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Abstract

Effective population screening of HIV and prevention of HIV transmission are only part of the global fight against AIDS.
Community-level effects, for example those aimed at thwarting future transmission, are potential outcomes of treatment
and may be important in stemming the epidemic. However, current clinical trial designs are incapable of detecting a
reduction in future transmission due to treatment. We took advantage of the fact that HIV is an evolving pathogen whose
transmission network can be reconstructed using genetic sequence information to address this shortcoming. Here, we use
an HIV transmission network inferred from recently infected men who have sex with men (MSM) in San Diego, California. We
developed and tested a network-based statistic for measuring treatment effects using simulated clinical trials on our
inferred transmission network. We explored the statistical power of this network-based statistic against conventional
efficacy measures and find that when future transmission is reduced, the potential for increased statistical power can be
realized. Furthermore, our simulations demonstrate that the network statistic is able to detect community-level effects (e.g.,
reduction in onward transmission) of HIV treatment in a clinical trial setting. This study demonstrates the potential utility of
a network-based statistical metric when investigating HIV treatment options as a method to reduce onward transmission in
a clinical trial setting.
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Introduction

Randomized trials of preventive measures against HIV, such as

male circumcision [1–3], vaginal microbicide gel [4], pre-exposure

prophylaxis (PrEP) [5,6], and vaccination [7], have demonstrated

modest but potentially important benefits. In studies to date, such

interventions have had estimated efficacy levels of 30–50% in

preventing individual infections. What remains to be quantified,

however, is the potential such interventions have for larger

community-level effects (i.e. reduced infectiousness leading to

lower disease burden). It is unknown whether any current

intervention strategy could meet the public health goal of bringing

an epidemic under control.

Prevention and treatment efforts [e.g. imperfect vaccination,

PrEP followed by antiretroviral treatment (ART), or test-and-

treat] could reduce onward transmission by decreasing the viral

load of infected individuals [8]. Even interventions that were

ineffective or not intended to prevent infections (e.g. test-and-treat

[9]) may prove useful in lowering HIV’s capacity for future

infection by reducing viral load [10,11]; such effects would likely

be of great benefit to the susceptible population as a whole. It is

noteworthy that single or two-drug ART combinations are

sufficient for substantial reductions in maternal-child transmission,

even though such therapies are not adequate for complete

suppression of HIV [12]. Current clinical trials are not designed

to detect a decrease in onward transmission as an effect of an

intervention at the community level. Although group-level

randomized trials have been undertaken [13], such studies are

logistically complex and not always practical. This manuscript

addresses the question of how to use putative transmission network

information inferred from individual-level randomized studies to

learn about the community-level impact of prevention strategies.

HIV prevention trials face a combination of formidable

obstacles: relatively low efficacy (around 30%) and a low incidence

of HIV infections (#1% per year) in most populations. This

combination often results in relatively low statistical power (,80%)

to detect efficacious intervention, even for very large numbers of

trial participants (,10000 per arm). The recent CAPRISA

microbicide trial in South Africa is an exception, which was able

to conduct the study in a population with an unusually high

incidence of HIV (around 10%) [4].

Statistical tests used to detect the efficacy of prevention and

intervention treatments take into account the time of infection of

study subjects but not the evolutionary transmission history of the

virus. HIV is a measurably evolving pathogen, and changes in its

genetic sequence over time have been successfully used to

reconstruct recent individual-to-individual transmission histories

[14–20]. These transmission histories are traditionally represented

as phylogenetic trees, but they can also be depicted as (incomplete)

transmission networks. These networks are comprised of nodes,

representing HIV-infected individuals, which are connected by

edges if the genetic similarity or phylogenetic relatedness of the
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viruses is sufficiently high [17,21]. Individual nodes in a

transmission network can be described using a variety of statistics,

one of which is degree: the number of edges connecting to a given

node.

Here we propose a statistical metric that accounts for the

evolutionary relatedness of the virus and address two questions: (i)

can transmission networks provide a basis for developing more

powerful statistical metrics to measure prevention effeciveness, and

(ii) can these transmission networks be used to detect decreases in

viral transmission from study participants to others in their sexual

network? Through simulations on a transmission network inferred

from men who have sex with men (MSM), we demonstrate how

our network metric can be more powerful than current methods in

a clinical trial setting. In principle, clinical trials using this network

statistic should be able to detect a decrease in secondary

transmission, even if treatment fails to prevent primary infection.

