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Abstract

Background: The protein p53 plays an active role in the regulation of cell cycle. In about half of human cancers, the protein
is inactivated by mutations located primarily in its DNA-binding domain. Interestingly, a number of these mutations possess
temperature-induced DNA-binding characteristics. A striking example is the mutation of Arg248 into glutamine or
tryptophan. These mutants are defective for binding to DNA at 310 K although they have been shown to bind specifically to
several p53 response elements at sub-physiological temperatures (298–306 K).

Methodology/Principal Findings: This important experimental finding motivated us to examine the effects of temperature
on the structure and configuration of R248Q mutant and compare it to the wild type protein. Our aim is to determine how
and where structural changes of mutant variants take place due to temperature changes. To answer these questions, we
compared the mutant to the wild-type proteins from two different aspects. First, we investigated the systems at the
atomistic level through their DNA-binding affinity, hydrogen bond networks and spatial distribution of water molecules.
Next, we assessed changes in their long-lived conformational motions at the coarse-grained level through the collective
dynamics of their side-chain and backbone atoms separately.

Conclusions: The experimentally observed effect of temperature on the DNA-binding properties of p53 is reproduced.
Analysis of atomistic and coarse-grained data reveal that changes in binding are determined by a few key residues and
provide a rationale for the mutant-loss of binding at physiological temperatures. The findings can potentially enable a
rescue strategy for the mutant structure.
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Introduction

P53 is the most mutated protein in human cancers,[1] and

mutations of p53 alone account for more than half of invasive

types of cancer.[2] According to the latest version (R15) of the

TP53 mutation database,[3] 27 580 different somatic mutations

have been identified in the full-length protein and the overwhelm-

ing majority of alterations are located within the core DNA-

binding domain (DBD). More importantly, ,75% of the resulting

mutants are, fundamentally, full-length proteins with single amino

acid substitutions in the DBD. In addition, about 40% of the DBD

mutations are concentrated at six particular hot-spots: Arg-175,

Gly-245, Arg-248, Arg-249, Arg-273 and Arg-282.[4]

Of the six hot-spot residues listed above, alterations at Arg-248

and Arg-273 are classified as DNA contact mutations whereas

substitutions at the remaining sites are structural mutations.

Contact mutants are characterized by the direct loss of the

sequence–specific transactivation activity while retaining the wild-

type (WT) conformation.[5] Structural mutations, on the other

hand, involve residues primarily responsible for maintaining the

conformational integrity of the DBD and stabilizing the p53

DNA–binding surface. Such alterations generate local structural

defects, which in turn transfer to critical regions of the DBD,

causing indirect loss of DNA binding.[6] Failure to bind DNA

prevents p53-dependent transcription and hence inhibits p53-

mediated tumor suppression.

Investigations of the thermodynamic stability of the DBD have

revealed the destabilizing nature of hot-spot mutations relative to

WT p53[7],[8],[9] and highlighted the temperature-dependence

of their DNA-binding affinity.[8],[10] Other studies focused on

different thermodynamical parameters that can determine the

ultimate stability of the protein and its mutants. Such experiments

included measuring pressure-stability at different temperatures

[11],[12],[13], different pHs [14] and studying the effect of DNA-

binding on the core domain stability.[15]

The first insightful evidence for the importance of temperature

in proper DNA binding was reported by Zhang and collaborators

in 1994 for Ala-143, which was considered a hot-spot mutation at
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the time.[10] The mutant p53 exhibited high DNA-binding

affinity at temperatures of 306 K and below, as well as stronger

transcriptional activity than WT p53. At physiological tempera-

ture both the DNA-binding and transcriptional activation

functions of the mutant were significantly reduced. These

observations were rationalized in terms of a two-conformational

state model: a mutant conformation at physiological temperatures,

and a wild-type conformation at lower temperatures. Friedlander

et al. examined the effects of temperature on a wide range of p53

mutants.[16] This included Ala-143, His-175, Trp-248, Ser-249

and His-273. With the exception of His-175, all mutants were able

to bind DNA at sub-physiological temperatures (298–306 K). At

310 K, however, their binding to DNA was defective. Numerous

other temperature-sensitive mutations were later identified and

targeted for restoration.[17] Ishioka’s group alone assessed a

collection of over 2,000 p53 mutants for temperature sensitivity

and identified 113 mutants with activity at 303 K.[18] This

represents about ,10% of all reported single amino acid

alterations of the DBD in human cancers.[3] Here, we focused

on the R248Q mutant, which is the most frequently occurring

mutation in human cancer. It is mostly associated with breast,

colon, head, neck and skin cancers. Moreover, it ranks as the

second most mutants in esophageal, gastric, lung, ovarian, and

prostate cancers.

