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Abstract

Correlated mutation analysis has a long history of interesting applications, mostly in the detection of contact pairs in protein
structures. Based on previous observations that, if properly assessed, amino acid correlation data can also provide insights
about functional sub-classes in a protein family, we provide a complete framework devoted to this purpose. An amino acid
specific correlation measure is proposed, which can be used to build networks summarizing all correlation and anti-
correlation patterns in a protein family. These networks can be submitted to community structure detection algorithms,
resulting in subsets of correlated amino acids which can be further assessed by specific parameters and procedures that
provide insight into the relationship between different communities, the individual importance of community members and
the adherence of a given amino acid sequence to a given community. By applying this framework to three protein families
with contrasting characteristics (the Fe/Mn-superoxide dismutases, the peroxidase-catalase family and the C-type lysozyme/
a-lactalbumin family), we show how our method and the proposed parameters and procedures are related to biological
characteristics observed in these protein families, highlighting their potential use in protein characterization and gene
annotation.
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Introduction

Overview of amino acid correlation methods
The observation of patterns of correlation at certain positions in

a protein family multiple sequence alignment has been described

at least since the eighties. It gained considerable attention in the

nineties, when a variety of correlation metrics were proposed.

Since then, the primordial application of correlated mutations has

been the search for contact pairs - indeed it was soon observed that

two positions showing strong correlation would probably be near

in the protein three dimensional structure, as proposed in Göbel’s

seminal article in 1994 [1].

The search for sets of co-evolving position has also been

discussed since the late 90’s. Atchley, et al. [2] used a simple

procedure to find ‘‘cliques’’ of co-evolving positions in a quantity

named ‘‘position association’’ (‘‘pa-values’’), an estimation of their

mutual information. Cliques were defined as groups of positions

such that any two positions within one have pa-values among the

highest 5% of all such values [2]. In the same year, a different

metric of positional correlation was proposed by Lockless and

Ranganathan [3]. Loosely based on Boltzmann’s statistical

mechanics, their ‘‘statistical coupling analysis’’ (SCA) presented

two energy-like parameters to quantify both positional conserva-

tion and inter-positional correlation. The first one, termed DG,

measures the overall conservation in a alignment position and

correlates well with the well known measure known as sequence

entropy [4]. The second one, termed DDG, measures the effect, in

an alignment position, of having a given amino acid in another

position. This procedure is called a ‘‘perturbation’’: therefore,

DDGi|j = ALA will measure how much the distribution of amino

acids at position i varies when there is an alanine at position j. This

metric has two interesting features. The first one is the

‘‘perturbation’’ concept, which results in much more useful

information when measuring the correlation between positions.

Being able to saying that, for a given alignment, position 25 and 45

are highly correlated is much less informative than saying that,

when there’s a cysteine at position 25, the fraction of cysteines at

position 45 increases considerably. While the former only suggests

that the two positions may be in contact in the three dimensional

structure, the latter also suggests that there might be a disulfide

bridge connecting the two positions for a subset of the proteins -

those having a cysteine at both positions. Although it was possible

to derive this information using SCA, the authors only reported

the overall DDG between two positions given a particular amino

acid at one of those positions. For example, the method only

reported that the presence of a cysteine at position 25 resulted in a

large variation of the amino acid distribution in position 45 when

compared to the overall alignment. Furthermore, the authors have
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dropped this metric in more recent articles, using instead a

positional correlation method which abandons the ‘‘perturbation’’

concept, only informing how much the two positions are

correlated [5], much like other correlation metrics which already

existed. Another interesting property of the original SCA

correlation metric is the fact that, since it uses binomial

probabilities, it automatically takes into account the sample size.

So, if a given correlation happened for 500 sequences in a 1000

sequence alignment, its measure is much bigger than the same

correlation for 50 sequences in a 100 sequence alignment

(something that would not happen for mutual information, for

example). However, it also has serious drawbacks. The idea of an

energy-like parameter was used in order to ‘‘measure energetic

coupling between positions on a multiple sequence alignment’’ [3],

and was supposed to be a theoretical alternative to experiments

such as thermodynamic cycle analysis. Although initially it seemed

that there was a linear correlation between the two quantities for

the selected residue pairs, subsequent studies showed that

correlated mutation algorithms (including SCA) can find residue

pairs which are close to each other and that these tend to be

thermodinamically coupled, but there is little evidence that

thermodynamic coupling is limited to residue pairs obtained by

these methods [6,7].

Dekker and co-workers [8] proposed a perturbation-based

method which, instead of using the energy-like approach, was

based in calculating the explicit likelihood of the observed

covariances, therefore providing a measure which is more directly

related to co-variation statistics [8], instead of an energy-like

quantity with no actual connection to a real energy. It still

measured the effect of a given ‘‘perturbation’’ (the presence of a

given amino acid in a position) on the overall distribution of

another site, but it showed increased predictive power in finding

native contacts, when compared to the original SCA algorithm. It

was also still dependent on a method to determine what would be

the ‘‘smallest significant perturbation’’, and the authors used the

empirical jackknife-like procedure described by the developers of

SCA [9]. A theoretically sound procedure was proposed by Dima

and Thirumalai, based on choosing the smallest sub-alignment

that would still satisfy the central limit theorem [10]. This

procedure would reduce spurious results which would arise if

poorly conserved columns are included in the analysis.

