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Abstract

During development, the formation of biological networks (such as organs and neuronal networks) is controlled by
multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted
by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a
packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However,
this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this
randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even
epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects
multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore
the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate
collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the
model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory
cells. Strong noise from migratory cells and weak noise from surrounding cells causes ‘‘collective migration,’’ whereas strong
noise from non-migratory cells causes ‘‘dispersive migration.’’ Moreover, our theoretical analyses reveal that migratory cells
attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the
stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior
at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.
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Introduction

Movements of various cell groups are ubiquitous during

development. The extent and speed of migrations must be well-

controlled to achieve precise axon placement in the wiring of

neuronal networks and to ensure the appropriate morphogenesis

of tissues and organs [1]. In this article, we focus on multi-cellular

collective migration, which can be observed in the behaviors of

cranial neural crest cells during embryonic development, as a

model system for understanding how the system-level control of

cellular transportation is achieved; such system-level control is

called ‘‘logistics’’. This transportation is accompanied by cell

migration that is directed by extra-cellular signaling molecules

working as chemo-attractants or repellants. In multi-cellular

systems, cellular locomotion is restricted by physical interactions

with other cells in a crowded space, similarly to passengers pushing

others out of their way on a packed train. The mechanisms

underlying multi-cellular logistics in these crowded space remain

largely unknown.

At the level of individual cells and neuronal growth cones,

migratory behavior is often stochastic rather than deterministic,

due largely to the small number of signaling molecules within

such cells, which perform biased random walks along chemo-

attractant gradients [2,3]. Nevertheless, the developmental

process remains consistent across different embryos, even though

the stochastic behavior of individual cells might seem to make

precise and consistent control difficult. There must be a

homeostasis (stability) mechanism at the multi-cellular systems

level that absorbs the stochastic behavior. Also, developmental

processes need to be variable enough to construct a variety of

biological patterns starting from a single fertilized egg cell, while

being stable enough to maintain the consistency of the patterns;

this requirement is a typical plasticity-stability dilemma [4].

Therefore, the relationship between microscopic properties of

individual cell migration and macroscopic multi-cellular migra-

tion patterns needs to be clarified.

Multi-cellular migration employs various modes of transporta-

tion, depending on the cell type and the developmental stage.

These modes can be classified into two main categories, individual

and collective migration [5]. Individual migration is dispersive and

enables cells to cover a local area, as can be seen in immune cell

trafficking [6]. Collective migration consists of multi-cellular units

and is used mainly to build complex tissues. Typically, neural crest

cells migrate together by a forming ‘‘stream’’ [7], and neural

precursor cells sometimes migrate along a single dimension in a

‘‘chain’’-like manner [8]. Understanding how these modes of

migration emerge is important for understanding the mechanisms

of multi-cellular development.
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It has recently been shown that pattern modes can be

experimentally inter-converted by manipulating the expression of

proteins involved in cellular mechanics; up-regulating a cell

adhesion molecule (CAM) in individually migratory cells leads to

collective migration [9], whereas down-regulating a CAM in

collectively migrating cohorts leads to individual migration

[10,11]. These observations suggest that the various transport

pattern modes are not achieved simply by system-specific

molecular regulations. In addition, it has been suggested that the

pattern modes can be controlled through altering physical

parameters in cell migration such as driving force, cellular

stiffness, and the randomness of the migration [12]. However,the

mechanisms by which microscopic mechanical parameters at the

level of single cells contribute to the macroscopic pattern of multi-

cellular migration remains elusive.

In this paper, we studied the multi-cellular logistics of

biological systems with a special emphasis on collective migration

in a crowded environment. To this end, we focused on ‘‘neural

crest migration’’, because even without the guidance of extra-

cellular signals, neural crest cells collectively migrate from

rhombomeres to branchial arches along stream [13]. We

constructed a bio-physical model of a multicellular system in

which cells migrate through crowded cell population using their

chemotactic abilities. Note that neural crest cell migration is

driven by both chemotactic abilities and population pressure due

to proliferation[14,15]. In our study, we particularly examined

cell migration phenomena in a crowded situation. We then

performed a computer simulation, which led us to hypothesize

that migratory cells exploit the stochasticity within multi-cellular

systems to collectively and efficiently migrate using an autono-

mously emerging stream. Our theoretical analysis could shed

light on the mechanisms that govern various migration pattern

modes. Moreover, we discuss the properties of multi-cellular

logistics on the basis of our simulation.