In this paper, we report on the results of molecular dynamics

(MD) simulations that have been carried out for the DBD of WT

and R248Q p53 molecules in the presence or absence of a DNA

duplex at 300, 305 and 310 K. A comprehensive assessment of the

influence of temperature on p53-DNA intermolecular interactions

has been performed in terms of structural, dynamical and

thermodynamic properties. Because macromolecular binding is

often accompanied by large structural rearrangements, the slow

large-amplitude motions of p53 molecules and their DNA

complexes have also been analyzed using the essential collective

dynamics method.[19] The main aims of this work are to

determine the effects of temperature on the conformations of

WT and mutant p53 complexes and to identify key residues or

regions of the complexes, which modulate changes in DNA-

binding at the different temperatures. Our results indicate that

temperature plays an essential role in the stability of the hydrogen

bond network and binding properties of p53-DNA complexes over

both short and long time-scales. The outcome of our study

provides new insights into the way towards restoring apoptosis in

the above-mentioned types of cancer cells by activating the p53

pathway of tumorigenic R248Q mutants.

Results and Discussion

Mutations at the Arg-248 residue of p53 have been of

substantial interest to a large group of cancer researchers. Many

experiments were conducted in order to better understand their

roles. With the objective of restoring the activity of mutated p53

proteins, many researchers employed various experimental and

theoretical techniques aimed at understanding why they are

inactive in cancer cells.

The work presented here was inspired by many experimental

studies that focused on the effects of temperature on the stability,

structure and transcriptional activity of p53 and its Arg-248

mutants. For example, Bullock et al. investigated the wild-type

stability along with a number of its mutants including R248Q at

both low and high temperatures [7]. Their work revealed that the

R248Q mutant is stable at sub-physiological low temperatures.

The R248Q stability was less than that of the wild-type protein by

,2 kcal/mol. The mutant structure also retained a two-stage

unfolding transition, similar to the wild-type protein [11], which

indicated well-defined structures at low temperature. Interestingly,

the addition of a 22-mer double-stranded DNA p53 consensus

sequence raised the melting temperature of the tested proteins,

signifying a stabilizing effect due to DNA-binding [7]. The effect of

DNA on stabilizing the core domain was recently confirmed by

Ishimaru et al. [15]. An interesting study by Wong et al.

investigated the structural changes introduced by five hot spot

mutations including R248Q at low temperature using chemical

shift changes [20]. Their findings indicate that the R248Q

mutation induces structural changes in L2 and L3 regions of the

core domain at 310 K. That is, the R248Q mutation has the dual

capacity of being both a contact and a structural mutation. These

structural changes lower the binding affinity to the DNA without

significantly destabilizing the protein [21]. In fact, at high pressure

and low temperature, WT p53 can adopt the R248Q mutant

structure [11]. Benoit et al. investigated the transcriptional

activation of cyclooxygenase-2 (Cox-2) by p53 at low temperature

[22]. They also examined Cox-2 transcription induced by different

p53 mutants including the R248Q variant. Cooperating with

nuclear factor-kappaB (NF-kappaB), R248Q produced a signifi-

cant increase in Cox-2 expression similar to the wild-type protein.

Other common mutations of the Arg-248 residue (e.g. R248W

and R248A) also expressed a profound dependence on temper-

ature. The most perceptible behavior was noticed in the case of

R248W [16], [18]. Friedlander et al. [22] showed that R248W can

effectively bind to DNA at low temperatures and this binding

activity is significantly diminished at physiological temperatures. A

kinetic stability experiment on a number of different p53 mutants

revealed that R248A had a half-life time (t1/2) of 128 minutes at

low temperature compared to less than 3 minutes at 310 K. The

analysis in this study revealed an important concept in

understanding the stability of p53 mutants. Namely, there is a

remarkable correlation between the thermodynamic and kinetic

instability of the mutants. The more unstable the mutant, the

shorter its half-life time. This means that R248A is more stable at

low temperatures than at physiological temperatures. All of the

above-mentioned experimental data reveal a clear connection

between temperature and the stability and activity of p53 R248

mutants in general and the R248Q mutant in particular.

MD Simulations Of The Wild Type And Mutant Structures
The root mean square deviations (RMSD) of backbone atoms of

the DBD and DNA duplex (for the p53-DNA complexes) were

computed over the final ns of each trajectory. The results are

shown in figure 1 for the wild type at 300 K. In the rest of the cases

the behavior was similar (data not shown). The RMSDs of DNA

are significantly higher and are associated with larger fluctuations

than those of the protein in all trajectories. The higher mobility of

the DNA backbone relative to the protein backbone in both

complexes at all temperatures can be attributed to the dynamics of

the terminal residues of the double helix that are not bound to the

DBD. The RMSD plots of DNA-bound and DNA-free proteins

are generally similar. The mean RMSD of the DBD is slightly

smaller in the p53-DNA complexes than in the apo-structures for

both p53 variants. Similar observations were reported by Noskov et

al.[23] for the same protein at 300 K. In general, the backbone

RMSDs appear to be relatively stable to temperature changes over

the range investigated.