From 2003 onwards [9], correlation (DDG) matrices were

subjected to clustering methods in order to obtain a set of self-

correlated positions. These sets were postulated to represent the

‘‘structural motifs for allosteric communication in proteins’’ [9].

However, little attention has been paid to the fact that sets of

correlated (or anti-correlated, since both correlation and anti-

correlation implicate in positive DDG values) positions can have

very different meanings which could be better understood by

analyzing the individual contributions from each amino acid type,

the topology of the generated network, and the differentiation

from correlation and anti-correlation.

In recent work [11], we observed that correlated positions could

cluster into different groups, related to different properties in a

protein family, the Fe/Mn superoxide dismutases (SODs).

Members of the family can be either dimeric or tetrameric, and

usually selectively bind either Fe or Mn at the active site in a non-

substitutable fashion in order to present catalytic activity. The

clusters found seemed to be related to positions which were

already described as determinants of oligomeric state and metal

selectivity [12]. Therefore, instead of the previously postulated

view that clusters of correlated positions would reflect routes of

allosteric communication or energetic coupling, a much more

reasonable hypothesis can be proposed from these results: if a

given protein family is populated by proteins having distinct

properties (e.g., binding or not a given ligand, having different

oligomeric states, being able to interact or not with a given protein,

etc.), it is expected that these properties may not be determined by

the presence of a single amino acid, but rather a group of them –

and this group will emerge from a correlation analysis if a sufficient

number of proteins present those properties. However, it may be

common to have cases when these residues overlap in which case

using any overall positional correlation metric would only result in

finding that there is a set of highly correlated positions, but not

differentiating complementary classes whose key residues are in

the same positions (as would be the case in binding site selectivity,

for instance).

By measuring specific positional correlation between pairs of

residues in given positions, it is possible to define a network in

which the existence of a connection between two nodes (nodes

being given amino acids in specific positions, say, H34 and S52)

implies that sequences having the first amino acid in that position

also tend to have the second one in the other position. By defining

such a network, it is possible to use algorithms for the detection of

community structures. A community in a network can be defined

as a group of nodes showing strong connections between them, but

not to the rest of the network. This topic has been receiving

considerable attention by different groups since the early 2000’s

[13,14,15], and is now applied to a large variety of problems from

computer to social networks, and also to the life sciences, especially

in the field of molecular systems biology.

In order to tackle the problem of detecting and assessing

communities in a network, it is necessary to have a measure of

community structure. This can be done using the definition of

modularity [14], which is a quantity related to a network and a

division of that network into groups. If there is a high number of

edges (connections) between the vertices (nodes) of the same group,

but not many between vertices from different groups, the resulting

modularity will have a high value. Community detection

algorithms, therefore, engage in maximizing modularity, either

by brute-force search or by heuristic methods, which may be

needed for large networks. The original definition of modularity

can be expanded to include weighted edges, i.e., by specifying the

strength of the link between the two nodes, directed edges, for cases

when the connection from A to B is not the same as from B to A,

and, finally, negative weights, to reflect the fact there may be cases in

which it is needed to represent the fact that two nodes should not be

connected. This is particularly useful for correlated mutation

studies, since, at times, there is anti-correlation between pairs (e.g.:

having an alanine in position 54 results in having much fewer

serines in position 78 than expected). A generalization of

modularity to include those cases is described in [16].

In this article, we propose a simple method which exploits and

quantifies specific correlations. Then we show how networks built

from these quantities can be analyzed by community detection

algorithms in order to find groups of specific amino acids which

tend to be present simultaneously. Finally, it is shown how these

results can be used to provide determinants for properties in a

given protein family by testing the method for three families with

distinct characteristics. The first, Fe/Mn-SODs, is the ‘‘ideal

case’’: they are very well distributed in nature, with almost four

thousand sequences available in 1629 species, and they have two

independent properties (metal specificity and oligomeric state)

which are known for various members of the family. The second is

the peroxidase-catalase superfamily, which can be subdivided in

three classes with distinct characteristics, but for which the high

number of correlated pairs imposes a challenge for the community

detection procedure. Finally, the third family, C-type lysozyme/

Protein Classes from Amino Acid Communities
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alpha-lactalbumin, also presents two characteristics which can be

readily tested (lysozyme activity and calcium binding), but since

they are present only in metazoan, with 693 total sequences spread

among 254 species, sampling is much more limited.

Theory
Since we are interested in obtaining a method to explore the

specific interdependence of amino acids in given positions, the

most naı̈ve approach would be to define that amino acid x at

position i and amino acid y at position j are correlated when every

sequence presenting x in i also presents y in j. This has a series of

problems which need to be resolved. First, we need to address the

fact that there is noise and uncommon sequences in the alignment

which would result in the above criterion being accepted only very

rarely. Changing it to ‘‘having x in i results in having y in j for at

least 85% of the cases’’ is slightly better, but would still lead to

spurious results: if there are only a very limited number of

sequences having x in i, as the result would be statistically

insignificant, and also if virtually all sequences have x in i, these

two positions are not correlated, but rather, strictly conserved. So,

the putative correlated pairs must be filtered not only by a

minimum frequency, but also by a quantity which measures the

significance of the frequency shift for y in j upon the presence of x

in i.