Results

Model of multi-cellular migration
To examine the general properties of multi-cellular migration,

we developed a bio-physical model that includes the essential

characteristics of the mechanical nature of general multi-cellular

systems. This model multi-cellular system consists of a number of

mechanically interacting cells (Figure 1). Each cell is represented as

a two-dimensional disk with a static body. The simple multi-

cellular migration model consisted of three forces: (1) the repulsive

force between cells, (2) the driving force of migratory cells

accompanied by reaction forces of neighboring cells via adhesion,

and (3) the stochastic forces involved in a random walk. Assuming

that the viscosity of the cellular environment is sufficiently high,

the inertia can be ignored, and the viscous drag force is exactly

balanced between these forces. Thus, the dynamics of the cellular

positions ri are described as follows:
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where k is the Young’s modulus, Ri is the radius of cell i, si is the

fluctuation intensity of cell i, jxi and jyi are independent random

functions of time with mean zero, Sj(t)j(t{t)T~d(t) is the

autocorrelation function, N i is the index set of all cells contacting

Figure 1. Model for simulation. (A) When two neighboring cells indicated by the white circles overlap, the repulsive force (Frepij
and Frepji

) is
proportional to the degree of overlap, as indicated by the red arrow. (B) The migrating cell (indicated by a gray circle) is assumed to be attracted by a
chemo-attractant gradient. Its driving force (the sum of Fmigij

and Fmigik
) is generated at points of contact with other cells, whereas reactive forces

(Fmigji
and Fmigki

) are applied in the direction opposite to that of the attractant gradient regardless of the cell type (migratory or non-migratory). (C)
The repulsive forces when the cells contact and the attractive adhesive forces when the cells are close are given by the gradient of the potential V .
The black and dashed red lines indicate the potential V for Equations (1) and (8), respectively. The black arrow indicates a steady-state point at which
the two cells just contact.
doi:10.1371/journal.pone.0027950.g001
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cell i,Mi is the index set of the other type of cells contacting cell i,

(Dxij ,Dyij)
T~ri{rj , and m is the viscous modulus. Equation (2)

holds only when Eri{rjEvRizRj . Otherwise Frepij
~0.

The repulsive force is induced by compressive deformation of

the cells due to the elasticity of their cytoskeletons and plasma

membranes [16]. Even though the cells are modeled as static

bodies, we implicitly address this morphological compression by

introducing a repulsive force; when two adjacent cells overlap

(contact) each other, a repulsive force Frep is generated between

them (Figure 1A). This repulsive force is directed so as to separate

the contacting cells, and its strength decreases in proportion to the

distance between them.

The driving force is generated when a migratory cell adheres

through a pseudopod, which is an actin rich peripheral structure

that promotes cellular motility [17]. To model cell migration, we

consider two types of cells: migratory and non-migratory.

Migratory cells are assumed to have the chemotactic ability to

be attracted by extra-cellular signals and thereby travel along their

gradient. We do not focus on the molecular mechanisms sensing

the gradient here and instead just set the migration direction.

Because a migratory cell adheres to all contacting non-migratory

cells so as to use them as footholds for migration, a driving force

Fmig is tangentially generated between the cells along the direction

of the extra-cellular attractant gradient. Consistent with the

principles of action and reaction, the non-migratory cells

experience a force opposing the force driving the migration

(Figure 1B), which causes the non-migratory cells to be pulled

backward and the migratory cell to proceed forward. Note that

when two migratory cells contact, the action (driving force)

generated by one migratory cell is cancelled by the reaction from

the other migratory cell’s driving force, and neither migratory cell

is propelled forward. These assumptions are implemented by

introducing simple geometrical rules: Fmigij

:Frepij
~0, EFmigE~Fm,

and Fmigx
w0. These rules lead to Equation (3).

The stochastic forces Fflu are autonomously generated by the

inherent intracellular dynamics [2,3]. In the model, both the

migratory and non-migratory cells are assumed to spontaneously

display random movements even if they do not experience the

above-mentioned forces. We modeled this randomness as a

Gaussian random function.