Hydrogen Bonding and Water Distribution
Several reports of the crystal structure of the p53-DNA

complexes have highlighted the central roles of water molecules

and hydrogen bonds in stabilizing interactions between the two

Temperature Effects in p53-DNA Binding
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biomolecules. In some of these investigations, the failure of p53 to

bind DNA has been correlated with the loss of one or two

hydrogen bonds mediated by a single residue within the DBD. For

example, the mutations of the hot-spot residue Arg-273[24] or

Arg-249[2] into histidine or serine respectively, induces a sequence

of hydrogen bond disruptions that ultimately lead to the loss of

DNA binding. For these two mutations, the hydrogen bond

network could be restored or compensated by means of an

additional single mutation. Changing the 284-residue to arginine

conferred DNA-binding ability to the R273H mutant. Similarly,

substitution of the residue at position 268 by arginine partially

restored the activity of the R249S mutant. The influence of

hydration on p53 folding has been studied by Silva et al. and

revealed that water interactions with both p53 and the DNA were

essential for proper folding and enhanced stability of the complex

[13]. The presence of a DNA molecule augmented the stability of

the DBD within p53 [15]. Below we confirm these concepts by

investigating the dynamical character of the hydrogen bond

network. We also compare the different connections among the

protein, DNA and water residues for both the wild type and the

R248Q mutant at all temperature ranges investigated.

Figures 2 and 3 describe the complicated hydrogen bond

networks formed by interfacial atoms in the dominant structures

extracted from clustering of the MD simulations. In figure 2-A,

several direct contacts can be identified between the DBD of WT

p53 and DNA nucleotides at 300 K. Arg-248 from the loop L3

protrudes into the minor groove of the DNA molecule resulting in

favorable electrostatic interactions between the positively charged

guanidinium group of Arg-248 and the negatively charged DNA

backbone. The minor groove adjacent to Arg-248 is compressed

and its bases are buckled so that the side chain of Arg-248 makes

three direct contacts with the DNA. Likewise, the side-chains of

Cys-242, Lys-120 and Ser-116 directly interact with DNA. Within

the protein structure, Cys-277 is hydrogen-bonded to the side

chain of Lys-120. In addition to direct p53-DNA contacts, seven

ordered water molecules are located at the interface. Among these

water molecules are conserved crystallographic water molecules

present in the original crystal structure, thus supporting their

inclusion in the starting structures for MD simulations. For clarity,

only water molecules participating in the hydrogen bond network

and which act as linkers between the different interacting residues

are depicted in the figures. Water molecules appear to have a

stabilizing role on the direct p53-DNA contacts. W1 and W2

connect Arg-248 to DNA through three different hydrogen bonds.

W3 mediates an interaction between the side chain of Asp-281 and

the backbone of Ala-276 while at the same time connecting them

to the guanine base of DG-303. W4 and W5 are involved in water-

bridged hydrogen bonds linking Asn-239 to Cys-277 and Ala-276

to Cys-277, respectively. W6 and W7, on the other hand, are

responsible for maintaining a hydrogen bond network through

which Ser-121 interacts with the DNA molecule via two different

hydrogen bonds. Among the residues identified in the vicinity of

DNA, Lys-120 and Ser-121 have been suggested as key

participants in DNA binding in a crystallographic analysis of

DNA-bound and DNA-free forms of the WT DBD.[25] In

addition, p53 DBD lacking residues 100–120 displayed reduced

binding during antibody binding experiments.[26]

Raising the temperature to 305 K does not significantly alter

the overall structure of the protein-DNA binding interface or its

hydrogen bond network (see figure 2-B). Arg-248 has retained one

of the direct contacts and two water-bridged hydrogen bonds (W1,

W2) with the DNA molecule. A direct contact between DNA and

Ser-241, that was absent at 300 K, is present at 305 K alongside

nucleotide-interactions with Asn-239, Cys-277 and Lys-120.

Moreover, the water molecules W3, W4 and W5 mediate

interactions between Asn-239, Cys-275 and DNA. At 310 K,

interactions between Arg-248 and DNA amount to four hydrogen

bonds and no water-bridged linkages are present, as shown in

figure 2-C. However, W1 is involved in connecting Arg-248 and

Ser-241, which in turn interacts with DNA nucleotides through

W2 and W3. Cys-275 is connected to DNA through its side chain

and through W4. Cys-277 is involved in an extensive hydrogen

bond network via backbone interactions with the side chain of

Asn-239 mediated by W5, W6 and W7 and side-chain interactions

with DNA and Lys-120. Moreover, Ser-121 and Ser-116 are

connected to DNA through the two water molecules; W8 and W9.

Finally, similar to the previous cases, Lys-120 maintains its direct

connection to DNA and to Cys-277. These strong interactions and

Figure 1. Plots of backbone RMSD for the DNA-bound and DNA-free WT p53 at 300 K over the final ns of 10 ns trajectories. The
black, blue and red lines correspond to RMSD values of the DBD bound to DNA, in absence of DNA, and of DNA only, respectively.
doi:10.1371/journal.pone.0027651.g001
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Figure 2. Hydrogen bond network for the wild type at three different temperatures. (A) 300 K, (B) 305 K and (C) 310 K.
doi:10.1371/journal.pone.0027651.g002
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Figure 3. Hydrogen bond network for the Q248 mutant at three different temperatures. (A) 300 K, (B) 305 K and (C) 310 K.
doi:10.1371/journal.pone.0027651.g003
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persistence of the native fold of p53 DBD confirmed the fact that

the wild type is stable at all three temperatures [7]. Interactions

with the DNA molecule are extremely favored by the protein.

