, and were then collected

and washed by centrifugation (10 min, 1,000 rpm, 4uC). The

chimeric mice were subjected to spinal cord contusion 8–10 weeks

after BM transplantation.

Spinal Cord Injury
The spinal cords of deeply anesthetized mice were exposed by

laminectomy at T12, and contusive (200 kdynes) centralized injury

was performed using the Infinite Horizon spinal cord impactor

(Precision Systems), as previously described [9,14]. The animals

were maintained on twice-daily bladder expression. Animals that

were contused in a nonsymmetrical manner were excluded from

the experimental analysis.

Xyloside Treatment
Xyloside (4-methylumbelliferyl-b-D-xylopyranoside; Sigma-Al-

drich) was injected as previously described (0.8 mg/mouse) [9].

Briefly, the mice were intraperitoneally (IP) injected twice daily for

5 consecutive days, starting either immediately after the injury or 2

days later. For histological analysis, mice were killed 7 days or 14

days after the injury.

Diphtheria Toxin Administration
Diphtheria toxin (DTx; 8 ng/g body weight; Sigma) was

injected intraperitoneally (IP), repeatedly at 1 day intervals,

starting immediately after the injury.

Adoptive Transfer of Monocytes
CD115+ monocytes were isolated as previously reported [39].

Briefly, BM cells were harvested from the femora and tibiae of

naı̈ve mice, and enriched for mononuclear cells on a Ficoll density

gradient. The CD115+ BM monocyte population was isolated

through MACS enrichment using biotinylated anti-CD115

antibodies and streptavidin-coupled magnetic beads (Miltenyi

Biotec) according to the manufacturer’s protocols. Following this

procedure, monocytes (purity 90%) were intravenously (IV)

injected (3.56106 cells per mouse) twice during the first week of

recovery, on d0 and d3 post injury.

Immunohistochemistry
Due to technical limitations of some of the antibodies that were

used, two different tissue preparations (paraffin embedded and

microtomed frozen sections) were used, as previously described

[9]. Whenever possible, the results were confirmed using both

techniques. The following antibodies were used: rabbit anti-GFP

(1:100; MBL), rabbit anti-glial fibrillary acidic protein (GFAP;

1:100; Dako Cytomation), goat anti-IL-10 (1:20; R&D Systems),

mouse anti-CS-56 (1:100; Sigma), mouse anti-Hu (1:50; Rheni-

um), mouse anti-MMP13 (1:50; Abcam), and hamster anti-CD11c

(1:50; Chemicon). For microglial/MW labeling, TRITC- or FITC-

conjugated Bandeiraea simplicifolia isolectin B4 (IB-4; 1:50; Sigma-

Aldrich) was added for 1 h to the secondary antibody solution.

Secondary antibodies used included: Cy2-conjugated donkey anti-

rabbit antibody, Cy2/Cy5 conjugated donkey anti-mouse anti-

body, Cy3-conjugated donkey anti-mouse, Cy3-conjugated don-

key anti-goat, and biotin goat anti-hamster (1:200; all from Jackson

Immuno Research). Cy3-streptavidin was used for CD11c

staining. The slides were exposed to Hoechst stain (1:4,000;

Invitrogen Probes) for 1 min. GFAP staining was used for

demarcation of the lesion site.

Myelin integrity was qualitatively and quantitatively examined

on paraffin-embedded sections that were stained with Luxol fast

blue for myelin, and with Nissl to identify the nuclei and the thin

cytoplasmic layer around them. Myelin phagocytosis was analyzed

in sections stained with Oil Red O (Fisher Scientific) and

counterstained with Mayer’s hematoxylin to identify cell nuclei,

as previously described [10,31]. For microscopic analysis, a Nikon

fluorescent microscope (Nikon E800) or Zeiss LSM 510 confocal

laser scanning microscope were used. Longitudinal sections of the

spinal cord were analyzed. Numbers of cells, immunoreactivity

(density) and lesion size were all determined automatically with

Image-Pro Plus 4.5 software (Media Cybernetics). To measure lesion

Figure 6. Schematic illustration of the mutual relationship
between the resolving monocytes and the glial scar matrix. The
glial scar matrix serves as a regulatory template, dictating the anti-
inflammatory nature of the infiltrating monocytes that encounter it. In
turn, the monocytes that used the scar for their own education regulate
the scar degradation and resolution via the secretion of matrix
degradation enzyme, MMP-13.
doi:10.1371/journal.pone.0027969.g006
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size, demarcation of the damaged site was determined according

to Luxol-Nissl staining as well as H&E staining. In order to avoid

overestimation due to counting of partial cells that appeared

within the section, we took special care to count only cells with

intact morphology and a nucleus that was larger than 4 mm in

diameter, both in the manual and software-automated counting.

