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Abstract

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is elevated in a variety of human cancers. While FAK is
implicated in many cellular processes that are perturbed in cancer, including proliferation, actin and adhesion dynamics,
polarisation and invasion, there is only some limited information regarding the role of FAK in radiation survival. We have
evaluated whether FAK is a general radio-sensitising target, as has been suggested by previous reports. We used a clean
genetic system in which FAK was deleted from mouse squamous cell carcinoma (SCC) cells (FAK —/—), and reconstituted
with exogenous FAK wild type (wt). Surprisingly, the absence of FAK was associated with increased radio-resistance in
advanced SCC cells. FAK re-expression inhibited p53-mediated transcriptional up-regulation of p21, and a sub-set of other
p53 target genes involved in DNA repair, after treatment with ionizing radiation. Moreover, p21 depletion promoted radio-
sensitisation, implying that FAK-mediated inhibition of p21 induction is responsible for the relative radio-sensitivity of FAK-
proficient SCC cells. Our work adds to a growing body of evidence that there is a close functional relationship between
integrin/FAK signalling and the p53/p21 pathway, but demonstrates that FAK's role in survival after stress is context-
dependent, at least in cancer cells. We suggest that there should be caution when considering inhibiting FAK in
combination with radiation, as this may not always be clinically advantageous.
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Introduction

Radiotherapy is a mainstay of cancer therapy in multiple disease
contexts, but treatment is not always curative. A great deal of effort
is directed not only at improving the delivery of radiotherapy by
increasingly sophisticated spatial and dosimetric methods, and also
to identify combination strategies to improve radiation responses.
In regard of the latter, ionizing radiation can promote activation of
receptor and non-receptor tyrosine kinases (TKs), and modulation
of cytoprotective influences, such as increased DNA repair,
proliferation and reduced apoptosis [1,2,3,4,5,6,7]. Since these
responses contribute to cellular radio-resistance, which can
obviously limit the effectiveness of radiotherapy in cancer
treatment, understanding the contribution of TKs may provide
new molecular targets for radio-sensitisation, and potentially
improve tumour responses. One example is the Epidermal Growth
Factor Receptor (EGFR), which is the current most extensively
studied TK in this context. Strong preclinical evidence implies a
capacity of EGFR inhibition to enhance the anti-tumour effects of
ionizing radiation, and this has translated into the clinical setting
based on results of a Phase III trial in head and neck cancer [8,9].
This demonstrates the importance of robust intervention strategies
to establish whether particular TKs contribute to cellular radio-
sensitivity, or to radio-resistance.
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In contrast to the emerging evidence for EGFR, the role of
other TKs, especially non-receptor TKs, is less clear. Focal
Adhesion Kinase (FAK) is located at sites of integrin adhesion
from where it transduces signals into cells that control multiple
cancer-associated properties, including adhesion and actin dy-
namics, migration, invasion, angiogenesis, protection of cells from
suspension-induced cell death (sometimes termed anoikis) and
proliferation in 3-dimensions [10,11,12,13,14,15,16,17]. FAK is
often over-expressed in human cancer [18,19,20,21], and plays a
role in tumorigenesis, as demonstrated in multiple tissue types
vivo [22,23,24,25,26,27,28]. We previously showed that FAK
deletion inhibits mouse skin cancer development and malignant
progression, and that FAK deletion promotes apoptotic death of
normal skin keratinocytes in culture [25]. More recently, we have
also made use of the K14-Cre-ER™/flox-FAK mouse system to
derive squamous cancer cells (SCC) from chemically-induced
tumours [29,30]. FAK deletion causes multiple defects, including
impaired polarization and responses to directional cues, such as
chemotactic invasion, as well as impaired growth in 3-dimensions
(although growth on 2-D plastic is unaffected) and delayed growth
as xenografts i vivo [29,30].

FAK mediated pro-survival functions are thought to play an
important role in cancer cell survival, and that this likely involves
the p53 pathway [31]. Moreover, the FAK promoter contains p53
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responsive elements and can be down-regulated by DNA-damage
in a p53-dependent manner, while FAK expression correlates with
mutant p53 in breast cancer [32,33,34]. There is also  vitro and i
viwo evidence demonstrating that FAK knock-down can sensitise
cells to cytotoxic chemotherapy [2,35,36,37,38,39,40,41]. In
contrast, there are relatively few studies on the role of FAK in
radiation sensitivity. FAK phosphorylation is induced following
exposure to ionizing radiation i vitro [42], although this may only
have been a transient stress response as FAK’s role was not
explore. However, there is one report that siRNA-mediated FAK
knock-down promotes radio-sensitisation in pancreatic cancer cells
[43], although the underlying mechanism is unclear. Additionally,
over-expression of FAK in HL-60 cells confers marked resistance
to a variety of apoptotic stimuli, including ionizing radiation [44],
all suggesting that inhibition of signaling through FAK is likely to
promote radio-sensitivity. Here we have used a clean genetic
deletion/reconstitution system to test FAK’s role in cellular
radiation response i vitro and in vivo, specifically in FAK-deficient
SCC cells (and their FAK-expressing counterparts), and begin to
dissect out the underlying mechanism.