They enhance its stability and prevent it from misfolding or

aggregating [15]. Armed with the validation of our protocol in

reproducing the native p53 conformation and constructing a fine

grid of detailed hydrogen bonding interactions, we proceeded to

investigate in detail the R248Q case.

Switching to the mutated p53 structure has yielded interesting

findings. figure 3-A illustrates the hydrogen bond network at

300 K. Glu-248 is connected to DNA through a direct hydrogen

bond and a water-mediated hydrogen bond. This water molecule,

W1, also connects Glu-248 to Asn-247, which was absent in WT

p53 at any of the three temperatures. Once more, water

molecules play a major role in coordinating a number of

hydrogen bonds at the DNA-p53 binding interface. For example,

W2 connects Ser-241 to the DNA molecule. W3 and W5 connect

Asn-239 to Cys-275. W4 and W6 connect the backbone of Ala-

276 to the guanine residue DG-303 and its side chain to the

cytosine residue DC-304, respectively. W8 mediates a superior

interaction between the backbone of Lys-120 and guanine residue

DG-318. In addition, the side chain of Ser-241 is hydrogen

bonded to the side chain of Asn-239, and as observed for WT

p53, Cys-277 preserves its hydrogen bond with Lys-120, which

maintains direct contact with DNA. At 305 K (see figure 3-B) an

important modification takes place. Glu-248 loses its direct

contact with the DNA molecule as the distance between the side

chain of Glu-248 and the closest DNA residue is greater than 4 Å.

This results in a large gap between the protein and DNA and

leads to a distortion in the minor groove close to Glu-248.

Despite this deviation, Glu-248 participates in two hydrogen

bonds with DNA through two water molecules, W1 and W4. A

fine hydrogen bond network connects guanine DG-324 through

four water molecules (W2, W3, W4 and W5) to guanine DG-303

in the middle of the DNA. This final guanine residue is directly

connected to Ser-241, Asn-239 and Ala-276. Surprisingly, Cys-

276 maintains its interaction with Lys-120, which was connected

to DNA through a water molecule, W9, unlike the previously

mentioned cases where Lys-120 had a direct contact to the DNA.

Finally, Ser-121 is connected to DNA through W10. A huge

difference is found to occur at 310 K (see figure 3-C). The

separation between Glu-248 and DNA is more than 6 Å. No

direct hydrogen bonds are established to connect Glu-248 to

DNA. The DNA terminal near Glu-248 is completely distorted

and separated from the protein. However, Glu-248 is connected

to the center of the DNA duplex through a water-mediated

hydrogen bond (W1) that also links Ser-241 to DNA. Cys-275 is

connected to DNA through W3. Ala-276 is hydrogen bonded to

Lys-120 while Ser-241 is attached to DNA via two water-

mediated hydrogen bonds.

The aforementioned atomistic details of the DNA-contact

geometry reveal a reasonable dependence on temperature. The

L3 loop was directly linked to the minor groove of the bound DNA

via Arg-248 at three different temperatures for the wild type, or via

Glu-248 at 300 K for the R248Q mutant. During the six different

simulations, the conformations of R/Q248 side chain were fully

extended and contacted the DNA nucleotides either directly or

indirectly through water molecules. It has also become apparent

that the L3 loop plays a dual role in DNA binding. Besides

contacting DNA through Arg-248, it is also an essential part of the

DBD of p53 by aiding in the stabilization of the zinc-binding site

and hence can affect other regions of the protein. Although the

minor groove area is largely affected upon the mutation at

physiological temperatures, the major groove contacts, i.e., Lys-

120, Ala-276 and Cys-277 maintain their interactions with DNA

even after Arg-248 was mutated to glutamine.

In addition to the well-documented stabilizing roles of water-

mediated interactions in biological complexes, hydration can also

have a destabilizing effect, as recently described by Silva et al.[15]

The authors attributed the enhanced stability of cognate DNA-

WT p53 complexes to the exclusion of unfavorable water-

mediated interactions from the protein surface. Conversely,

infiltration of water inside mutant complexes would be responsible

for their destabilization and promote aggregation of p53

molecules. The above reasoning suggests that the lower stability

of the R248Q p53 complex at high temperatures is a result of

structural changes in its hydration networks, as evidenced by the

formation of an interfacial water-filled cavity at 305 K and the

transformation of direct DNA contacts into water-mediated

interactions at 305 and 310 K. Therefore, alterations in the

hydrogen bond network provide an effective structural framework

for understanding changes in DNA binding for the R248Q mutant

p53 at physiological temperatures.

Binding Energy Analysis
MD simulations of the p53–DNA complexes and the hydrogen

bonding analysis provided valuable insights into the dynamics of

their interactions and the role of water at the interface of

complexes. Our next step was to investigate the influence of

temperature on the stability of the p53 variants. To this end, the

thermodynamics of p53-DNA binding were evaluated using the

molecular mechanics Poisson-Boltzmann surface area (MM-

PBSA) method, a well-established technique that takes into

account the effects of solvation, ionic concentrations, entropy

and molecular mechanics interactions. It has been previously

employed in many similar studies[27],[28],[29] and has produced

accurate free energy estimates at a reasonable computational cost.