The ImagePro quantification was performed using 2 mm2 spinal

cord tissues pictures, centralized on the lesion site, which included

lesion site, the margins and surrounding undamaged parenchyma.

Three sections from different depths were assessed for each

animal, and 4–8 mice were tested in each group. For

immunoreactivity measurements, the values are presented in

arbitrary units and indicate total reactivity in the tissue. The

number of cells per mm3 was calculated by considering the

thickness of the sections.

Isolation of Spinal Cord Cells and Flow Cytometric
Analysis

Mice subjected to spinal cord injury were killed by an overdose

of anaesthetic and their spinal cords were prepared for flow

cytometric analysis by perfusion with PBS via the left ventricle.

Spinal cord sections were cut from individual mice, including the

injured site and adjacent margins (4 mm long in each of the

sections), and tissues were homogenized using a software

controlled sealed homogenization system (Dispomix; http://

www.biocellisolation.com). For IL-10 staining, 26106/ml cells

were cultured on 96-well plates. The following fluorochrome-

labeled monoclonal antibodies were purchased from BD Pharmin-

gen, BioLegend, or eBioscience and used according to the

manufacturers’ protocols: PE conjugated anti-CD11b, IL-10 and

CD115 antibodies, and allophycocyanin-conjugated anti-CD45.1,

and CD11b antibodies. Cells were analyzed on a FACSCalibur

cytometer (BD Biosciences) using CellQuest software (BD

Biosciences) or on a LSRII cytometer (BD Biosciences) using

Flow Jo software (Tree Star). Isotype controls were routinely used

in all the experiments. In addition, in each experiment, relevant

negative control groups were used to identify the populations of

interest and to exclude others.

Multiplex cytokine analysis system
Wild-type C57BL/6J injured and non-injured mice were killed

at different time points after spinal cord injury. Samples from

lesion sites (4 mm length of spinal cord tissue, including lesion site,

margins and surrounding non-injured parenchyma) were pooled

in groups of three. The excised tissues were homogenized in PBS

containing protease inhibitors (1:100; P8340, Sigma). Four freeze-

thaw cycles were performed to break the cell membranes

(3 minutes each). Homogenates were then centrifuged for

10 min at 500 g, and the total protein quantities in supernatants

were determined by Bradford reagent. Frozen supernatants were

assayed in duplicate using Multiplex Bead-based Luminex Assays

(MILLIPLEX mouse cytokine/chemokine panel or TGFb1,2,3

MILLIPLEX kit; Millipore), performed by outsourcing (American

Medical Laboratories), according to the manufacturer’s instruc-

tions. Results are expressed as picograms of protein per milligram

of total tissue protein.

Assessment of functional recovery from spinal cord injury
Recovery was evaluated by hind-limb locomotor performance,

assessed according to the open-field Basso Mouse Scale (BMS)

[36], with nonlinear scores ranging from 0 (complete paralysis) to 9

(normal mobility); each score represents a distinct motor functional

state. Mice were randomly separated into groups, while verifying

that the average starting score was similar in all groups. Blind

scoring ensured that observers were not aware of the treatment

received by each mouse. Locomotor activity in an open field was

monitored twice a week by placing the mouse for 4 min at the

center of a circular enclosure (diameter 90 cm, wall height 7 cm)

made of molded plastic with a smooth, non-slippery floor. Before

each evaluation, the mice were carefully examined for peritoneal

infection, wounds in the hind limbs, and tail and foot autophagia.

Animals that showed a difference of more than 2 score points

between their two hind limbs were excluded from the experimen-

tal analysis. The results showing functional outcomes presented in

this study were, in each case, from a single experiment

representative of several independent replicates, as indicated in

the figure legends. As spontaneous recovery from spinal cord

injury is limited, we used the previously described [9,14] protocol

of 45D vaccination (100 mg; emulsified in an equal volume of

complete Freund’s adjuvant containing Mycobacterium tuberculosis

(2.5 mg/ml; Difco); 1 week prior the injury), which creates a more

sensitive system to evaluate functional recovery.