Results

We derived SCC cells from chemically-induced squamous cell
cancers in mice that expressed a floxed form of the ATP-binding
coding exon of fak under the control of skin-specific (K14) Cre
recombinase fused to the estrogen-receptor [25]. Excision of floxed-
Jak upon a single treatment with 4-hydroxy-tamoxifen (4-OHT)
resulted in complete FAK protein deficiency [29,30] (see also
Fig. 1C and 2B), which we could reverse by re-expressing wt
FAK, allowing us to study how cancer cells cope with severe
perturbation of the integrin/FAK signalling pathway. To assess
radio-sensitivity, a limiting dilution clonogenic assay was per-
formed comparing FAK —/— with FAK wt cells at increasing
doses of radiation up to 10 Gy. This revealed that the complete
absence of FAK in these cells was associated with increased radio-
resistance m vitro (Fig. 1A). A statistically significant difference in
surviving fraction was seen at doses of 4 Gy, 6 Gy, 8 Gy and
10 Gy (p wvalues of 0.0136, 0.0097, 0.0045, and 0.0036
respectively, analysed by student’s unpaired t-test, n =9).

We also tested whether FAK influenced radio-sensitivity i vivo,
by comparing FAK —/— and FAK wt SCC xcnografts. 2x10°
cells were injected subcutaneously into the right flank of female
nude mice and the animals were either irradiated with 5 Gy (in the
form of whole body irradiation) or mock irradiated when the
xenografts reached approximately 150 mm® This size was
selected as the FAK —/— tumours had overcome an initial delay
in their growth  viwo, and their proliferation rate at this point did
not significantly differ from their FAK wt counterparts. Previous
studies demonstrated that the CDI strain of nude mice could
tolerate 5 Gy total body dose for 10-14 days. After 7 days, the
xenografts were measured and the animals were sacrificed.
Tumour volumes were calculated before and after 5 Gy
irradiation or mock irradiation, and analysed by student’s
unpaired t-test. A statistically significant reduction in tumour
volume was observed in the irradiated FAK wt xenografts
compared with the mock-irradiated controls (p =0.0030, n=10),
but this was not replicated in the FAK —/— xenografts
(p=0.3300, n=10) (Fig. 1B). Protein extracts were prepared
from 5 mice in each group and subjected to western blotting to
confirm the level of FAK expression in FAK —/— and FAK
wt tumours (Fig. 1C). The low levels of FAK present from FAK
—/— tumour-derived material is likely from the small amount of
stromal or immune infiltrate (Fig. 1C).
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The SCC cells we used here expressed wild type p53 (confirmed
by sequencing (not shown)), and we identified a FAK-dependent
difference in induction of the p53 target gene, p2l, after
irradiation (Fig. 2; see also later). Specifically, induction of p21
was evident by 2 hours after treating FAK —/— cells with 5 Gy
irradiation; by contrast, p21 was not induced when FAK was
present (Fig. 2A). Interestingly, basal levels of p21 protein and
mRNA in sub-confluent populations of both FAK —/— and FAK
wt cells were similar (Fig. 2B and 2C, respectively), while p21
levels were elevated in both cell lines with increasing confluency
(Fig. 2D). This was in keeping with the widely accepted role for
p21 in contact-induced cell cycle arrest (Fig. 2D), and
demonstrated that a different stimulus was able to increase p21
levels irrespective of FAK status. To ensure the discrepancy in
induction of p21 following exposure to ionizing radiation was not
related to differences in cell density, care was taken in all
experiments to ensure that cells were irradiated at comparable
confluency, typically 70%.

The FAK-dependence of p21 regulation was reproduced i vivo.
Specifically, nude mice were injected subcutaneously with 2.5x10°
FAK —/— or FAK wt cells, xenografts were allowed to establish,
and the animals were then irradiated with 5 Gy irradiation when
tumours reached approximately 500 mm® in volume. Mice were
sacrificed at 0, 2 hrs, 6 hrs, and 24 hrs after irradiation (n = 3 per
group) and p21 levels were assessed by both western blotting of
tumour lysates and immunohistochemistry (IHC) staining of
paraffin embedded tissue. The FAK —/— xenografts exhibited
an increase in p2l protein levels as early as 2 hours post
irradiation (Fig. 3A, left panels); p21 levels appeared maximal
around this time. The increase in p21 was also visible by IHC
(Fig. 3A, right panels). Mean p21 positivity (based on scoring of 20
fields) was analysed across all time points and this demonstrated a
significant difference in the p21 levels in the tumours of irradiated
versus un-irradiated animals (Kruskal-Wallis, p=10.038, n=3).
Further, individual comparison of the separate time points
illustrated a statistically significant increase in p2l scoring
compared with baseline levels (Mann Whitney, p=0.0404,
n=3). In contrast, the FAK wt xenografts did not demonstrate
any consistent increase in p21 levels at any of the time points
examined. Western blotting of FAK wt-expressing tumour lysates
confirmed the presence of FAK, but there was no appreciable
increase in p21 protein levels (Fig. 3B). Further analysis of IHC
(Fig. 3B, right panels) confirmed there was no significant increase
in p21 expression at 2 hrs (p=0.6625), 6 hrs (p=0.6625), or
24 hrs (p =0.3827) (Mann Whitney, n = 3), when compared with
controls.