Methods

Ethics statement
Written informed consent was obtained from all patients, and

the human experimentation guidelines of the US Department of

Health and Human Services were followed in conducting this

research. The US Department of Health and Human Services has

also issued a Confidentiality Certificate to all studies of the

University of California, San Diego involving acute and early HIV

infection and recruitment of sexual partners. Collection of these

data was approved by the University of California, San Diego

Institutional Review Board. The sequence data were anonymized.

Construction of the transmission network
Genetic distances among HIV sequences were calculated using

pol fragments sampled from N = 502 HIV-infected MSM from the

San Diego, California area between 1996 and 2009. All samples

were obtained during acute and early stages of infection. To

construct the transmission network, a connection (i.e. edge) was

placed between any two individuals (i.e. nodes) whose viral

sequences were ,1% distant under a codon-model based

synonymous distance estimated using maximum likelihood. This

1% cut-off was chosen based on previous studies [22] and by

inspecting the distribution of pairwise distances between putatively

unrelated pol sequences (subtype B) available from the Los Alamos

HIV database (http://www.hiv.lanl.gov/). Importantly, an edge

between two nodes does not indicate direct transmission between

two individuals, only a close association. Therefore, nodes may be

connected through an edge even though the individuals repre-

sented may never have had physical contact. Also, the edges in our

network are undirected.

Clinical trial simulations
We assumed that our simulated clinical trials contained 10,000

participants (5000 in each arm) who become infected at a given

rate (incidence rate = 0.02 infections per length of trial [2,6,7])

(Figure 1a). In the absence of an effective intervention, we expect

an average of 100 infected individuals in each arm. To simulate a

clinical trial of a given duration, we first sampled the number of

infected individuals in the treatment (T) and placebo (P) arms

using the binomial distribution, where the incidence in the

treatment arm was reduced by the assumed treatment efficacy.

Next, T random nodes in the network were assigned treatment

arm, P – the placebo arm, and the remainder (N minus T minus P)

– to infected community members who were not participating in

the trial (Figure 1b). A proportion of edges connecting to treatment

nodes were removed to approximate (i) the reduction of the

number of opportunities for future transmission resulting from the

delay in initial infection due to treatment and/or (ii) the reduction

in the probability of future transmission of the virus due to

efficacious treatment (Figure 1c).

Clinical trials were simulated for: (i) treatments with varying

efficacy (i.e. prevention/delay of infection: 0–40%), corresponding

to the reduction of the number of nodes in the treatment arm, and

(ii) varying efficacy of preventing future infection (i.e. reduced

transmissibility/delay of initial infection: 0–100%), corresponding

to the reduction in the number of edges connecting to the nodes

on treatment. For each scenario, 10,000 clinical trials were

simulated, and at the end of each trial, the statistical power of two

metrics used to gauge the efficacy of treatment was compared.

The first metric (referred to as the Number Infected Statistic)

used the number of infected participants in each arm. The

difference between the number of infected individuals in the

treatment and placebo arms was calculated. To assess the

significance of this difference, we calculated the null distribution

of the Number Infected Statistic by performing permutation tests

in which the status (treatment versus placebo) of each infected trial

participant, represented by a node, was assigned randomly, as if

treatment were ineffective, and the difference between the number

Figure 1. Procedure for simulation of clinical trial on mock
network. The clinical trial depicted here has a treatment efficacy of
25% (3 participants on treatment, shown in white, versus 4 on placebo,
shown in gray) with an edge removal rate of 40% (2 out of 5 edges
connected to infected treatment cases). (a) First, the network is
constructed using a synonymous sequence divergence cut-off. (b) Next,
trial status is assigned: treatment in white, placebo in gray, and
community members in black. Treatment nodes are infected at a
reduced rate reflecting treatment efficacy. (c) Edges are then removed
from treatment nodes at a given rate to represent the reduction in
transmission due to delay in infection and reduction in forward
transmission. The metrics are then calculated. The Network Statistic
metric is 6 for treatment and 9 for placebo; the Number Infected
Statistic is 3 for treatment and 4 for placebo. (d) Finally, a permutation
test to determine significance is performed on the modified network by
randomizing the assignment of treatment and placebo. Community
nodes remain unaltered by the permutation.
doi:10.1371/journal.pone.0027775.g001
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of infected treatment and placebo nodes was calculated.

Treatment status was permuted 10,000 times to construct the

null distribution with a= 0.05 (Figure 1d). Note that this

procedure is a permutation-based contingency table test, whereas

the null model estimated the (unknown) incidence by the observed

incidence for the entire trial.