Suppose that, in an alignment of N sequences, there are nA

sequences with a given amino acid x at position i and nB sequences

with a given amino y acid at position j. We want to test whether

the presence of x in position i has any correlation to the presence of

y in j. If they were uncorrelated, the observed frequency of y in j for

the subset of sequences having amino acid x in position i would still

be nb/N, which is our null hypothesis. If it is not, we measure the

corresponding p-value using the cumulative binomial distribution

cbd(N,n,f) as described:

The expected number of sequences having y in j for the subset

having x in i, considering no correlation, is nA(nb/N). If the

observed number, nB|A, is greater than this, we need to measure

the probability of observing at least nB|A occurrences in nA trials,

of an event whose probability is nb/N, i.e.:

p~
XnA

n~nBjA

nA!

n!(nA{n)!
nb=N
� �n

1{nb=N
� �nA{n

If, conversely, the observed number of residues y in position j is

less than expected, we use the opposite tail of the cumulative

binomial distribution to measure the probability of having no

more than this observed value, i.e.:

p~
XnBjA

n~0

nA!

n!(nA{n)!
nb=N
� �n

1{nb=N
� �nA{n

Therefore, we can use 2log(p) as a measure of the correlation

between two positions. Using log(p) instead of 2log(p) in the

second case, it is possible to denote anti-correlation.

There are two known sources of bias which need to be

addressed. The first is the size of the perturbation, that is, the

minimum number of sequences having a given amino acid in a

certain position in order to measure its effect. This has been

addressed by some authors, and we have adopted the approach of

Dima and Thirumalai, based on the satisfaction of the central limit

theorem [10]. Finally, another source of bias is the variety of the

multiple sequence alignment. If half of an alignment is populated

with identical sequences, for example, every pair of amino acids

appearing in that repeated sequence would be measured as very

highly correlated. Although this example describes a very unlikely

situation, it is known that the protein databases are populated by

mutations and polymorphisms, and also the distribution of

organisms having sequenced genomes is not well balanced among

the branches of the phylogenetical tree, therefore this effect must

be taken in consideration. While one can imagine different

approaches to exploit this feature, since this article deals only with

the extraction of overall correlations in a protein family which can

be used to detect and characterize classes/sub-families, we simply

apply an identity-based culling procedure: if two sequences have

more than a given pairwise sequence identity, one of them is

removed from the database. This procedure aims to remove

possible local correlations that would arise due to very similar

sequences, while still maintaining those that are well spread over

more distant taxa.

Networks of residue correlations are built using individual

combinations of residue type plus position as vertices, and 2logP

as the edge weight between two nodes. Pairs presenting anti-

correlation have reversed sign. In order to restrict to meaningful

correlations, the possible pairs are filtered simultaneously by p-

value and frequency thresholds called minlogp and Df: Using

minlogp = 10 and Df = 0.15, for example, means that a pair of

vertices remain connected if the presence of the first increases the

frequency of the second to more than 85% and vice versa (or

decreases to less than 15%, when they are anti-correlated) and the

p-value for this frequency shift is less than 10210.

The network can then be submitted to a community detection

procedure, for which there are currently many algorithms. Here,

we use the community detection by maximization of modularity

[14] for the most general case [16,17,18], using taboo search plus

fine tuning [19,20] as heuristics.

Communities can be assessed by ‘‘self correlation matrices’’, as

in Table 1, in order to observe why these nodes form a

community. They are useful to check for ‘‘outliers’’, i.e., members

with insignificant or negative correlation with the remaining

members, which were included simply because, at the end of the

community detection procedure, all nodes are compulsorily placed

in a community.

We can also define some quantities and procedures in order to

analyze the community structure in more detail.

Table 1. Self-correlation matrix for community 1 in Fe/Mn
superoxide dismutases.

POS ALL D146 G71 G72 H73 M25 Q145

D146 54.1 X 78.4 73.1 66.7 81.7 89.7

G71 60.4 87.7 X 86.1 81.4 93.3 99.7

G72 63.9 86.3 90.9 X 89.1 97.7 99.4

H73 57.3 70.7 77.2 80.0 X 85.8 79.4

M25 51.1 77.3 78.9 78.2 76.5 X 87.7

Q145 51.7 85.8 85.3 80.5 71.6 88.7 X

Column all refers to the overall frequency for the first column (e.g., H is present
at position 73 in 57.3% of the sequences). Subsequent columns refer to the
frequency upon the presence of the given amino acid residue in each column
(e.g., the presence of a glycine in position 72 raises the rate of glutamines in
position 145 from 51.7% to 80.5%).
doi:10.1371/journal.pone.0027786.t001
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Given that V(A) = [a1,a2,…,aN] and V(B) = [b1,b2,…,bM] are the

vertices in communities A and B, respectively, and w(anbm) is the

weight of the edge connecting an and bm (2log(p) or log(p), depending

if there is correlation or anti-correlation), we can calculate the

quantity DAB, shown below, to compare two communities:

DAB~
1

NM

X

an ,bm

w anbmð Þ

If DAB approaches zero, then communities A and B may be

related to functions which are independent of each other. If it is

large and negative, then there might be characters represented by

the amino acids present in the communities which are mutually

exclusive. If it is large and positive, then they are correlated -

which may be a rare case to find since, if the two communities are

correlated, they would probably be merged into one by the

community detection algorithm. However, if the edge weights

between the two communities are positive but below the

significance threshold used (minlogp), they will not be merged

during the community detection phase. Also, if A = B, this

parameter represents the overall connectivity within a single

community, and so could be used to rank communities from the

most significant to those with less correlated members.

The total number of community members is affected by

variables such as alignment size and the 2log(P) cutoff to include

pairs of vertices. This is an undesirable feature - if, for example,

one wants to plan site-directed mutagenesis experiments in order

to see how the amino acids found affect the property which is

putatively associated to a community, which residue should first be

mutated? Therefore, it is necessary to define a procedure to rank

the community members to find those which would arise in most

settings. A simple iterative procedure to order the members by

‘‘importance’’ for the community is shown below:

1. Calculate the sum of the correlation scores for each community

member against all others.

2. Remove the member which results in the lowest sum (meaning

that the ‘‘connectivity’’ of this member to other members is

lower and its removal implies the least overall connectivity

between remaining members).

3. If there are more than two members in community A, go to 1.

The members will be removed in ascending importance for the

community structure, with the two most important (expected to be

highly positively correlated) left at the end of the procedure.

We can also define an adherence measure to quantify the extent

to which a given sequence fits into a given community.

Adh S,Að Þ~ 1

NA NA{1ð Þ
X

ai ,aj[A

w aiaj

� �
dS ai,aj

� �

The delta function dS(ai,aj) takes the value 1 if both vertices (i.e.,

given amino acids in alignment positions) are present in sequence

S and 0 otherwise. If the amino acids in community A are related

to a given property in the protein family, then high values of

Adh(S,A) indicate that sequence S may possess that property,

being useful for gene annotation applications.

Methods

Alignment input
Multiple sequence alignments for protein families were obtained

directly from PFAM [21]. In order to reduce the known phylogeny

bias in correlation studies, alignments were culled according to an

identity cutoff. If the chosen cutoff is 80%, every sequence was

compared to all others and, every time two sequences had more

than 80% identity, the smallest sequence was removed from the

alignment. The alignments were also visually inspected to check

for errors in the alignment process or the presence of small

fragments. The Fe/Mn superoxide dismutase alignment presented

675 sequences using 80% as the identity cutoff, while the

peroxidases alignment still presented 977 sequences using 70%

as the identity cutoff. Since the C-type lysozymes/alpha-

lactalbumins were chosen as a test case for the effects of low

sampling, three alignments were used: one obtained after an 80%

identity cutoff (162 sequences), a second after a 90% cutoff (256

sequences) and a third after a 95% cutoff (323 sequences).

Correlation graph calculation
In order to be checked for correlation, given amino acids must

be present in a significant number of sequences at both positions.

This threshold was calculated as described in [10] and was found

to be 30% for SODs, 20% for peroxidases and 30% for C-type

lysozymes/alpha-lactalbumins. Given a pair (e.g., H15 and D58),

the correlation score as described in the theory section was

calculated for the two directions and then averaged. Each score

and also the average must be above the user specified threshold in

order to have that pair written into the output graph. A very high

threshold may result in missing useful data, while a low threshold

may include spurious results. A control procedure, described as

supplemental material (Text S1), indicates that while the

correlation score spread in real multiple sequence alignments

present a smooth distribution, column shuffled alignments show a

drastic fall in the maximum score observed. Therefore, no values

higher than 5 (virtually all of them among 0 and 1) are expected as

background for the protein families studied in this article. A

threshold of 10 with Df = 0.2 for SODs resulted in 26 pairs, while

more restrictive criteria for peroxidases, with a threshold of 20 and

Df = 0.15 still resulted in 514 pairs. For C-type lysozymes/alpha-

lactalbumins using Df = 0.15 resulted in 3, 15 and 30 pairs (for the

alignments obtained after identity cutoffs of 80%, 90% and 95%,

respectively).

Community detection
The software package Radatools [16,19,22] was used for

community detection. We used ten repetitions of a taboo search

followed by bootstrapping [19], Newman’s fast algorithm for

community detection [20] followed by another round of boot-

strapping.

Results

Fe/Mn superoxide dismutases
Fe/Mn superoxide dismutases are an ideal test case for a

methodology to detect and evaluate sets of residues defining

functional characteristics in a protein family, since they simulta-

neously present mutually exclusive (as in iron versus manganese

specificity) and independent (as in oligomeric state versus metal

specificity) characteristics. After the procedures described in the

methods section, a network of 23 vertices and 26 edges is

generated, and after community analysis five groups and two

individual residues arise as a total of seven communities. The

resulting network is shown in figure 1.