We extracted RNA from sub-confluent populations of FAK
—/— and FAK wt cells at various time points following 5 Gy
irradiation, and qRT-PCR was performed using primers for
endogenous p21. There was a biphasic increase in p21 mRNA
levels, peaking at 2 hours and 6 hours post irradiation in FAK
—/— cells; by contrast p21 mRNA levels were not induced in the
FAK wt cell line after irradiation (Fig. 4A). RNA was also
extracted from both cell lines 2 hours after a range of radiation
doses (0, 2, 5, 10, 20, and 30 Gy) and analysed by qRT-PCR. We
found that p21 mRNA levels increased in FAK —/— SCC cells in
a dose-dependent fashion (range from 2 Gy to 10 Gy); further
dose escalation did not result in further increased p21 mRNA. The
dose-dependent increase in p21 transcription was attenuated upon
re-expression of FAK wt in the FAK-deficient SCC cells (Fig. 4B).
In parallel experiments, we found that increased steady state levels
of p21 protein were evident after irradiation at various doses in
FAK —/— SCC cells, and that this was attenuated when FAK
expression was restored (Fig. 4G, compare left and right panels).
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Figure 1. FAK deficiency is associated with increased radioresistance in SCC cells. (A) Subconfluent populations of FAK —/— and FAK wt
cells were trypsinised and diluted in growth medium to a final concentration that would permit single colony growth. 100 pl of this suspension was
added to each well of a 96 well plate. Following incubation for 6 hours to allow cell attachment the plates were irradiated with 0, 2, 4, 6, 8 or 10 Gy.
The cells were analysed in triplicate for each radiation dose. After 7 days, the number of colonies per plate was counted and the surviving fraction
calculated. The graphical representation shown represents the mean = SEM from three separate experiments. Surviving fractions at each dose of
radiation were compared with un-irradiated cells by student’s unpaired t-test, n=9. (B) 2x10°> FAK —/— and FAK wt cells were injected
subcutaneously into the right flank of female nude mice. Xenografts were allowed to reach approximately 150 mm?>. The animals were then irradiated
with 5 Gy whole body irradiation or mock irradiated. After 7 days the xenografts were measured and the mice were sacrificed. The mean xenograft
volumes * SEM before radiation (upper panels) and after radiation (lower panels) are shown. Statistical analysis of mock irradiated versus irradiated
volumes at 7 days was assessed by student’s unpaired t-test, * denotes p<<0.05, n=10. (C) Protein extracts were prepared from the xenografts,
separated by SDS-PAGE, transferred to nitrocellulose, and blotted with anti-FAK (upper) and anti-B-actin (lower) antibodies. A sample of five distinct
extracts from each group is shown. A positive control (FAK wt cell extract) was added to the final lane of the FAK —/— xenograft samples.

doi:10.1371/journal.pone.0027806.g001

To complement the genetic deletion of FAK, we also used a FAK
kinase inhibitor (PF-562,271; [45]) at a dose of 0.5 uM (which is
optimal for inhibition of FAK kinase activity in these cells (not
shown)) for 2 hours prior to irradiation, and collected protein
lysates for immunoblotting at 0, 2, 4, and 6 hours after 5 Gy. p21
levels were visibly increased by 2 hours after radiation in 0.5 uM
PF-562,271 treated FAK wt cells when compared to untreated
cells (Fig. 4D).

As expected, p21 steady state levels in the SCC cells were at
least partly dependent on p53, and radiation-induced p21 in SCC
cells was inhibited by knock-down of p53 using siRNA (Fig. 5A—
C). However, we also noted that p53 induction after irradiation
was not particularly strong and was similar in both FAK —/— and
FAK wt SCC cells (Fig. 5D), indicating that the presence of FAK
was leading to some uncoupling of p53 and p21 induction, and
sensitivity to irradiation in these cancer cells. Densitometry was
carried out to quantify fold changes in p21 and p53 protein levels
after irradiation of FAK-proficient and FAK-deficient SCC cells
(Figure S1). These findings imply that substantially increased
transcription and expression of p21 protein occurs in FAK —/—
cells after clinically relevant doses of ionizing radiation, and that
this response is blunted by the presence of FAK. Thus, FAK
functions in these advanced cancer cells to suppress the p53-
dependent transcription of p21 after irradiation. This is not visibly
linked to differential induction of cell cycle arrest (Figure S3
(determined as described in Methods S1)) or apoptosis, which is
difficult to detect after SCC cell irradiation as judged by lack of
sub-G1 DNA content (not shown). This is despite differential
regulation of expression of the p53 target gene PUMA (Figure S4)
that can be associated with apoptosis.

Previous work has established clear links between FAK and p53
that promotes survival after stress-induced signalling (in cells that
lack p21), via the FAK FERM domain binding to p53 in the
nucleus, facilitating p53 degradation and survival [46]. Therefore,
we immunoprecipitated FAK from lysates of FAK wt SCC cells
before and after 5 Gy irradiation, and immunoblotted for p53 and
for Src (as a positive control). As expected, Src was bound to FAK,
and this was unaltered by irradiation (Figure S2A (determined as
described in Methods S1)). However, we found that FAK did not
interact with p53 (Fig. S2A). Lysates were probed for FAK, Src
and p53 to ensure equal loading (Fig. S2B). We also found that
p53 was efficiently translocated to the nucleus in both FAK —/—
and FAK wt cells after irradiation (not shown).