Its main advantages include the lack of adjustable parameters and

the possibility of using a single MD simulation for the complete

system to determine all energy values.

The binding energy calculations are listed in Table 1 for the two

p53 structures at three different temperatures. It should be

mentioned that binding energies are reported relative to the WT

binding energy at 300 K, which was estimated as 212 kcal/mol.

Our calculations indicate that binding to DNA is maintained by

the WT protein both at 305 and 310 K. This is supported by

experimental evidence that WT p53-complex has a melting

temperature of 322 K, indicating that the complex is stable at

310 K.[7] While our results indicate that the binding affinity is

enhanced at physiological temperature, in vitro measurements

showed a decrease in the binding affinity of WT p53 at

310 K.[16],[30] The conflicting observations may be related to

experimental conditions and techniques. It has been shown that

the stability of p53 and DNA binding affinity is highly sensitive to

ionic strength, DNA sequence and pressure.[31],[16] Nonetheless,

the results agree on the qualitative aspects of binding, i.e., WT p53

DBD can bind to the DNA at all three temperatures and also

validates the MM-PBSA method as an adequate binding energy

evaluation technique.[16] At 300 K, the binding energy of R248Q

is decreased by ,3 kcal/mol compared to the WT at the same

temperature, signifying its possible binding to DNA. When the

temperature is raised to 305 K and 310 K, the binding energy of

the mutant p53 increases by 12 and 15 kcal/mol, respectively,

relative to the WT. These observations indicate that binding of

R248Q to DNA becomes highly unfavorable with increasing

temperature. Taken together with our observations from hydrogen

bond analysis, changes in the binding energy of the mutant p53

may be interpreted as a significant weakening of DNA-binding at

Temperature Effects in p53-DNA Binding
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305 and 310 K while WT p53 retains its binding characteristics at

these same temperatures.

To further identify the regions of the protein that cause the loss

of DNA binding, we decomposed the binding energy into residue

contributions. Table 2 lists the individual contributions of residues

that amount to at least 61 kcal/mol of the binding energies,

computed at 300, 305 and 310 K for the WT and R248Q p53.

Again, the reported binding energies are relative to the WT at

300 K. Comparing the WT to the mutant p53, as expected, the

substitution of arginine to glutamine carries the largest penalty

which is associated with a cost of ,8 kcal/mol at all temperatures.

The residues Ser-241 and Asn-239, which are close to the

mutation site, reduce the binding energy by ,4 kcal/mol. This

loss of binding energy is balanced by gains at the 119, 120, 276

and 277 sites.

Comparing these findings to the hydrogen bond analysis

mentioned earlier reveals an outstanding correspondence. The

stability of the hydrogen bond network at the three different

temperatures in the wild-type protein indicates an unremitting

binding to DNA. On the other hand, the lack of strong hydrogen

bonding in the mutant variant at higher temperatures, namely

305 K and 310 K, causes a parallel effect on the binding affinity to

DNA. In general, our analysis reveals that temperature-sensitive

residues are located in the three loops and in the C-terminal

region. The substitution of arginine by glutamine at residue 248

leads to changes in binding far from the mutation site, particularly

in loop L1. This is consistent with differences observed in the

major groove contacts during hydrogen bond analysis, and with

the proposed classification of the R248Q as a dual structural/

contact mutant.[14],[20] In addition, the zinc ion contributed

significantly to the overall binding energy between the protein and

DNA in all simulations. These energies ranged from 27 kcal/mol

for the WT to 28 kcal/mol for the mutant p53 at 300 K. These

results are consistent with the findings of Butler et al. that zinc is

crucial for proper DNA binding, and that the stability of the zinc

ion within the R248Q mutant is quantitatively comparable to that

of the WT protein.[21]

Essential Collective Dynamics
Macromolecular binding often leads to slow conformational

rearrangements, which cannot be probed directly by conventional

MD methods. To gain insight into the slow dynamics of DNA-

binding of p53 molecules, we have explored the collective

dynamical behavior of WT and R248Q p53 in the DNA-bound

and free forms using a novel approach [19]. Based on the theory of

collective dynamics, the method is a robust numerical technique

with the ability to predict slow macromolecular motions from

relatively short molecular dynamics trajectories. It has been

successfully applied to characterize the global dynamics and

flexibility of protein G[19] and prion proteins [32],[33] and has

been employed in the present work to probe the dynamics of long-

lived p53-DNA interactions in the present work.

The main-chain flexibility profiles of DNA-bound and DNA-

free p53 are presented at different temperatures in figure 4 for the

WT and Q248 mutant. The flexibility profiles are strikingly

similar, indicating that the overall structure of the DBD backbone

is unchanged upon binding. Highly flexible regions of the

Table 1. Binding energy changes between DNA and the p53
core domain due to temperature alterations.