To reduce the number of free parameters in the model

equations of this study, we applied a non-dimensionalization

technique to the original bio-physical Equations (1–5). We then

have only three non-dimensionalized free parameters, which

correspond to Young’s modulus, the noise intensity of the

migratory cells, and the noise intensity of the non-migratory cells

(See the Materials and Methods section). Here, the typical value of

the non-dimensionalized Young’s modulus, kRi=Fm, becomes

approximately 10{1*101 by introducing typical values for

Young’s modulus, the cell radius, and the migration force into

the original bio-physical model. These values are k~
10{2*10{3N=m [16,18], R~10{5m, and Fm~10{8*10{7N
[18], respectively. A typical value for the non-dimensionalized

noise intensity, s=Fm~10{1*101, is also derived from the typical

value of the noise intensity in the bio-physical model,

s~10{9*10{8N
ffiffi
s
p

[18 19]. Accordingly, we primarily use the

parameter values k~10, and s~0*1 as biologically plausible

values in this study.

For the sake of ignoring boundary effects, all the cells are

assumed to be packed into a two-dimensional rectangular space

with boundaries that are connected to form a torus structure. At

the beginning of each simulation run, 100 migratory cells were

distributed around the center and then transferred rightward

(Figure 2).

Effect of single cellular stochasticity on multi-cellular
transportation

Because migratory cells in real developmental situations target

a specific location and then differentiate within a specific

developmental stage, their transportability and transportation

accuracy are determinants of their eventual configuration.

Therefore, these characteristics were examined in our simulation.

First, transportability was examined by varying the fluctuation

intensities of the migratory and non-migratory cells, smig and sn.

We defined transportability here as the average time required for

Figure 2. Snapshots of a single simulation series of multi-
cellular migration. The white and black disks indicate migratory and
non-migratory cells, respectively. The migratory cells are initially (at
t~0) distributed as a cluster (upper panel) and then migrate rightward
progressively at t~16; 32; 48 (the lower three panels). The fluctuation
intensities for the migratory and non-migratory cells are set to smig~0
and sn~0, respectively.
doi:10.1371/journal.pone.0027950.g002
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the migratory cells to reach a specific goal position (x~150 of

the rectangular space). The transportation speed (the inverse of

the mean arrival time) was found to increase as the fluctuations of

the non-migratory cells strengthened (Figure 3A). This noise-

induced transportability can be understood on the basis of the

following mesoscopic analysis (Figure 4). With relatively small

fluctuations in the non-migratory cells, a migratory cell slowly

migrates in a hopping manner by pushing other cells out of its

way (Figure 4A, upper panel). When the non-migratory cells

have large fluctuation, cell migration is smooth and rapid

(Figure 4A, lower panel) because the large fluctuation cause the

distances between adjacent non-migratory cells to vary signifi-

cantly, which enables the migratory cell to move easily between

them (Figure 4B).

Second, we evaluated transportation accuracy, which is defined

as the inverse of the variance in the position of a migratory cell

that has arrived at the target position (Figure 3B). Transportation

accuracy was found to be high, especially when the migratory cells

fluctuated significantly and the non-migratory cells did not. It is

interesting that significant fluctuation in the non-migratory cells

naturally led to dispersed migration, whereas significant fluctua-

tion in the migratory cells led to increase accuracy. Figures 3A and

3B suggest that transportation in the multi-cellular system exhibits

diverse transportability and accuracy patterns depending on the

fluctuation levels of the migratory and non-migratory cells and

that there is tradeoff between transportability and accuracy.

Because the migratory cells are assumed to be initially

aggregated (top panel in Figure 2) and then move to the target

position, the cell-migration properties shown in Figures 3A and 3B

include transient effects. To examine the population behavior that

is independent of such transient effects, we performed additional

long-term simulations in which the population behavior reaches a

quasi-steady state. We then characterized the steady-state logistics

in terms of the inverse of the mean velocity (Figure 3C) and the

collectivity of the migratory cells (Figure 3D). Here, collectivity

was quantified as

w~
1

#C
X
i,j[C

1

1z exp h dij{�RR
� �� � , ð6Þ

where C, #, dij , h, and �RR denote the index set of the migratory

cells, the operator that counts the number of elements of a set, the

distance between two migratory cells i and j, the steepness of the

sigmoidal fitting, and the arbitrary radius of focused regions

centered on each migratory cell, respectively. This equation

approximates the average number of migratory cells around

themselves within the radius of �RR. Figures 3C and 3D are roughly

comparable to Figures 3A and 3B, respectively. Figure 3D shows

three characteristic parameter regions (indicated by a, b, and c)

wherein high, intermediate, and low collective patterns, respec-

tively, are realized. Figure 5A shows the characteristic migratory

 

 

 

 