Since p2l1 has been associated with both resistance and
sensitivity to DNA damaging agents, including ionizing radiation,
we next depleted p21 using siRNA. We achieved around 90%
knock-down of p21 in SCC cells (Fig. 6A and 6B). Clonogenicity
was then assessed at 0, 4, and 8 Gy and comparison made between
cell populations transfected with p21 siRNA, scrambled siRNA or
control cell populations which had been mock transfected. We
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found a significant difference in surviving fraction at 8 Gy
(p=0.0129) between the scrambled siRNA- and p21 siRNA-
treated cells, such that p21 promoted radio-resistance in the SCC
cells (Fig. 5C). There is therefore a strong link between radiation-
induced p21 in FAK-deficient cells (but not in their FAK-
expressing counterparts) and the finding that FAK loss induces
radio-resistance in which p21 has a causal role in the SCC cells.

Finally, we assessed whether FAK deficiency affected more
general features associated with DNA damage. We found that
mRNA levels of a number of p53 target genes, which are involved
in repair following ionizing radiation, namely gadd45, p53R2 and
ddb2, and are known to be down-regulated by c-Myc [47], were
stimulated in FAK —/— SCC cells, but consistently less so in their
FAK-expressing counterparts (Fig. 7). This was particularly true
for ddb2 at the 2 hour time point, for gadd45 at later time points,
and for ps3R2 throughout the 0-24 hours after irradiation
(Fig. 7A, B and C). Since we showed that FAK is required for
c-Myc up-regulation downstream of Apc deletion in mouse
intestine [22], it may be that FAK impairs radiation-induced
expression of the genome integrity maintenance genes in SCC cells
via c-Myc-mediated repression. However, we noted that BRCAI
provides an example of a DNA-damage responsive gene that is
only minimally affected by FAK loss; indeed, BRCA1 expression is
suppressed by FAK deficiency at later times after irradiation
(Fig. 7D). Thus, we conclude that radiation-induced transcription
of a sub-set of p53-responsive genes is modulated by the presence
or absence of FAK, and so is not simply due to general p53
dysfunction.

As mentioned, there was no readily detectable apoptosis or
differential cell cycle arrest that can be attributed to FAK status.
Hence, we next examined phosphorylation on serine 139 of
Histone YH2AX that occurs in response to ionizing radiation [48]
and is considered to be a reliable surrogate of double strand break
repair. Quantification of the percentage of nuclei containing <5
or =5 YH2AX foci showed that both FAK —/— and FAK wt
populations had =5 YH2AX foci in virtually all cells 1 hour post
irradiation with 5 Gy (Fig. 8A). However, the FAK —/— cells
started to clear these foci within 6 hours and these returned to
baseline level within 24 hours; in contrast FAK re-expression in
the FAK wt cells caused a slower foci clearance rate (compare 6
and 24 hour time points, (Fig. 8A). This is consistent with more
efficient DNA repair activity in the FAK —/— cells, and a slower
rate of repair when FAK is present. Representative images of
YH2AX immunofluorescence in FAK —/— cells (before and
1 hour after 5 Gy irradiation) are shown (Fig. 8B). We also found
that FAK —/— SCC cells appeared to have generally higher levels
of YH2AX foci under control conditions (0 hours) than their FAK-
expressing counterparts (images not shown), with most FAK —/—
cells displaying several foct and around 10-15% displaying =5 foci
(Fig. 8A, 0 hours). This suggests that FAK-deficient SCC cells
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Figure 2. lonising radiation results in p21 induction in FAK —/— cells but not in FAK wt cells. (A) FAK —/— and FAK wt cells were
irradiated with 5 Gy at 70% confluence and lysates prepared at the indicated time points. Immunoblotting was then performed with anti-p21 (upper
panel), and anti-B-actin (lower panel). (B) Protein extracts were prepared from subconfluent FAK —/— and FAK wt cell populations, separated by SDS-
PAGE, transferred to nitrocellulose, and blotted with anti-FAK (upper panel), anti-p21 (middle panel) and anti-B-actin (lower panel) antibodies. (C)
RNA was extracted from subconfluent FAK —/— and FAK wt cells, PCR performed and product analysed. B-actin loading is also shown (lower panel).
(D) Protein extracts were prepared from FAK —/— and FAK wt cell populations at the level of confluency indicated. Immunoblotting was then
performed with anti-p21 (upper panel) and anti-p-actin (lower panel) antibodies.

doi:10.1371/journal.pone.0027806.9002

may have greater genetic instability than their FAK wt
counterparts; at least it appears that the FAK —/— SCC cells
have generally enhanced DNA repair functions and this correlates
with radio-resistance. Interestingly, we did not find any difference
in FAK-dependent regulation of radiation-induced phosphoryla-
tion of either p53 or Chk?2 (Fig. S5).