The relation between the elements of a community can be

represented in tabular form in self-correlation matrices, as shown in

table 1, and by applying the ranking procedure to this community,

we obtain an order of these residues, shown in table 2 (self-

Protein Classes from Amino Acid Communities
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correlation matrices and ranking results for the other communities

can be seen in the supplemental material, File S1, S2, 23, 24, S5,

File S6, S7, S8, respectively). Finally, we can compute the values of

DAB to compare the different communities. The result is shown in

table 3. The results in table 3 show that, from the five groups

(communities 1–5), communities 1 and 3 are highly anti-

correlated, while in all other cases they seem to present neither

correlation nor anti-correlation, as demonstrated by values close to

0. The isolated residues 6 and 7 appear to be related, respectively,

to communities 1 and 3, but were not placed in these communities

because they lacked positive links to these two communities for the

thresholds used.

Peroxidases-catalases
Peroxidases, like superoxide dismutases, are enzymes which are

involved in oxidative stress, but have a large number of possible

substrates – they simultaneously promote the oxidation of organic

substrates while reducing H2O2, producing water. They are

ubiquitous in living organisms and the latest release of PFAM

contains 4028 peroxidase domain sequences distributed in 666

species. They are classically subdivided into three classes (I, II and

III) based on phylogeny. Class I peroxidases are intracellular and

present in prokaryotes, class II are extracellular and present in

fungi, while class III are secretory and present in plants. Some

other crucial features differentiate between them including the

presence of calcium ions, disulfide bridges and glycosylation sites

in class II and class III peroxidases. Being heme binding proteins,

they present proximal and distal sites containing histidines, but

varying in the other residues that constitute the tryads (usually, W/

H/R and D/H/W for Class I peroxidases and F/H/R and D/H/

F for classes II and III). These features, together with the previous

observation of a high correlation among a large number of

residues in the peroxidases family using the statistical coupling

analysis metric [23] turns this family into an interesting case for the

methodology described here. Even after limiting the alignment to

sequences with at most 70% identity, calculation of correlated

pairs with scores greater than 20 (or lower than 220, if anti-

correlated) and Df = 0.15 results in a graph with 514 edges

between 113 vertices, a much larger network than the previous

case. Network decomposition yielded six communities and 41

isolated residues. Some outliers (community members which are

not highly correlated to other members) have been observed after

network decomposition for some residues presenting only anti-

correlations in the complete graph, turning this case into an

interesting test for the subsequent methods as described above.

The first community is composed of 30 members, each one

composed of residues ranging from 20% to 40% overall frequency

and which, upon the presence of other members, increase their

frequency to very high values, characterizing a well-formed

community (Table 4).

However, a clear outlier can be seen in the table: residue H40 is

present in 20.9% of the sequences, but its rate drops to near-zero

values upon the presence of other community members. By

applying the ranking procedure (table 5), it is the first residue to be

removed from the community, since its mean score when

compared to other members is negative. All other members have

positive mean values, and the last two residues have a positive

score of 123 (due to the fact that the presence of the tryptophan

increases the rate of the arginine from 22.3% to 97.2%, while the

presence of the arginine increases the rate of the tryptophan from

21.9% to 95.4%).

The second community also presents three outliers, which are

also readily eliminated by the ranking procedure. The calculation

of DAB for peroxidases is shown in table 6.

Figure 1. Network of correlations for the Fe-Mn superoxide dismutase family. The five groups (1–5) found after the community detection
procedure have their members painted in orange, blue, gray, purple and yellow, respectively. The two isolated nodes or ‘‘one-member communities’’
(6 and 7) are painted in black. The edges represent correlation (green) or anti-correlation (red) above the threshold of 10 for the correlation score (see
Methods).
doi:10.1371/journal.pone.0027786.g001

Table 2. Member ranking for SOD community 1.

Element Mean score

H73 18.2

D146 28.25

G72 40.83

M25 42.0

G71 Q145 59.0

H73 is the first to be eliminated, since its mean correlation score when
compared to all other members is the lowest. After subsequent eliminations,
the procedure ends when only G71 and Q145, which have a correlation score of
59, are present in the community.
doi:10.1371/journal.pone.0027786.t002
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C-type lysozymes/alpha-lactalbumins
The family of C-type lysozymes/alpha-lactalbumins have an

interesting evolutionary history. Being a potent agent against

bacteria, an ancestral lysozyme gene suffered a duplication about

300–400 million years ago, which resulted in a new protein that

codes for alpha-lactalbumin. This proteins lacks the lysozyme

catalytic activity, but can associate with b-1,4-galactosyltransfer-

ase, forming a functional heterodimer known as lactose synthase.

Furthermore, some members of the family show calcium binding

capacity while others do not – a property which is not truly

independent of the presence of lysozyme activity since lactalbu-

mins seem to have originated from calcium binding proteins after

an early separation of calcium binding/non calcium binding

members [24].