Figure 3. The cellular migration characteristics of multi-cellular systems depend on the relative fluctuation levels of the migratory
(smig) and non-migratory (sn) cells. The average time for a migratory cell to reach its target position x~150 (A) and the inverse of the variance in
the position of the migratory cell after arriving at the position (B) are plotted. The inverses of the mean velocity (C) and collectivity (D) of the
migratory cells are plotted at a quasi-steady state after the initial transient phase. Here, collectivity is defined by Equation (6), with �RR~5 and h~4. In
(D), there are three typical collectivity patterns, signified by a, b, and c.
doi:10.1371/journal.pone.0027950.g003
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patterns realized by different combinations of smig and sn in each

of the three parameter regions in Figure 3D. First, when the

migratory cells fluctuate significantly and non-migratory cells do

not (point a in Figure 3D), the migratory cells collectively converge

into one large cellular stream (‘‘ collective migration’’) (upper panel in

Figure 5A and Movie S1); this behavior is similar to that of neural

crest cells migrating from rhombomeres to branchial arches [7].

Second, at the point b in Figure 3D where the fluctuations of all

the cells are weak, the dispersion of the migratory cells does not

change significantly during their migration (‘‘ neutral migration’’)

(middle panel in Figure 5A and Movie S2). Third, when the non-

migratory cells fluctuate significantly (point c in Figure 3D), the

migratory cells disperse rapidly, and each migratory cell comes to

migrate individually (‘‘ dispersive migration’’), regardless of the

Figure 4. The mesoscopic behaviors of migratory and non-migratory cells. (A) Simulations were performed with a single migratory cell
surrounded by non-migratory cells. The white lines indicate sample two-dimensional trajectories of the migratory cells with parameter values
corresponding to the points indicated by a and c in Figure 3D. The color contour indicates the density of the migratory cells as calculated by the
kernel density estimation using Gaussian kernel functions. (B) Each line shows the distribution of distances between neighboring non-migratory cells
when simulating a multi-cellular system that has only non-migratory cells and no migratory cell. The green, blue, and red lines correspond to the
cases that have parameter values in the three regions, a, b, and c in Figure 3D.
doi:10.1371/journal.pone.0027950.g004

Figure 5. Snapshots of migration patterns, cell contacts and the migratory cell population. The upper, middle, and lower panels show
the migratory patterns corresponding to the parameters indicated by a, b, and c in Figure 3D. (A) The migration patterns at a specific point in time are
shown. The white and black circles indicate migratory and non-migratory cells, respectively. (B) The cell contacts are shown at the same time point as
in (A). The links depict contacts between cells that interact by repulsive elastic forces (Figure 1A), the strengths of which are indicated by their
brightness (for red), or darkness (for blue).
doi:10.1371/journal.pone.0027950.g005
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fluctuation of the migratory cells (lower panels in Figure 5A and

Movie S3). These simulation results show that even though the

migratory cells are represented as mechanically passive disks

lacking information processing by intra-cellular signal transduc-

tion, this multi-cellular system has the potential to exhibit cellular

migration and to show various migration patterns that are induced

by both intrinsic and environmental fluctuations.

Interaction between migratory cells
How is collective migration (a macroscopic behavior) realized

when cells mechanically interact with neighboring cells? In many

migration patterns, migratory cells were found to follow other

migratory cells (Movie S1). Migratory cells can easily invade non-

migratory cells because a preceding migratory cell produces some

null space in its wake, implying that a migratory cell affects the

positional configuration of the surrounding cells. To visualize such

configurations, we performed a simulation run with a single

migratory cell surrounded by non-migratory cells (Figure 6A), and

we evaluated the average density of the non-migratory cells

around the single migratory cell (Figure 6B), which reflects the

spatial profile of the pressure caused by repulsive interactions.

With parameter values in the collective migration mode, the average

density of non-migratory cells was much lower behind the

migratory cell than in other location (Figure 7A). This low density

region is similar to the null space and can be interpreted as a low-

pressure region where cells easily invade due to their morpholog-

ical deformation. The average density of non-migratory cells was

slightly lower behind the migratory cell under neutral migration

parameter values (Figure 7B), and it was almost constant with

dispersive values (Figure 7C). These results revealed that the

fluctuations of migratory cells help to form a null space that

induces other migratory cells to follow in their wake, whereas the

fluctuations of non-migratory cells erase the wakes of the migrating

cells.