@ PLoS ONE | www.plosone.org

Discussion

We here show that, in stark contrast to a previous report in
which FAK knock-down sensitised pancreatic cancer cells to
ionizing radiation [43], FAK deletion (and a FAK kinase inhibitor)
can suppress signalling to radiation-induced, p53-mediated
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Figure 3. lonizing radiation results in p21 induction in FAK deficient xenografts. (A) FAK —/— SCC cells or (B) FAK wt SCC cells, were
injected subcutaneously into the right flank of female nude mice. When xenografts reached approximately 500 mm?, mice were irradiated with 5 Gy
and sacrificed at 0, 2 hrs, 6 hrs, and 24 hrs (n =3 per group). Half of the xenograft was fixed in formalin then embedded in paraffin and the other half
was snap frozen in liquid nitrogen. Protein extracts were prepared from the frozen sections, separated by SDS-PAGE, transferred to nitrocellulose, and
blotted with anti-FAK (upper blot panel), anti-p21 (middle blot panel), and anti-B-actin (lower blot panel). The paraffin embedded sections were
stained with p21 and the p21-positive cells visualised by IHC (right panels). Representative bright field images of p21 stained tissue at 0, 2 hrs, 6 hrs,

and 24 hrs post radiation are shown (scale bar, 0.1 mm).
doi:10.1371/journal.pone.0027806.g003

induction of p21, and this is linked to radio-resistance in advanced
SCC cells. We think it is important to record that FAK’s role in
cellular responses to ionizing radiation, and perhaps pro-survival
signalling in general, may be context dependent, and that there
needs to be caution when considering therapeutic combinations of
FAK inhibitors and radiotherapy, as this may not always be
clinically beneficial.

In the work described here, we show that deleting FAK (or
inhibiting its kinase activity) can release constraints FAK places on
signalling from pb3 to the induction of several target genes,

@ PLoS ONE | www.plosone.org

namely p21 and at least a sub-set of p53-regulated genes involved
in DNA repair in SCC cells. Moreover, FAK —/— SCC cells
appear to be more efficient at repair after radiation-induced DNA
damage. However, in these cells we did not find any significant
effect of FAK deletion on p53 protein stability (whether in
response to irradiation or DNA damaging drugs), p53 phosphor-
ylation or the ability of p53 to translocate to the nucleus, and we
could not find evidence of a FAK/p53 complex that has been
reported to operate in other contexts. Thus, our work adds to a
growing body of evidence that there is functional cross-talk
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Figure 4. p21 induction following radiation is regulated at transcriptional level in FAK —/— cells. (A) RNA was extracted from
subconfluent FAK —/— and FAK wt cell populations at various time points after 5 Gy irradiation. gRT-PCR analysis was then performed in triplicate.
Fold increase in p21 mRNA levels was calculated using the ddC(t) method with B-actin as a loading control. Graphical representation of combined
mean = SEM from three experiments is demonstrated. (B) RNA was extracted from sub-confluent FAK —/— and FAK wt cell populations 2 hours after
0,2, 5,10, 20, and 30 Gy irradiation. cDNA was then generated and qRT-PCR for p21 performed as outlined above. (C) Protein extracts were prepared
from FAK —/— and FAK wt cell populations 2.5 hours after exposure to various doses of radiation. The extracts were separated by SDS-PAGE,
transferred to nitrocellulose, and blotted with anti-p21 (upper panels) and anti-B-actin (lower panels). (D) FAK wt cells were incubated for 2 hours
with either the FAK inhibitor PF-562,271 at 0.5 uM, or 0.1% DMSO only, then irradiated with 5 Gy. Protein extracts were prepared at 0, 2, 4, and
6 hours and immunoblots probed with anti-p21 (upper panels), and anti-B-actin (lower panels). Representative immunoblots from 0.1% DMSO (left)

and 0.5 uM drug treated (right) cell populations are shown.
doi:10.1371/journal.pone.0027806.9004

between the FAK and p53 signalling pathways, but demonstrates
that there are additional ways in which this can occur. Although
we do not fully understand the mechanism, we found that in
the SCC cells from which we could delete FAK by genetic
recombination, FAK functions to suppress the radiation-induced
DNA repair functions of p33 by blocking induction of p21, and
that this is linked to enhanced resistance to ionizing radiation upon
loss of FAK signalling.

Materials and Methods

Cell culture

Squamous carcinoma cells (SCC) were isolated from chemically
induced skin tumours removed from KI14CrER FAK*/fox
transgenic FVB mice. Skin carcinomas were induced using a
two-stage chemical carcinogenesis protocol as previously described
[25]. Cells were grown in growth media (DMEM, 10% foetal
bovine serum and 2 mM glutamine) and maintained in a dry 5%
COy incubator at 37°C, and sub-cultured using standard
trypsinisation procedures.

Subcutaneous tumour growth

Cells were trypsinised, washed in Hanks Balanced Saline
Solution (HBSS; Invitrogen, Paisley, UK), and re-suspended at a
concentration of between 2.5x10° and 1x10° cells/100 pl in
HBSS. 100 pl of cell suspension was injected into the flanks of
immune-compromised CD1 nude mice (Charles River Ltd,
Margate, Kent, UK) and tumour growth measured every two to
three days using callipers. Tumour volume measurements were
taken from at least 8 mice for each cell line.

Irradiation of cells and mice

Cells were grown to 70% confluency and exposed to Y-
irradiation from a cobalt (50Co) source (Alcyon II teletherapy unit,
General Electric, France). The receptacles were set at a distance of
80 cm from the source and a Perspex layer added to the surface of
the receptacles in order to achieve build-up. The average dose rate
was 1-1.20 Gy/minute and doses of 1-30 Gy were applied. Mice
with tumours were treated with whole body irradiation using the
cobalt source described.