Type T (K) BET-BEWT300K (kcal/mol)±1

WT 300 0

305 3

310 212

R248Q 300 3

305 12

310 15

Note: BEWT300K = 212 kcal/mol.
All binding energies are relative to that of the WT at 300 K. Our calculations
predict that the WT p53 maintains its DNA binding at all temperatures. On the
other hand, while the Glu-248 mutant (R248Q) does not lose its DNA binding
activity at 300 K, binding is highly unfavorable at 310 K.
doi:10.1371/journal.pone.0027651.t001

Table 2. Binding energy decomposition per residue for WT
and R248Q p53-DNA complexes at 300, 305 and 310 K.

Residue BEWT-BEWT300K (kcal/mol) BERQ-BEWT300K (kcal/mol)

Temperature (K) Temperature (K)

300 305 310 300 305 310

119 0 23 25 25 21 24

120 0 1 24 23 2 21

122 0 1 0 2 1 2

174 0 0 1 0 0 1

180 0 21 21 0 0 21

184 0 0 21 0 21 21

239 0 2 3 0 21 2

240 0 0 0 0 0 1

241 0 0 0 1 1 2

243 0 0 0 22 21 0

248 0 1 22 8 9 8

273 0 0 0 1 3 1

275 0 0 21 22 21 0

276 0 21 22 21 22 21

277 0 22 21 22 21 22

ZN+2 0 0 0 21 21 0

DNA300 0 0 0 1 0 0

DNA301 0 21 0 0 1 0

DNA302 0 2 2 1 3 3

DNA303 0 2 0 0 21 2

DNA304 0 0 23 22 22 22

DNA315 0 21 21 21 21 22

DNA306 0 21 1 0 0 21

DNA317 0 21 23 2 1 2

DNA318 0 2 3 3 2 3

DNA319 0 0 0 0 1 0

DNA320 0 22 0 22 21 22

DNA324 0 1 1 3 2 2

DNA325 0 2 1 2 1 1

DNA326 0 1 0 0 0 1

Binding energies are given relative to the energy of the DNA2bound WT p53
complex at 300 K. Residues 119, 120, 248 and 277 from p53 contributed the
most to temperature-induced changes in binding energy. At least eight DNA
residues involved in close contacts with the protein contributed significantly to
binding.
doi:10.1371/journal.pone.0027651.t002
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unbound DBD are located in loops L1 and L2 and the turn

connecting S7 and S8. Consistent with this observation, residues of

the S7–S8 region, and Val-225 in particular, have been

highlighted as inherently flexible parts of the human WT p53

DBD during a crystallographic analysis of the DNA-free

conformation.[25]

Differences between the holo- and apo- structures reside in the

flexibility of the loop L1 (residues 116–120) and the loop preceding

helix H2 (residues 273–277). The rigidity of the loops is enhanced

when p53 is bound to DNA. These observations are in excellent

agreement with reported X-ray structural data.[34] Comparison

of a DNA-free crystal structure of mouse p53 with that of DNA-

bound DBD of human p53 has revealed similar minor structural

differences between the two conformations, mainly around loop

L1. Two contacts were identified between p53 backbone atoms

and DNA at Lys-120 and Ala-276.[34] Both residues participate in

direct interactions with DNA during the simulations, as confirmed

by hydrogen bond and binding free energy analyses. In addition,

conformational changes upon binding of WT p53 to DNA have

been inferred from antibody binding measurements using

PAb1620. In agreement with the observed changes in the

flexibility profile, the epitope of PAb1620 has been isolated to

residues 106–114 and 146–156,[35] although residues 145–157

and 201–212 have been characterized as the epitope in a

conflicting report.[36] Because the computed main-chain flexibil-

ity profiles reflect changes in the slow collective dynamics, the

existing experimental data and the present findings suggest that

interactions between p53 and DNA at Lys-120 and Ala-276 also

lead to the collective rearrangement of atoms in the DBD. In a

separate comparative analysis of human WT p53 DBD in DNA-

bound and unbound forms, Wang et al. detected differences in the

flexibility of the S7-S8 turn, in addition to loops L1 and L2.[34]

Changes are not observed in the turn region during MD

simulation on neither short nor longer time scales. Discrepancies

between simulated and crystallographic data may be due to crystal

packing or limitations of force fields.

Interestingly, qualitative features of the flexibility profiles are

retained at all temperatures for both the WT and R248Q mutant

p53, as illustrated in figure 5. More importantly, the main-chain

flexibility of the L3 loop, which contains the mutated residue

appears to be unaffected by the residue alteration. In the unbound

form, differences between the main-chain flexibility of the WT and

mutant p53 are localized to the highly flexible L1 and L2 loops, in

agreement with the retention of the global fold in the mutant

Figure 4. Main-chain flexibility profiles of (A) WT p53 and (B)
R248Q p53 at various temperatures. Flexibility profiles determined
from Ca atoms of DNA-bound (black solid line) and DNA-free (red solid
line) WT and R248Q p53 at 300, 305 and 310 K. Regions of interest (loop
L1 and loop between S10 and H2) are highlighted in grey.
doi:10.1371/journal.pone.0027651.g004

Figure 5. Effect of mutation on the main-chain flexibility
profiles of (A) DNA-free(B) DNA-bound p53 at various temper-
atures. Flexibility profiles determined from Ca atoms of DNA-free and
DNA-bound p53 comparing WT (black solid line) and R248Q (red solid
line) variants at 300, 305 and 310 K.
doi:10.1371/journal.pone.0027651.g005
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protein, as indicated by NMR spectroscopy.[20] The experiment,

however, also revealed chemical shift changes between the native

and mutant proteins in L2 and L3 as well as terminal residues of

S4, S9 and S10. Analysis of the slow collective dynamics of Ca
atoms showed no discernible differences in the b-strands and loop

L3.