Our analysis above indicates that as long as migratory cells are

close to one another, they stay close due to the effective attraction

induced by the null space, and this effect contributes to the stability

of the collective migration. However, there is still a missing link:

how do separate migratory cells aggregate? Two possibilities are

conceivable. First, they may randomly migrate, by chance

encounter each other, and then follow one another. Alternatively,

they may be actively attracted even in the absence of direct

Figure 6. An illustration of the method for estimating cell density and the effective potential field around a migratory cell. The
simulations were performed after placing a single migratory cell (A) or two migratory cells (C) to be surrounded by non-migratory cells. The white and
black circles indicate migratory and non-migratory cells, respectively. (B) The average density of the non-migratory cells was estimated relative to the
position of the migratory cell at the origin (i.e., (A)). This density is estimated by kernel density estimation with Gaussian kernel functions with
variances equal to the cellular radius. The square region shown in this panel corresponds to the cyan square in (B). (D) The sample-based velocity
vector field. We performed a short-term (0.5 sec.) simulation after placing a migratory cell on each grid point, and the vector differences of each
migratory cell in its position are displayed at the each grid points. The square region shown in this panel corresponds to the cyan square in (C).
doi:10.1371/journal.pone.0027950.g006
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contact, through long-distance effects resulting from direct

interactions with non-migratory cells. To examine which possibil-

ity is more plausible, we determined the degree of effective

interaction between separated migratory cells.

For simplicity, we considered a two-body interaction between

two migratory cells under the assumption that their movement

follows Brownian motion under an effective potential field. If there

is an effective potential field U , the Brownian dynamics of the

migratory cells can be expressed by a stochastic differential

equation:

d

dt

rx

ry

� �
~{

LU=Lx

LU=Ly

� �
z

sx 0

0 sy

� �
jx

jy

� �
, ð7Þ

where rx and ry denote relative location coordinates of the two

migratory cells, sx and sy are the effective noise intensities along

the horizontal and vertical axes of the rectangular space, jx and jy

are independent random functions of time with mean zero, and

Sj(t)j(t{t)T~d(t) is the autocorrelation function. Because this

dynamics is ‘‘effective’’, we identified the effective potential U and

noise intensities, sx and sy, using simulation; we simulated a

system that includes only two migratory cells (Figure 6C) and then

sampled the velocity vector field v~(vx,vy)T as a function of the

relative coordinates between the two cells (Figure 6D) (see the

Materials and Methods section).

Figures 7D-F (and 7G-I) show the estimated effective potential

U (and the noise intensities sy) for the collective, neutral, and

dispersive migration modes, respectively. In all cases, the potential

landscapes have one saddle node and two stable points. This

equilibrium point structure implies a situation in which two

migratory cells are effectively attracted to each other. In the case of

collective migration, the potential gradient is steeper, and sy is

higher on both sides of the migratory cell. The migratory cells each

appear to search for the stable point by utilizing a higher sy and a

steeper gradient; once they reach the stable point, it is difficult for

them to escape from it because of the lower sy. In neutral

migration, the potential gradient is gentle and the fluctuation

Figure 7. Simulation-based determination of effective cellular interaction. (A,D,G), (B,E,H), and (C,F,I) show the collective, neutral, and
dispersive migration modes corresponding to the parameters indicated by a, b, and c in Figure 3D, respectively. The x and y axes indicate spatial
coordinates relative to a migratory cell in Figures 6A and C. (A-C) The average cellular density is estimated by the same method as in Figure 6B. The
potential landscape (D-F) and effective noise intensity along the y axis (G-I) are estimated using a least-square regression for polynomial functions.
Please see the Materials and Methods section.
doi:10.1371/journal.pone.0027950.g007
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intensity is low over the area around the migratory cells. In the

case of dispersive migration, however, the potential gradient is

gentle but disturbed by strong noise, suggesting that the migratory

cells can easily escape from the stable points and move away from

each other.

Other properties of multi-cellular logistics
We next investigated the parameter dependence of transport-

ability (Figure 8). For the collective and neutral migration modes,

we found that an increase in the number of migratory cells

increased the speed of the collective migration in a saturating

manner (Figure 8A, blue and green lines), which is consistent with

experimental observations [20]. This population-based transport-

ability likely occurred because migratory cells broke their contacts

with the non-migratory cells (Figure 5B, upper and middle),

leading to energetically efficient migration. By contrast, the

velocity of dispersive migration was unaffected by population size

(Figure 8A, red line) because the noisy environment broke the

contacts between the non-migratory cells, enabling the migratory

cells not for necessitate population-based migration (Figure 5B,

lower).