The second metric (referred to as the Network Statistic) makes

use of the degree of nodes (the number of edges connected to a

given node). Each node (representing an infected trial participant)

was given a score: the degree of that node plus 1, to account for the

fact that the study participant was infected. Therefore, in the

absence of any network connections, the Network Statistic is

identical to the Number Infected Statistic. The difference between

the cumulative scores of infected individuals in the treatment and

placebo arms was calculated. To assess the significance of this

difference, we calculated a null distribution by performing a

permutation test in the same manner as described above

(Figure 1d). The procedure was implemented in Python. The

code and the anonymized network structure for the San Diego

cohort can be downloaded from http://www.hyphy.org/pubs/

NetworkStats/.

Results

The inferred San Diego network was relatively sparse,

containing only 345 edges on 502 nodes when using a 1%

synonymous divergence cut-off. Slightly less than half of the nodes

(47%) had a degree of one or greater (i.e. at least one edge

connected to the node) (Figure 2). The mean degree for all nodes

was 1.37, and the maximum degree for a node in the network was

18.

We simulated clinical trials on the HIV transmission network,

inferred from the San Diego MSM population, in which the

efficacy of treatment varied between 0 and 40%. Using these

simulated clinical trials, the statistical power of the Number

Infected and the Network Statistics was assessed. We also allowed

for the possibility that the intervention both prevented infection

and reduced the potential for onward transmission of the virus

over a varying range of efficacies, as might arise from the use of

PrEP and ART.

At every level of intervention efficacy examined, the Network

Statistic demonstrated the potential for increased statistical power

compared with the Number Infected Statistic (Figure 3). The

actual increase in statistical power depended on the proportion of

edges removed from each node undergoing treatment due to

either a (i) delay in initial infection or (ii) reduction in the

probability of future transmission. We note, however, that power

gains relative to the Number Infected Statistic were observed only

when the number of edges removed exceeded the efficacy of the

intervention (i.e. when the number of subsequent infections is

reduced to a greater extent than would arise solely from having

prevented the infection of the study participant). A plausible

example of this scenario would be through a reduction in viral load

through ART. The magnitudes of the potential gains in statistical

Figure 2. Histogram depicting the distribution of degree across nodes in the San Diego network.
doi:10.1371/journal.pone.0027775.g002
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power using the Network Statistic were greatest when the

treatment efficacy was low, since the Number Infected Statistic

becomes well powered ($80%) when treatment efficacy reached

35%. Importantly, even though our inferred network was

relatively sparse and did not represent the complete transmission

network, we still observed the potential for substantial gains in

statistical power. Importantly, the Network Statistic and its

permutation test preserved the Type-I error rate – the possibility

of incorrectly rejecting the null (see Figure 3: 0% efficacy, 0% edge

removal rate).

Next, we explored the impact of the number of community

nodes, representing infected individuals who were not study

participants, on statistical power. We simulated clinical trials with

limited community sampling (e.g. 0, 100, and 200 community

nodes). In an actual clinical trial, these sequences would be

obtained from individuals who became infected concurrently with

the clinical trial in the same geographical region. The reduction in

the number of community nodes resulted in a lower statistical

power than did trials simulated using the more densely sampled

network (Figure 4). Similar to the above simulations, this difference

was more pronounced at lower levels of efficacy; however, the

decrease in statistical power associated with smaller numbers of

community nodes was not evident at low levels of edge removal.

This relative unimportance of community nodes at low levels of

Figure 3. Statistical power of the Network Statistic on simulated clinical trials as function of the edge removal rate on the San
Diego network. The Network Statistic values are blue dots. The power of the Number Infected Statistic for a given efficacy is a solid red line.
doi:10.1371/journal.pone.0027775.g003
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edge removal may be the result of the sparseness of our network,

since most nodes did not share edges with any other nodes,

community or otherwise.

Finally, we explored the utility of our Network Statistic on two

types of simulated transmission networks: scale-free and random.

These simulated networks were constructed to have a similar

number of edges as the inferred San Diego network. The statistical

power of the Network Statistic was greater on these simulated

networks than on the San Diego network (Figure 5). However,

when comparing scale-free and random transmission networks,

the Network Statistic’s power was not consistently better in one

versus the other.