Upon binding to DNA, the loops L1 and L2 are stabilized and

the structural plasticity becomes comparable in these regions. The

stabilizing effect of DNA against misfolding and aggregation of

p53 DBD has been reported previously.[15] The lack of sensitivity

of the main-chain flexibility profiles of the p53-DNA complexes to

the R248Q mutation confirms that the global structure of the

DBD is essentially unaltered, as expected for a contact mutant.

Changes in temperature seem to have little effect on the relative

flexibility of the main-chain, suggesting that the global dynamics of

the DBD may be insensitive to differences in temperature over the

range investigated. These observations are consistent with the

retention of major groove contacts in loops L1 and L3 upon

mutation and changes in temperature, as revealed by the

hydrogen-bonded networks of dominant p53-DNA clusters p53-

DNA, and binding energy calculations.

So far, the slow collective motions of p53 molecules and their

DNA-bound complexes have been analyzed in terms of their

main-chain dynamics. To determine the role of side chains in the

long-lived interactions between p53 and DNA, the correlation

descriptor d was computed between interfacial side-chain atoms of

p53 molecules and DNA residues (see Materials and Methods). By

definition, the correlation descriptor is determined as a measure of

binding between macromolecular partners. In particular, small

values of d are associated with coherent dynamics between p53

and the DNA strand and are representative of strong intermolec-

ular interactions in general. On the other hand, larger d values

represent relatively independent motion and may be interpreted as

weaker binding. Plots of the correlation descriptor between

selected interfacial atoms of the side chains and each DNA

residue are shown in figure 6. The plots share similar features - the

largest levels of d occur at the DNA terminal residues, which are

unbound to p53 DBD. Two minima, related to contact points on

DNA, have also been identified. The minimum values of d are

roughly comparable when p53 residues bind both strands of the

DNA duplex, as observed for side-chains of Lys-120 in figure 6-A

or Arg-248 in figure 6-C. For residues that display a net preference

for contact at a particular strand, the plots tend to be asymmetrical

with the lowest point corresponding to the preferred contact site.

Figures 6 illustrates the levels of correlation between p53 side

chains and DNA, grouped according to the type of interactions,

i.e., major groove, phosphate and minor groove contacts,

respectively [34]. As shown in Figures 6-A and 6-B, the correlation

between DNA and p53 side-chains atoms involved in major

groove and phosphate contacts of WT and R248Q p53-complexes

are comparable at all temperatures.

This observation indicates that temperature or R248Q

mutation has little influence on the correlated motion of these

side chains, in accordance with our findings from the hydrogen-

bonding and main-chain flexibility analysis. Arg-283 represents an

anomaly within this trend: mutant p53-DNA complexes are

characterized by low levels of correlation between atoms of DNA

and guanidinium of Arg-283 relative to the WT complex at 300

and 310 K. Residue 283 is located near the C-terminus of the

DBD and was not identified as a major participant in DNA

binding based on the results of structural and thermodynamic

calculations. Previous application of the essential collective

dynamics approach has shown that terminal residues can give

rise to artifacts in the subspace spanned by essential coordinates

Figure 6. Plot of the dynamic correlation between DNA and
contact sites. Correlation between DNA and selected side-chain atoms
of p53 involved in (A) major groove, (B) phosphate and (C) minor
groove contacts for WT (black solid line) and R248Q p53 (red solid line).
Small values of d represent a strong correlation between atoms, while
large values indicate weak correlation. For arginine residues, Ng1, Ng2,
and Ne atoms of the guanidinium group give rise to similar plots – a
single atom is depicted for each residue, except for the minor groove
contact. Each data point corresponds to an average over 5 equilibrated
trajectory segments of 0.2 ns.
doi:10.1371/journal.pone.0027651.g006
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due to their artificially high mobility during MD simula-

tions[37],[38]. The behavior displayed by the side chain of Arg-

283 may reflect a similar phenomenon. Plots of the correlation

descriptor involving DNA atoms and the minor groove contact site

R248/Q248 are markedly different from those of other contact

side chains. figure 6-C indicates that correlations between DNA

atoms and the amide group of Gln-248 are stronger than the

corresponding correlations to the guanidinium group of Arg-248

(Ne and Ng atoms), especially at 305 and 310 K. At 300 K, the

difference between the DNA-p53 side-chain correlations of Gln-

248 and Arg-248 is less pronounced, especially in the vicinity of

the contact points. Because the side chain of Arg-248 is involved in

critical contacts with the minor groove, the differences may be

indicative of altered binding characteristics. These observations

are consistent with the changes in the hydrogen bonding network

and stability. As described above, hydrogen bond analysis on

representative clusters has identified direct intermolecular inter-

actions involving Q248 at the DNA-p53 interface at 300 K but

not at higher temperatures. In addition, binding energy decom-

position has indicated that Glu-248 is the largest contributor to the

destabilization of the mutant p53-DNA complex.