Because cell size changes drastically between different develop-

mental stages, we next examined how the size of a migratory cell

affects its transportability. When a cell migrated alone, its

migration speed was found to decrease as its cellular radius

increased, regardless of the migration mode (Figure 8B). Note that

the migration speed is highest in the dispersive migration mode

(Figure 5B, bottom). With population-based migration, however,

cell size was found to affect migration in a complicated fashion

(Figure 8C). For the collective and neutral migration modes, there

are two characteristic phases; as the size increases, the migration

speed first decrease and then increases when the size exceeds a

certain threshold. The first phase exhibits behaviors similar to

those observed when there is only a single migratory cell

(Figure 8B). The second phase could be attributed to a population

effect, through which a large migratory cell produces a large null

space in its wake and is effectively followed by other migratory

cells.

During cell migration, extra- and intra-cellular signaling actively

control cellular stiffness, force generation, and adhesion via

regulating cytoskeletal components such as actin filaments and

microtubules. In our simulation, the migration speed was found to

decrease as the cells stiffen (Figure 8D), because stiff non-migratory

cells require a larger driving force to allow the migratory cells to

invade. When the cells are stiffer, i.e., when the Young’s modulus

exceeds 18, the multi-cellular system behaves completely differ-

ently; the migratory cells do not proceed any further.

A larger driving force was found to trivially increase the

migration speed (Figure 8E); however, it also eliminates collective

migration (Figure 9A) because a powerful migratory cell easily

pushes the non-migratory cells out of its way and makes the effect

of the null space less important in migration. This interpretation

also suggests that there is a trade-off between migration velocity

and collectivity, as seen in Figure 3.

Figure 8. Dependence of transportability on the physical parameters of cells. The green, blue, and red lines represent collective, neutral,
and dispersive migrations corresponding to the parameters indicated by a, b, and c in Figure 3D, respectively. The average migratory cell speeds are
plotted according to various values for population size (A), migratory cells radius (B, C), migration driving force (D), and Young’s modulus for all cells
(E). In (F), an additional attractive force from cell adhesion is included in the model by using Equation (8) (see also the text) instead of Equation (1),
and its intensity a is varied. In (A), (C), (D), (E), and (F), the setting of the migratory and non-migratory cells is similar to that in Figure 2, with the
addition of the attractive force in (F), whereas in (B), there is only a single migratory cell surrounded by non-migratory cells.
doi:10.1371/journal.pone.0027950.g008
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The effects of adhesion molecules are implicitly reflected in the

model by the action-reaction force between contacting cells.

However, adhesion molecules play other roles in attracting cells.

To examine whether the adhesion force does or does not affect

multi-cellular migration, we further extend the model to include

an attractive adhesion force between neighboring migratory cells

that are located within a distance of L:

m
dri

dt
~
X
j[Ni

Frepij
z
X
j[Mi

Fmigij
z
X
j[Li

Fadhij
zFflui

ð8Þ

Fadhij
~{a Lz(RizRj){Eri{rjE

� � ri{rj

Eri{rjE
, ð9Þ

where a is the intensity of the attractive force and Li is the set

of migratory cells that satisfy the condition, RizRjv

Eri{rjEƒRizRjzL. In this extension, the strength of the

attractive force is designed to increase as the cells become closer (as

in Equation (9)) because the number of binding adhesion molecules,

which generates the attractive force, increases as the cells become

closer. To see the difference between Equations (1) and (8), we depict

the potential V for those equations; the repulsive and attractive forces

depend on the potential gradient according to FrepzFadh~LV=Lr

(Figure 1C). In the previous equation, the migratory cells are only

repelled when they come in contact (black line in Figure 1C), whereas

in the extended model that employs this new equation, the migratory

cells are attracted when they become close (red line in Figure 1C).

The typical orders of a and L are approximately 10{3N/m and

10{5m [18,21], respectively, and their non-dimensionalized values

become 100*101 and 100, respectively.

We found that the attractive force inhibits the migrating speed

(Figure 8F). Interestingly, the additional attractive force changed

the neutral migration mode to another mode characterized by

forming a cluster or chain (Figure 9B), as experimentally observed

in cancer cell migration [10]. This result implies that cellular

adhesion can be involved in generating migration patterns

accompanied by cluster and chain-like behaviors.

Discussion

During multi-cellular development, in addition to intra-cellular

biochemical features, mechanical cellular features evoked by direct

physical interactions with neighboring cells become dominant. By

simulating multi-cellular migration using simple mechanical cells, we

have shown that microscopic stochasticity plays a significant role in

the emergence of population migration patterns and their logistics.