Discussion

These results illustrate potential gains from using network

statistics in the analyses of HIV prevention studies. The value is

twofold: (i) potential increases in power, particularly if the

intervention might have an impact on secondary transmissions

from study participants, and (ii) in certain cases, the ability to

detect effects that go beyond the study participants themselves and

involve the broader community. To assess the actual gains in

power using the Network Statistic will require application to PrEP,

vaccination, or other prevention studies. Nevertheless, the

simulations performed here demonstrate the potential of a simple

network-based statistic that accounts for only first-order network

interactions; more complicated network statistics (e.g. connectivity)

may be even more valuable.

Although accounting for modifications to the network can

increase the probability of detecting an effective intervention, one

would not expect to achieve the maximum power gains attained

here. In practice, unless direction of infection can be ascertained,

one would never observe a 100% reduction in edges connected to

nodes representing infected study subjects if the network is fully

sampled. This is because a source partner node will share at least

one edge with the infected recipient (an individual in the treatment

arm). Overall statistical power is also likely decreased because

many transmission events between study participants and other

community members are likely to be missed due to under-

sampling and therefore not included in the network. Nonetheless,

the permutation tests of the Network Statistic are valid regardless

of the amount of genetic information available for recent HIV

infections in a community. Additional information would increase

the statistical power of the Network Statistic.

An important feature of our Network Statistic, as currently

implemented, is its inability to fully distinguish between treatment

effects due to infection prevention and those due to transmission

prevention. Some insight regarding the importance of both effects

can be obtain by comparing the relative magnitudes of the

standardized Network Statistic and Number Infected Statistic;

standardization could be achieved by obtaining a bootstrap

estimate of variance for both statistics. When the Network

Statistic, but not the Number Infected Statistic, shows a significant

treatment difference, the transmission effect may be of greater

importance. In such settings, however, it may still be necessary to

combine across effects to achieve a statistically significant result. In

any case, a significant result using the Network Statistic would

indicate a benefit due to treatment whose exact nature would

require further investigation. There are also important settings

(e.g. clinical trials investigating test-and-treat interventions, in

which all participants are already HIV-positive), where the

outcome of interest is exclusively the network-level effect. In such

settings, interpretation of the Network Statistic as a measure of the

decrease in transmission due to treatment is straightforward.

There are many ways improve the estimation of a transmission

network and the associated statistic. First, directionality of edges in

the network might be available if estimated dates of infection were

observed during the trial or inferred using the results of clinical

tests [23] and/or estimates of viral nucleotide diversity [17,24]. In

addition, we could modify the Network Statistic to weight edges by

the inverse of the genetic distance between nodes, or some other

factor related to the probability of the cluster representing a

transmission event. Furthermore, it would be possible to account

for the temporal nature of network construction in an actual

clinical trial. For the test statistic based on study participants alone,

we could use a standard log-rank test. For the Network Statistic,

we could calculate, for each person, a value at every observed

Figure 4. Statistical power of the Network Statistic as a
function of the edge removal rate and the number of
community nodes. Treatment efficacies of 10%, 20%, and 30% are
shown. ‘All community nodes’ corresponds with the power of the
Network Statistic in Figure 3.
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event time in either arm. This method would provide a counting

process for each person that could take on any integer value. From

these values, we could calculate a network-based test statistic. For

example, for both randomized groups, we could sum the degree

over subjects of this process at each event time and then sum the

difference between groups over the event times. Calculation of the

null distribution of this test statistic could be undertaken using

permutation; further work needs to be done to determine the most

powerful tests against different specific alternative hypotheses.

Finally, agent-based modeling simulations may prove useful in

understanding how delay of infection and prevention of transmis-

sion relate to the power of the Network Statistic. This type of study

would allow for a more practical interpretation of the edge

removal rate used in our study. In addition, such simulations will

help determine the most appropriate cases for the implementation

of our novel Network Statistic.

We note that our methods could apply to any pathogen for

which a transmission network can be reconstructed using genetic

sequence information (e.g. hepatitis C virus and influenza A virus)

and any type of prevention study. Perhaps most interesting would

be studies such as PrEP, microbicide, barrier methods, or

vaccination where the intervention may impact future transmis-

Figure 5. Statistical power of the Network Statistic on simulated clinical trials on simulated networks. Scale-free networks are shown in
blue, random networks in green, and the San Diego network in gray. The San Diego network values correspond with the power of the Network
Statistic in Figure 3.
doi:10.1371/journal.pone.0027775.g005
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sion by reducing viral load in the source partner or through some

other mechanism.
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