Clonogenic assay (limiting dilution method)

Cells were passaged at 70% confluence, counted, and diluted in
complete growth medium to yield a final concentration that would
permit single colony growth after the required period of
incubation. 100 pl of this cell suspension was added to each well
of a flat bottomed 96 well microplate. The plates were incubated
for 6 hours to allow cell adhesion then irradiated at increasing
doses of irradiation. After 7 days (to allow 6 cell doubling times),
the plates were washed in PBS, fixed in methanol, and stained with
crystal violet (Sigma Chemical Co, Poole, UK). The numbers of
colonies present per plate were counted on low power bright field
microscopy. Plating efficiency was determined by dividing the
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number of colonies present by the total number of cells seeded per
plate. Surviving fraction was then calculated by dividing the
plating efficiency at each radiation dose by the plating efficiency of
unirradiated cells. Each experiment was performed in triplicate
and on at least 3 separate occasions. The data was combined and
displayed graphically as mean * SEM.

Transient transfection with siRNA

The Dharmacon Smartpool method (Dharmacon, Abgene Ltd.,
Epsom, UK) of mammalian cell transfection was used for the
transfection of sub-confluent SCC 7.1 FAK —/— and FAK wt
cells. The siRNA for transfection was diluted in sterile PBS and
added to serum free MEM containing 5 ul of Dharmafect
Transfection Reagent 1 to give a total volume of 400 ul. The
complexes were incubated at room temperature for 20 minutes
then added directly to wells containing 1600 ul of complete
medium (final concentration of siRNA, 100 nM). The plates were
incubated for 24 hours at 37°C in an atmosphere of 95% air and
5% COy prior to any cell treatments and harvesting. In each
experiment, a scrambled pool of siRNA was used as control.

Immunohistochemsitry and immunofluorescence

Fixed paraffin embedded tissue sections mounted on slides were
dewaxed in xylene solution followed by stepped rehydration via a
series of graded alcohols to water. Antigen retrieval was then
performed by boiling the slides in sodium citrate solution (pH 6)
for 20 minutes. The slides were incubated with peroxidase block
for 5 minutes to quench endogenous peroxidase activity, blocked
in 10% FBS in 0.01 M Tris buffered saline (pH 7.5) for one hour
at room temperature, and incubated with p21 antibody (SC-421
(Autogen bioclear (Wiltshire UK) at 1:800 dilution) overnight at
4°C. A non-immune IgG control was compared in parallel to the
investigated sections by omitting the primary antibody step.
Visualisation was carried out with a DAKO EnVision kit ™
(Dako UK Ltd, Ely, UK) as per manufacturers’ instructions. The
resulting sections were analysed and images captured digitally
using an Olympus BX51 microscope and cell’D software
(Olympus UK Ltd, Hertfordshire, UK). For phospho-yH2AX
staining, cells were fixed in 4% paraformaldehyde for 15 minutes.
Permeabilisation was with 0.2% Triton X-100 in PBS for
5 minutes, staining with primary antibody (anti-phospho-gH2AX
(1:250; Upstate (Millipore), Hampshire, UK)) and treatment with
secondary antibody conjugated to Alexa® 488 or 594 fluorescent
dyes (Invitrogen, Paisley, UK) at a 1/200 dilution for one hour.
Cells were visualised by confocal microscopy.

Protein analysis: SDS-PAGE and Western blotting
Confluent cells were harvested in RIPA (50 mM Tris/HCL
pH 7.4, 150 mM NaCl, 1% Sodium Deoxycholate, 1% NP40,
5 mM EGTA plus standard protease inhibitor cocktail) lysis
buffer. Cell lysates were centrifuged in a bench-top, refrigerated
centrifuge at 13000 rpm at 4°C and the supernatant retained. The
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Figure 5. p21 induction in FAK —/— cells is p53 dependent. (A) FAK —/— cells were transfected with 100 nM siRNA (either scrambled pool or
p53 siRNA) at 50% confluency. After 24 hours, protein extracts were prepared and immunoblots probed with anti-p53 (upper panel), anti-p21 (middle
panel) and anti-B-actin (lower panel). (B) Densitometry comparing p21 levels in FAK —/— protein extracts treated with either a scrambled pool of
siRNA or p53 siRNA was performed. The p21 protein levels were normalised to B-actin and results shown are representative of one of three separate
experiments. (C) FAK —/— cells at 50% confluency were transfected with either 100 nM scrambled siRNA or 100 nM p53 siRNA, incubated for
24 hours, then irradiated with 5 Gy. Lysates were collected at the time points indicated and immunoblots probed with anti-p53 (upper panel), anti-
p21 (middle panel) and anti-B-actin (lower panel). (D) Protein extracts were prepared from FAK —/— and FAK wt cells 2 hours after exposure to
various doses of radiation (0-30 Gy). The extracts were separated by SDS-PAGE and immunoblots probed with anti-p53 (upper panels) and anti-p-
actin (lower panels). The right lane in each gel contains protein extracts from FAK —/— or FAK wt cells exposed to overnight treatment with 0.1 uM of
actinomycin D.