Our model can explain the collective migration of neural crest

cells, which occurs through the autonomous formation of a stream

(Figure 5A, upper panel). Stream formation has been hypothesized

to be extra-cellularly regulated by repulsive cue molecules [22].

Recently, however, it has been reported that down-regulation of

the repulsive cue molecule neurophilin-1 does not affect the

collective migration of neural crest cells [7]. Our model has

indicated that the combination of strongly fluctuating migratory

cells and weakly fluctuating non-migratory cells lead to collective

migration with autonomously stream formation (point a in

Figure 3D). Although the mechanisms by which chemotactic cells

manage to suppress the intrinsic stochasticity of signal transduction

have been previously discussed [3], the ways in which multicellular

functions are implemented in the context of the stochastic

migration of individual cells have not been examined.

Several theoretical models have been proposed for multi-cellular

migration [23,24]. The dynamics of the cell population have often

been modeled by reaction-diffusion systems [25]. Although

approaches based on reaction-diffusion systems likely ignore the

detailed dynamics at the single-cell level, they are still useful for

providing insight into macroscopic mechanisms. A previous

theoretical study addressed the migration of neural crest cells in

the intestine, thereby highlighting the biological significance of cell

proliferation [14]. Proliferative activity was also found in the

cranial neural crest cells that we addressed in this study [15].

Therefore developing a model that includes this proliferation is an

important step towards reproducing multi-cellular migration more

realistically. Proliferation was easily introduced into our model by

adding a new cell near the existing cell, as in an existing

computational model [26]. An alternative approach is the phase-

field model, in which cellular morphological changes are

represented by partial-differential equations that are derived by

minimizing certain energy functions; this model has been applied

to both cellular migration [27] and proliferation [28]. Because the

phase-field model can accommodate flexible morphological

changes at the single cell level, it is suitable for simulations of

population migration with proliferation.

In our model, multi-cellular migration was simply modeled

using three forces: (1) the repulsive force between cells, (2) the

driving force of migratory cells accompanied by the reactive forces

of neighboring cells via adhesion, and (3) the stochastic forces

involved in a random walk. These forces are biologically

reasonable for the following reason. The repulsive force is induced

by the compressive deformation of the cellular morphology and

results from the elasticity of the cytoskeleton and plasma

membrane [16]. The driving force is generated when a migratory

cell extends a pseudopod that adheres to another cell [17]. The

Figure 9. Dependence of migration mode on the driving force and cellular adhesion. (A) Collective migration collapsed when the driving
force was too strong. The parameters values are identical to those in the top panel of Figure 5A, i.e., to the collective migration parameters with the
driving force (Fm) doubled. (B) Chain- or cluster-like migration was induced by introducing an attractive force due to cellular adhesion, i.e., Equation
(9). The attractive force intensity is a~4, the effective distance of the attractive force is L~1, and the other parameter values are those of the
characteristic point b in Figure 3D.
doi:10.1371/journal.pone.0027950.g009
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stochastic forces are autonomously generated by inherent intracel-

lular dynamics [2,3]. Although we ignored the complex rheological

properties of such structures [8], the minimal model we adopted is

still useful for understanding the system-level properties of multi-

cellular migration. We propose that our simulation and method of

identifying cellular interactions can be applied to other simple

developmental systems. Such systems include fibroblasts and neural

precursor cells (which sometimes migrate one-dimensionally in a

‘‘chain’’-like manner) [8], drosophila border cells during oogenesis,

and the zebrafish neurons during the development of lateral lines

that migrate as a ‘‘cluster’’.

Nevertheless, the in vivo mechanisms of cellular migration must

be more complicated than those assumed in this study. In reality, a

chemotactic cell shows morphological changes, such as extensions

of special structures called filopodia and lamellipodia, through

which the cytoskeletal network regulates cell motility [29]. When

migratory neural crest cells collide, their migration transiently

stops, and their morphological polarities are reorganized, a process

known as ‘‘contact inhibition’’ [30]. Furthermore, proliferation

and differentiation play important roles in the development of

neural precursor cells and neural crest cells, and these behaviors

are controlled by an extracellular Wnt signaling gradient. In the

neural tube, proliferation and differentiation are induced by high

and low levels, respectively, of the Wnt signal molecule, and the

Wnt gradient thereby regulates pattern formation [31]. Neural

crest cell requires the Wnt signal for their induction in the dorsal

neural tube [32], their delamination from the dorsal neural tube

[33], and to acquire motility [33]. Such effects are important for

understanding the development of complete multi-cellular systems;

because our current study focuses on collective cellular migration,

studying these effects remain as a future objective.