Culture of monocytes
25 cm2 Falcon tissue culture flasks (BD Biosciences) were coated

either with poly-D-lysine (PDL) (20 mg/ml; Sigma-Aldrich) in

borate buffer, pH 8 for 4 h; or CSPG (10 mg/ml, Sigma-Aldrich)

in PBS. CD115+ cells were isolated as described above. A total of

66106 CD115+ cells were seeded per flask on CSPG or on the

control substrate, PDL, in the following media: RPMI-1640

(Biological Industries, Beit Ha-Emek, Israel), 10% FCS, 2 mM L-

Gln, 100 U/ml penicillin, and 100 mg/ml streptomycin, NAA,

and 1 mM sodium pyruvate. The purified cells were cultured in

5% CO2 at 37uC. The cultures were harvested 2 or 5 days later,

and the supernatants collected. IFN-c was added to some of the

cultures (100 ng/ml), as indicated.

Quantitative Real time PCR
Target cells or tissue were homogenized in Tri reagent (Sigma),

and total RNA was extracted using Qiagen RNeasy Mini-kit.

Random hexamers (AB) were used for first-strand cDNA synthesis.

Both procedures were performed according to the manufacturer’s

instructions. The relative amounts of mRNA were calculated by

using the standard curve method, and were normalized to the

housekeeping gene, peptidylprolyl isomerase A (PpiA). Each RNA

sample was run in triplicate, and each group was comprised of

three to five animals. The primers for all genes tested (see Table 1)

were designed using PrimerQuest software, from Integrated DNA

Technologies (http://eu.idtdna.com).

ELISA assay for cytokine levels
Cytokine ELISA for IL-10 was performed on culture superna-

tants of the in vitro experiment, according to the manufacturer’s

instructions (eBioscience, Mouse Interleukin-10 Ready-SET-Go!).

Each supernatant sample was run in triplicate, and a total of five

supernatants were used per group. Results were expressed as

picograms of protein per milliliter of supernatant.

Statistical Analysis
Data were analyzed using the Student’s t-test to compare

between two groups. One-way ANOVA was used to compare

several groups; the Tukey’s HSD procedure (p = 0.05) was used for

follow-up pairwise comparison of groups. Repeated measures

ANOVA was used in the functional BMS scoring with follow-up

comparison of treatments for each day by contrast t-test and

correction for multiple comparison by the Holm method (p = 0.05).
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The specific tests used to analyze each set of experiments are

indicated in the figure legends. The results are presented as mean

6 SE. In the graphs, y-axis error bars represent SE.

Supporting Information

Figure S1 Kinetic evaluation of IL-10 expression at the
lesioned spinal cord. Spinal cord sections were isolated at

different time points following injury and immunostained for IL-10

(red) and GFAP (green). Non injured sections were also co-stained

for the neuronal marker, Hu (green), and the cytokine, IL-10 (red).

Scale bar; 50 mm.

(TIF)

Figure S2 Delayed administration of xyloside does not
disrupt the spatial organization nor the resolving
phenotype of the infiltrating monocytes. (A, B) Immuno-

histochemical staining of [Cx3cr1GFP/+.wt] BM chimeric mice

treated with xyloside at later stages, with (A) CSPG (red) and GFP

(green), or (B) IL-10 (red) and GFAP (green). (C) Quantitative

analysis of IL-10 immunoreactivity (left panel, Student’s t-test;

p = 0.43) and number of IL-10 expressing cells (right panel,

Student’s t-test; p = 0.968). (D) Quantification of activated microg-

lia/MW according to IB-4 immunoreactivity (Student’s t-test;

*p = 0.037). Scale bar; 50 mm. y-axis error bar represents SEM.

(TIF)

Figure S3 Myelin engulfment does not correlate with
the resolving phenotype of macrophages at the lesioned
spinal cord. Oil Red O staining of spinal cord tissues isolated 7

days post injury, from mice treated with PBS or xyloside for 5

consecutive days immediately post injury. Equal distribution of Oil

Red O staining was seen at the lesion center and its margins. No

significant differences could be observed between the groups. Scale

bar; 100 mm.

(TIF)

Figure S4 Matrix metalloproteinase gene expression
levels following insult. Analysis of expression of various MMP

genes in excised spinal cord tissues by RT-PCR at different time

points following the insult. The relative expression levels are

presented. (Mmp12; ANOVA; F4,13 = 44.7; p = 0.0005. Mmp13;

ANOVA; F4,11 = 15.4; p = 0.0075; Mmp8; ANOVA; F4,11 = 16.98;

p = 0.0053. Mmp9; ANOVA; F4,11 = 1.6; p = 0.239. Mmp2; AN-

OVA; F4,15 = 62.76; p,0.0001). Asterisks indicate significant

differences compared to non-injured animals. Y axis error bar

represents SEM.

(TIF)
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