doi:10.1371/journal.pone.0027806.9005
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Figure 6. p21 knockdown increases radiosensitivity in FAK —/— cells. (A) FAK —/— SCC cells were transfected with 100 nM siRNA (either a
scrambled pool or p21 siRNA) at 50% confluency. Following incubation for 24 hours, protein extracts were immunoblotted and probed with anti-p21
(upper panel) and anti-B-actin (lower panel). (B) Densitometry comparing p21 levels in FAK —/— protein extracts treated with either a scrambled pool
of siRNA or p21 siRNA was performed. The p21 protein levels were normalised to B-actin level and results shown are representative of one of three
separate experiments. (C) FAK —/— cells were mock transfected or transfected with 100 nM of either a scrambled siRNA pool or p21 siRNA at 50%
confluency. After 24 hours the cell populations were trypsinised and diluted in growth medium to a final concentration that would permit single
colony growth. 100 pl of this suspension was then added to each well of a 96 well plate. Following incubation for 6 hours to allow cell attachment
the plates were irradiated with 0, 4, or 8 Gy. The plates were set up in triplicate for each radiation dose. After 7 days the number of colonies per plate
was counted and the surviving fraction calculated. The graph shows the mean = SEM from three separate experiments. Surviving fractions of p21
siRNA treated cells were compared with scrambled siRNA treated cells at each dose of radiation and statistical significance assessed by student’s
unpaired t-test, * denotes p<<0.05, n=9.

doi:10.1371/journal.pone.0027806.9006
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Figure 7. Induction of some p53 target genes involved in DNA repair is modulated by FAK. RNA was extracted from subconfluent FAK
—/— and FAK wt cell populations at various time points after 5 Gy irradiation. gRT-PCR analysis was performed using primers directed against Ddb2
(A), gadd45 (B), p53R2 (C) and BRCA1 (D), and these were all normalised to B-actin.

doi:10.1371/journal.pone.0027806.g007

cell lysates were then snap frozen on dry ice and stored at —80°C.
Animal tissue was removed post mortem and immediately frozen
in liquid nitrogen for storage at —80°C.. At the required time the
frozen tissue was added to a Precellys tube (Bertin Technologies,
Provence, France) with 100 pl of ice-cold T-PER buffer. The
samples were homogenised (Precellys 24 device

Bertin

@ PLoS ONE | www.plosone.org

Technologies, Provence, France), transferred to a 1.5 ml Eppen-
dorf® tube and centrifuged as outlined above. Protein concentra-
tion was determined using the MicroBCA™ Protein Assay Kit
(PERBIO, Glasgow, UK) and quantified by measuring light
absorbance with a DU® 650 spectrophotometer at a wavelength of
562 nm (Beckman Coulter UK Ltd, Buckinghamshire, UK).
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Figure 8. FAK —/— cells are more efficient at resolving DNA damage. (A) FAK —/— and FAK wt cells were plated at low density on glass
coverslips, incubated for 24 hours and irradiated with 5 Gy. At various time points, the cells were fixed, permeabilised, stained with anti-phospho-
YH2AX (serine 139) and visualised using confocal microscopy. The number of foci per nucleus (<5 foci or =5 foci) was documented in at least 100
cells. Results shown are representative of one of two separate experiments. (B) Representative images demonstrate un-irradiated and irradiated FAK
—/— cells at 1 hour post 5 Gy are shown, green - phospho-yH2AX and blue — DAPI (scale bar, 20 um), arrow in top right hand box shows at a nucleus
with <5 foci and broken arrow in bottom right hand box pointing at a nucleus with =5 foci.

doi:10.1371/journal.pone.0027806.g008
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Proteins were separated on SDS-polyacrylamide gels; specifically,
protein lysates of 540 pg were denatured and reduced by
addition of NuPAGE® 4 x LDS sample buffer (Invitrogen, Paisley,
UK). The samples were boiled for 5 min and then loaded directly
to an appropriate well of a NuPAGE® Bis-Tris polyacrylamide gel
immersed in Invitrogen™ NuPAGE® MOPS SDS running
buffer. 10%, 12% or 4-12% gradient gels were used depending
on the molecular weight of the protein of interest. The gels were
run at 200 V for 1 h. For western blotting, separated proteins were
transferred to a nitrocellulose membrane using wet blotting
apparatus (Jencons, Leighton Buzzard, UK) with an applied
voltage of 30 V for 90 minutes, blocked in 5% bovine serum
albumin (BSA), re-constituted in 20 mM Tris-Cl; pH 7.6,
150 mM NaCl and 0.1% Tween20 (TBST), for one hour at
room temperature with gentle agitation. The primary antibody
(FAK (New England Biolabs) — 1:1000; B-actin (Sigma) — 1:5000;
p21 — 1:1000; p53 (C12 New England Biolabs) — 1:1000);
phospho-Chk2 (S68 New England Biolabs) — 1:1000); phospho-
p33(IC12 New England Biolabs) — 1:500 was added at the
dilutions stated overnight at 4°C. The membrane was then washed
several times with TBST before the application of the appropriate
horseradish peroxidase (HRP) conjugated anti-immunoglobulin G
(IgG) secondary antibody diluted 1:5000 in 5% BSA - TBST
solution. Detection was by Amersham Biosciences (Little Chalfont,
UK) enhanced chemiluminescence (ECL).