The collective behavior of populations of self-propelled particles

has been studied in the context of many biological and social

phenomena, such as schools of fish, flocks of birds [34], ant trails

[35,36], cars in traffic jams [37], and cellular slime molds [18]. In

such systems, individual particles actively process external

information provided by other particles, and this process induces

collective behavior. By contrast, our study obtained non-trivial

simulation results in which cells collectively migrate solely in

response to crowding effects and in the absence of active

information processing. Therefore, our work is the first to present

a feasible model for the emergent collective behaviors displayed by

multi-cellular systems in crowded situations. Moreover, our model

may provide general insight into the universal mechanisms

underlying a large class of complex systems that consist of

crowded self-propelled particles, such as pedestrian flow [37],

solution of charged colloids in electric fields [38], and other multi-

cellular developmental processes [39].

Materials and Methods

Non-dimensionalization
The original bio-physical model given by Equations (1–5) is

non-dimensionalized by setting a common cellular radius for all of

the cells, i.e., Ri~R for all i, as follows:
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We have defined the dimension-less variables as r0~
r

R
, t’~

Fm

mR
t,

k’~
kR

Fm
, and s

0

i~
si

Fm
here. After this non-dimensionalization, the

free parameters of the model are reduced to k’ and s
0
i, implying

that the noise intensity differs between the migratory and non-

migratory cells.

The adhesive force in the model is also non-dimensionalized as

follows:

F
0
adhij

~{
aR

Fm

L

R
z2{

ri

R
{

rj

R

��� ���� 

ri=R{rj=R

Eri=R{rj=RE
: ð15Þ

Then, we set a’~
aR

Fm
and L’~

L

R
.

Effective interaction identification
We proposed a method for identifying the effective potential U ,

which is defined in Equation (7). Because the non-parametric

(sample-based) estimation of the velocity vector field, v~(vx,vy)T,

can be rough due to the lack of continuous constraint, the potential

was modeled as a continuous parametric polynomial function:

U(x,y)~
X

i,j

aijx
iyj , ð16Þ

where aij is the coefficient of xiyj and x~(x,y)T denotes the

relative coordinates in two-dimensional space. Because a00 does

not affect the dynamics (Equation (7)), it was simply set to 0. The

relative velocity of the migrating cell is then re-expressed by

vx~{
LU

Lx
~a10z2a20xza11yz . . . ð17Þ

vy~{
LU

Ly
~a01za11xza02yz . . . : ð18Þ

These coefficients were estimated by a least-squares regression

on the basis of the vector field sampled by the simulations

(Figure 6D):
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where { denotes the Moore-Penrose pseudo-inverse. Because the

effective noise intensity along the vertical axis is important for

collectivity, sy was defined as the mean-squared error between the

sampled velocity vyi at (xi,yi) and its expected value, {LUest=Lyi,

i.e., Evyi{({LUest=Lyi)E2. To smoothly estimate the position-

based effective variance, we again used a polynomial fitting:

s2
y(x,y)~

X
i,j

bijx
iyj , ð20Þ

the coefficients of which, bij , were identified using a least-squares

regression on the simulation samples:

b00

b10

b01

b20

b11

..

.

0
BBBBBBBBB@

1
CCCCCCCCCA
~

1 x1 y1 x2
1 x1y1

1 x2 y2 x2
2 x2y2

1 x3 y3 x2
3 x3y3

..

. ..
. ..

. ..
. ..

.
P

0
BBBB@

1
CCCCA

{ vy1{ { LUest
Ly1

	 
��� ���2

vy2{ { LUest
Ly2

	 
��� ���2

vy3{ {
LUest
Ly3

	 
��� ���2

..

.

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð21Þ

Supporting Information

Movie S1 Simulation of ‘‘ collective migration’’ in
multi-cellular system. This movie corresponds to upper panel

in Figure 5A.

(MP4)

Movie S2 Simulation of ‘‘ neutral migration’’ in multi-
cellular system. This movie corresponds to middle panel in

Figure 5A.

(MP4)

Movie S3 Simulation of ‘‘ dispersive migration’’ in
multi-cellular system. This movie corresponds to lower panel

in Figure 5A.

(MP4)
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