The networks for this family are much smaller than those

described for the two previous examples. Using the alignment

obtained after an 80% identity cutoff, there are only five vertices

and three edges. For a 90% identity cutoff, there are 17 vertices

and 15 edges, and, finally, a network obtained from an alignment

after a 95% cutoff consisted of 25 vertices and 30 edges. It should

be noted that the number of edges is relatively low given the

number of vertices, which may be explained by the fact that the

number of sequences used is much smaller, implying fewer

correlated pairs falling within the criteria used. The decomposition

of these small networks into communities is shown in figure 2.

Even though low sampling is clearly a problem, it was still

possible to obtain useful information from these data, as will be

described below.

Discussion

Structural and functional interpretation of correlation
results

The detection of contact pairs was the first application for

correlated mutation detection [1]. However, even though it is

common to see high correlation between residues in contact, many

times high correlation is observed between residues which are not

close. Correlation vs. distance plots for Fe/Mn superoxide

dismutases can be seen in Figure 3 (linear distance in 3A, three-

dimensional distance in 3B). Even though some of the highest

correlated pairs are either close in the sequence or in the 3D

structure, highly correlated pairs can still be seen for pairs which

are considerably distant in both cases. A linear fit (distance = a–

b*correlation) and an ANOVA analysis on both datasets showed

that there is an observed statistical significance for three-

dimensional distances (a = 13.664 and b = 20.460.2), but the

value for the linear coefficient b is too small for any practical use.

No statistical significance was observed when linear distances were

used. Curiously, if communities are analyzed separately, it can be

seen that the two communities having only two residues each (4

and 5) in fact report contact pairs, while this is not the case for

communities 1–3, as seen in figure 4.

The observed pattern for Fe/Mn superoxide dismutases can be

readily interpreted, however, when analyzed at the light of the

well-defined characteristics in this protein family. In figure 1, it is

possible to immediately identify the functional connection to the

network decomposition into communities. Community 1 groups

six residues which are related to the presence of an active-site

manganese, while community 3 groups residues found in SODs

which bind iron instead. Since these properties are mostly

Table 4. Self-correlation matrix for peroxidases.

POS ALL A49 A52 A152 D31 DX(483) D233 F251 F119 F21 G252 G166 G176 H29 H40

A49 33.3 X 81.2 91.0 88.5 83.1 83.0 92.7 73.4 91.4 89.2 85.8 70.6 89.7 0.0

A52 21.2 51.7 X 80.1 77.0 58.2 70.3 80.0 46.8 81.2 77.5 76.3 39.3 77.9 0.0

A152 20.6 56.3 77.8 X 88.0 67.5 81.7 93.2 52.2 91.4 90.1 87.7 41.6 89.7 0.0

D31 22.2 59.1 80.7 95.0 X 69.5 83.0 95.1 54.0 98.0 92.0 89.1 43.0 96.2 1.0

DX(483) 25.5 63.7 70.0 83.6 79.7 X 74.2 83.9 64.2 82.7 80.8 80.6 68.2 80.8 0.0

D233 23.4 58.5 77.8 93.0 87.6 68.3 X 92.7 53.2 90.9 90.1 87.7 44.4 89.2 3.9

F251 21.0 58.5 79.2 95.0 89.9 69.1 83.0 X 53.2 93.4 93.0 90.0 43.9 91.5 0.0

F119 38.1 84.0 84.1 96.5 92.6 96.0 86.5 96.6 X 95.4 93.0 92.4 91.1 93.9 0.0

F21 20.2 55.4 77.3 89.6 88.9 65.5 78.2 89.8 50.5 X 86.9 83.9 39.7 90.1 2.0

G252 21.8 58.5 79.7 95.5 90.3 69.1 83.8 96.6 53.2 93.9 X 90.5 43.9 92.0 0.5

G166 21.6 55.7 77.8 92.0 86.6 68.3 80.8 92.7 52.4 89.8 89.7 X 43.0 88.3 1.0

G176 21.9 46.5 40.6 44.3 42.4 58.6 41.5 45.9 52.4 43.1 44.1 43.6 X 43.2 0.0

H29 21.8 58.8 80.2 95.0 94.5 69.1 83.0 95.1 53.8 97.5 92.0 89.1 43.0 X 0.0

H40 20.9 0.0 0.0 0.0 0.9 0.0 3.5 0.0 0.0 2.0 0.5 0.9 0.0 0.0 X

To facilitate visualization, only the first fourteen residues are shown. The full matrix is available as a supplemental material. Residue numbering corresponds to royal
palm tree peroxidase. If a residue is not present in this protein, its numbering in the full alignment is shown within parentheses.
doi:10.1371/journal.pone.0027786.t004

Table 3. DAB for the seven communities in Fe/Mn superoxide
dismutases.