Extraction of RNA and qRT-PCR analysis

RNA was isolated from 1x10° cells using miRNeasy mini RNA
extraction kit (Qiagen, Crawley, UK). 1 pg of RNA was then
converted to cDNA using Superscript First-Strand cDNA synthesis
kit (Qiagen, Crawley, UK). The cDNA was diluted 1 in 5 then
prepared for gRT-PCR analysis by adding 5pul to 45 pl
SybrGreen master mix (Invitrogen, Paisley, UK) containing
1 uM of paired validated primers directed against the target gene
of choice (Qiagen, Crawley, UK). All primer pairs were assessed
for linearity prior to use and produced a PCR single product of the
correct size as outlined by the manufacturer. Real time PCR was
performed on a gradient cycler (Bio-Rad, Hertfordshire, UK) with
the following programme: 95°C for 15 minutes (1 cycle); 95°C for
15 seconds+55°C for 30 seconds+72°C for 30 seconds (39 cycles);
72°C for 5 minutes (1 cycle); melting curve 70-95°C, hold every
0.1 seconds; 72°C for 10 minutes (1 cycle); 15°C for 10 minutes (1
cycle). Data was analysed using Opticon software V3.1 (Bio-Rad,
Hertfordshire, UK). Beta-actin controls were included with each
reaction to act as a housekeeping gene and fold change in mRNA
levels calculated by the ddC(t) method {Livak, 2001 #476}. The
samples were loaded in triplicate and the mean * SEM from three
combined experiments displayed graphically. Primers for p21 were
5'-3" AGC CTG ACA GAT TTC CAC and 5'-3" CTT TAA
GTT TGG AGA CTG GGA (provided by VH Bio, Gateshead,
UK); primers for ddb2, gadd45, p53R2, Brcal, PUMA and -
actin genes are Quiagen Quantifect Validated Primer Pairs for
which the sequences were not disclosed to us.

Statistical analysis

Graphs and bar charts were created in Excel and represent the
mean value = SD or mean value = SEM from three separate
experiments. Statistical tests were performed in Minitab 15,
p<<0.05 was considered significant and is denoted by *. An
unpaired t-test was used to compare the means of two
populations with approximately equal variance and normal
distribution, where n=number of data sets that contributed
towards the mean. For the purposes of IHC data analysis, the
mean percentage of positively stained cells per xenograft was
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calculated based on examination of twenty high powered fields.
The mean values of two test groups were analysed by either the
Kruskal-Wallis test or the Mann Whitney U test (typically three
to five xenografts from separate mice were included in each
defined experimental group).

Supporting Information

Figure S1 p21, but not p53, induction after irradiation
of SCC cells is dependent on FAK status. Densitometric
quantification of p21 at times after 5 Gy irradiation of SCC cells
(A; upper panel) and of p53 at 2 hours after various radiation doses
or following overnight treatment with 0.1 M actinomycin D (B;
lower panel).

(TIF)

Figure S2 There is no interaction between FAK and p53
in SCC cancer cells. (A) FAK wt cells were irradiated at around
70% confluency and lysates prepared at 0 (FAK wt) and 2 hours
(FAK wt+5 Gy). 1 mg of protein was immunoprecipated with an
anti-FAK agarose conjugated antibody at 4°Ci overnight. The IPs
were separated by SDS-PAGE and immunoblots probed with
anti-FAK (upper panel), anti-Src (middle panel), and anti-p53
(lower panel). As a negative control, irradiated FAK wt cell lysates
were also immunoprecipitated with an anti-histidine agarose
conjugated antibody. (B) 20 ug of protein lysates were immuno-
blotted and probed with anti-FAK, anti-Src, anti-p53, and anti-p-
actin.

(TIF)

Figure S3 FAKloss does not promote radioresistance by
increasing the length of cell cycle arrest in response to
ionising radiation. FAK —/— (A) and FAK wt (B) cells were
irradiated with 5 Gy at 70% confluence; at various time points
samples were fixed in 70% ethanol, stained with propidium iodide
and subjected to cell cycle analysis. The percentage of gated cells
in each of the component phases (G1, S, and G2/M) of the cell
cycle was evaluated at each time point. The graphs shown
represent the mean = SEM from three experiments.

(TIF)

Figure S4 PUMA is stimulated in FAK —/— cells after
irradiation. (A) RNA was extracted from subconfluent FAK
—/— and FAK wt cell populations at various time points after
5 Gy irradiation. qRT-PCR analysis was then performed as
previously described using PUMA primers with B-actin as a
loading control. (B) FAK —/— and FAK wt cells were irradiated
with 5 Gy at 70% confluence and lysates prepared at the indicated
time points. Immunoblotting was then performed with ant-
PUMA (upper) and anti-B-actin (lower) antibodies. Species
corresponding to PUMA-o and PUMA-B are shown.

(TIF)

Figure S5 Phosphorylation of p53 and Chk2 after
irraditaion are similar in FAK-proficient and FAK-
deficient SCC cells. Subconfluent populations of FAK —/—
and FAK wt cells were irradiated with 5 Gy and protein extracts
were prepared at various time points. The extracts were then
separated by SDS-PAGE, transferred to nitrocellulose, and probed
with anti-phosph-p53, anti-p53, and anti-B-actin as indicated (A),
and anti-phospho-Chk2 and anti-B-actin (B).

(TTF)

Methods S1 Supplementary methods are provided for
immunoprecipitation and cell cycle analysis.

(DOCX)
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