Community 1 2 3 4 5 6 7

1 26.08 22.39 232.8 21.17 20.75 11.83 212.33

2 22.78 15.31 6.7 2.92 11.08 5.17 1.33

3 241.13 15.0 44.24 3.2 4.4 230.0 22.2

4 20.75 1.83 1.0 7.25 20.5 0.5 0.0

5 20.33 5.58 1.6 20.5 12.5 3.0 0.0

6 23.17 13.33 230.4 2.5 12.5 0.0 241.0

7 216.33 2.67 21.4 20.5 0.0 240.0 0.0

doi:10.1371/journal.pone.0027786.t003
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mutually exclusive (except for the rare cambialistic SODs), the

residues in their communities are linked with negative edges,

shown in red. As previously noted, an overall correlation measure

would miss that feature, since positions 71 and 72 appear in both

communities, but with different residue types. Community 2

groups six residues which are related to dimeric SODs. It should

be noted that they do not present either positive or negative links

to the other communities, which is compatible with the notion that

metal selectivity and oligomeric state are independent properties.

Table 3, containing DAB values, quantifies the scenario which

could readily identified simply by examining figure 1: the fact that

the values for D13 and D31 are high and negative is expected, since

communities 1 and 3 are related to mutually exclusive character-

istics (the binding of iron or manganese). On the other hand, the

values for DAB relating community 2 to communities 1 and 3 are

for most cases much smaller, consistent with the fact that the

oligomeric state property should be unrelated to metal specificity.

Since the Fe/Mn superoxide dismutase family presents a good

test set for oligomeric state and metal specificity [12], we can also

assess the utility of the adherence parameter Adh(S,A) as defined

above. Adh(S,A) was calculated for every sequence in the set, and

the results are shown as histograms in Figure 5. Each one refers to

sequences with a given characteristic – dimeric, tetrameric, iron-

binding and manganese binding.

For iron binding SODs, virtually all sequences have Adh(S,1)

equal to zero and the maximum value for Adh(S,3) (Figure 5A).

Conversely, all manganese binding SODs have Adh(S,3) equal to

zero, and most have high values for Adh(S,1). Most cambialistic

SODs have low or null values for Adh(S,1) and Adh(S,3),

suggesting that the lack of residues in communities 1 and 3 are

related to non-specificity for manganese or iron. Finally, all

tetrameric SODs have Adh(S,2) equal to zero, while most dimeric

SODs show higher values.

The six communities observed for peroxidases-catalases show

residues whose separation can be readily interpreted. Community

2 groups typical residues from a Class III peroxidase: the most

striking ones are the six cysteines involved in disulfide bridges in

this class. It also presents F41, a phenylalanine on the distal side of

the heme which hinders access to the heme iron (a typical feature

of class III peroxidases). Community 3 groups F152, H42, H169

and R38. These residues are present in most peroxidase binding

sites: R38 and H42 make direct contacts with the peroxide and

F152 contacts the heme group, while H169 is the heme proximal

histidine. However, since not all peroxidases have the same

catalityc triad, the differences can also be seen in the community

structure: contrary to class III peroxidases, class I members present

a tryptophan in position 41 instead of a phenylalanine, and,

therefore, while F41 is present in community 2, W41 forms

community 4 with three other residues (E110, P63 and R55). Class

I peroxidases tend to have a different organization. They are

homodimers in which each chain is composed of two peroxidase

domains in tandem. From the three other residues in community

4, the proline and arginine are in the dimer interface, while the

glutamic acid is part of a salt bridge network connecting the two

peroxidase domains of a single chain, as seen in the crystal

structure of H. marismortui catalase-peroxidase (PDB code: 1ITK).

The C-terminal domain of class I peroxidases also present

specifically conserved residues, which are grouped under commu-

nity 1. Since the exact function of this domain is not perfectly

understood, the roles of the residues in this community cannot be

readily interpreted. However, it has been shown that, albeit

inactive, the second domain is crucial to the dual peroxidase-

catalase activity of Class I peroxidases [25], and therefore some

evolutionary pressure on key residues must still be present in the

C-terminal domain. This analysis, therefore, suggests positions

which could be further investigated in order to understand the

function of this domain. Finally, community 6 is formed by an

arginine and a glutamic acid forming a salt bridge in KATGs, a

Table 5. Member ranking for community 1 in peroxidases.

Element Mean score

H40 (130) 219.9

G176 (708) 14.0

F119 (469) 50.9

A49 (236) 52.1

D0 (483) 56.0

A52 (243) 65.6

I54 (246) 68.6

L155 (610) 81.1

T163 (624) 85.5

D233 (875) 87. 2

V76 (282) 88.0

V117 (465) 89.8

G166 (630) 96.9

W25 (93) 98.9

Q64 (262) 100.4

L61 (258) 104.5

T131 (481) 105.2

F21 (89) 107.2

A152 (604) 110.1

G252 (1018) 110.3

L257 (1033) 111.4

D31 (108) 113.3

R53 (244) 114.4

Q42 (133) 115.2

L28 (96) 115.3

H29 (106) 115.5

PX (137) 116.3

F251 (1017) 122.5

R169 (698) WX (887) 123.0

Numbering corresponds to royal palm tree peroxidase and alignment
numbering is given between parentheses.
doi:10.1371/journal.pone.0027786.t005

Table 6. DAB matrix for peroxidase communities.

Community 1 2 3 4 5 6

1 71.2 224.4 266.9 56.7 65.7 211.9

2 221.9 34.4 22.2 241.5 240.3 215.1

3 242.5 9.0 39.9 211.7 217.9 5.6

4 35.9 243.6 219.6 68.2 77.6 17.1

5 49.7 244.0 230.8 100.9 79.0 6.0

6 212.0 217.7 19.4 25.2 7.2 50.5

This matrix refers to communities having at least two members. The full matrix
is available as supplemental material.
doi:10.1371/journal.pone.0027786.t006
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catalase/peroxidase subfamily found among Class I members, and

the residues in community 5 are the charged pair D105 and R107

and a tryptophan residue, W123, also present in most KATGs –

the first two residues do not have structural equivalents in class II

and class III peroxidases, since they are in an inserted loop. The

relation between all those classes are consistent with the DAB values

found in table 6. The complete self-correlation matrices and

member rankings for all communities discussed above is provided

as supplementary material (files S9, S10, S11, S12, S13, S14, S15,

S16, S17, S18, S19).

The case of C-type lysozymes/alpha-lactalbumins is a nice

example to illustrate the effect of poor sampling in our proposed

methodology. There are two properties which are well character-

ized in this family and should, in principle arise in our analysis

assuming the validity of our hypothesis – that the presence of

different characteristics in a protein family will result in the

formation of communities grouping the residues involved in those

characteristics. The first property is lysozyme activity, which is lost

in alpha-lactalbumins, and the second is the ability to bind

calcium. In figure 2, we see how the formation of correlated pairs

and communities evolves when using different identity cutoffs.

When using 80%, the same value used for Fe/Mn-SODs, there

are very few residues passing the criteria, but it is already possible

to identify a pair whose function can be readily interpreted: D90

and D91 are involved in calcium binding. When less stringent

identity cutoffs are used, D85 (which also coordinates the calcium

ion) joins this community, and the lysozyme catalytic pair D52-

E35 arises. However, this is at the expense of the appearance of

other residue communities whose roles cannot yet be readily

interpreted. In the search for novel communities it is therefore

probably prudent to employ more than one identity cutoff and

examine its effect on the results if the number of sequences is

limited.

The utilization of a residue-specific correlation metric followed

by community analysis can capture sub-class determinant features

that will not be observed using traditional methods described

Figure 2. Community structure for the networks calculated for C-type lysozymes/alpha-lactalbumins. Data was calculated using as
identity cutoff A) 80% B) 90% and C) 95%. Residues shown in the same box were grouped into a single community. If, for two communities A and B,
both DAB, DBA and (DAB+DBA)/2 are higher than the chosen pair-wise correlation score cutoff (in this case, 10), the two boxes for communities A and
B are connected by a dotted line if (DAB+DBA)/2 is negative (no positive values were found). Residues involved in calcium binding are shown in bold,
and residues involved in lysozyme activity are underlined (see Discussion).
doi:10.1371/journal.pone.0027786.g002

Figure 3. Effect of pair-wise distance on correlation. A) linear distance vs. absolute correlation B) three-dimensional distance vs. absolute
correlation.
doi:10.1371/journal.pone.0027786.g003
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earlier. Since they usually report only the overall dependence of

two columns in an alignment, all the amino acid specific

information will be lost. In order to exemplify this, we generated

correlation data with three different methods: McBASC (the

original correlation metric proposed by Göbel et al. [1]), Mutual

Information (the leading method used nowadays for correlation

studies, usually to find contact pairs) and ELSC, a perturbation-

based method which uses explicit likelihood to calculate

correlations [8]. Since all these methods will report a correlation

value for each pair of positions, we have to apply a cutoff in order

to generate networks. Two cutoffs (50% and 80% of the maximum

correlation value found) were used for each method, and the

results (Text S2) show that only McBasc report communities

related to metal binding and oligomeric state, and the metal-

specific information is lost (since the metric is not residue-specific,

there is only a single community for metal related positions). These

comparisons highlight the advantages of the method we describe

here.

Conclusions
We present a method based on correlated mutations and

network analysis to calculate and analyze groups of amino acids

which may be related to functional classes in protein families. Due

to nature of the correlation metric and the network decomposition

method, the results can be readily interpreted and related to

Figure 4. Correlated residue communities in Fe/Mn Superoxide
dismutases. A–E refer to communities 1–5, respectively. The metal ion
is shown as a grey sphere. PDB code: 3ESF.
doi:10.1371/journal.pone.0027786.g004

Figure 5. Adherence value histograms for Fe/Mn superoxide dismutases. A) FeSODs, communities 1 and 3; B) MnSODs, communities 1 and
3; C) Cambialistic SODs, communities 1 and 3; D) Dimeric and tetrameric SODs, community 2.
doi:10.1371/journal.pone.0027786.g005
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biological features and their inter-relation (independence/mutual

exclusivity). We also propose additional parameters and proce-

dures that can be used to further analyze and extract information

from the data. We argue that community structure in networks

constructed using the described method is an expected feature for

protein families presenting functional sub-classes, and therefore

could be exploited to identify key residues for specific functional

properties. Also, it can be a useful tool for gene annotation, since

key residues which are clustered in a community should be more

likely to predict function than sequence identity methods, which

considers all residues evenly. The programs used for the presented

method are available to academic users upon request.
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