The present analysis of the collective essential modes of motion

reveals that the slow local dynamics of critical interactions at the

contact mutation site are also modulated by temperature.

However, the long-living motions of side chains at the major

groove contact sites (Lys-120, Cys-277 and Arg-280) are less

sensitive to temperature changes and may provide an explanation

for the apparent insensitivity of the main-chain dynamics to

temperature increases.

Therapeutic implications of restoring the R248Q mutant
The current work has confirmed that the introduction of the

R248Q mutation into the p53 DBD affects the local structure and

binding affinity at residues located far from the mutation site.

Analysis of the temperature-sensitive behaviour of the R248Q

mutation revealed that DNA binding was governed by a few

critical residues and provides molecular evidence of the loss of

binding at physiological temperatures. The findings can be applied

to design a rescue strategy for the mutant structure. Relying on

biophysical and structural data, Bullock et al. proposed that p53

mutations of the DBD could be divided into five classes. According

to their classification, the R248Q mutant belonged to class I

mutants along with the other DNA contact mutant R273H.[8]

The remaining classes involved residues located in the DNA-

binding portion as well as the ß-sandwich and the zinc-region of

the DBD. Within class I, the two mutants presented different

characteristics in the folded state: while the R273H retained the

native fold, the R248Q had a distorted conformation relative to

the WT p53.[8] Consequently, further investigations may be

required before the findings can be generalized to both class I

mutants or to other classes. Nonetheless, the R248Q mutation is

highly relevant to human cancers. As listed above, it is the most

frequent p53 mutation in numerous cancer. A typical search of the

IARC database [39] establishes the prevalence of R248Q as a

somatic mutation in 847 different tumors and as a germline

mutation in 19 families with Li Fraumeni syndromes. Further-

more, as indicated above, this mutation is the most frequent p53

mutation in breast, colon, head, neck and skin cancers. It also

ranks as the second most p53 mutation in esophageal, gastric,

lung, ovarian, and prostate cancers. Therefore, it can be

concluded that a potent and specific drug that can restore the

R248Q mutant into the wild-type structure offers a great promise

of activating the p53 pathway and, hence, turning on the apoptosis

machinery in these types of cancer.

Materials and Methods

Generation of the mutated structure
Initial atomic coordinates for the DNA-bound WT p53 were

obtained from the crystal structure[6] of the DBD in complex with

a 21 base-pair DNA duplex (59-ATATTTGGGCAAGTCTAG-

GAA-39), available from the Protein Data Bank (PDB ID: 1TSR;

chain B). The starting structure of the R248Q p53-DNA complex

was generated from the corresponding WT complex using the

software DeepView (Swiss PDB Viewer).[40] The orientation of

the glutamine side chain was chosen so as to minimize steric

clashes and maximize hydrogen bond interactions with neighbor-

ing residues. The initial coordinates of the DBD of the WT and

R248Q p53 were used for DNA-free simulations.

Molecular Dynamics Simulations
The WT and mutant p53 structures both with (holo) and

without (apo) DNA were subjected to different MD simulations at

temperatures of 300, 305 and 310 K employing the software

NAMD[41] at physiological pH (pH 7) using the all-hydrogen

AMBER99SB force field.[42] Protonation states of all ionizable

residues were calculated using the program PDB2PQR.[43] The

three cysteine residues along with the histidine residue that are

coordinated to the Zn2+ ion were deprotonated. The resulting

structures and their co-crystallized water molecules were immersed

in the center of a TIP3P water cube after adding hydrogen atoms

to the protein, DNA and water structures. The cube dimensions

were chosen to provide at least a 20Å buffer of water molecules

around the system. To neutralize and prepare the protein or

protein-DNA complexes with a physiological ionic concentration

(150 mM), chloride and sodium ions were introduced by replacing

water molecules having the highest electrostatic energies on their

oxygen atoms. The fully solvated systems were then minimized

and subsequently heated to the simulation temperatures with

heavy restraints placed on all backbone atoms. Following heating,

the systems were equilibrated using periodic boundary conditions

for 100 ps and energy restraints were reduced to zero in successive

steps of the MD simulations. The simulations were then continued

for ,10 ns and atomic coordinates were collected over the final ns

at intervals of 0.1 ps for subsequent collective dynamics analysis

and binding energy calculations.

Clustering analysis protocol
To generate a reduced set of representative p53-DNA models,

we carried out RMSD conformational clustering with the

average-linkage algorithm as implemented in the PTRAJ utility

of AMBER10 using cluster counts ranging from 2 to 20 clusters.

The application of the average-linkage algorithm, among other

clustering algorithms, to MD trajectories has been validated in

recent studies.[44] The clustering was performed on a set of

structures extracted at 2 ps intervals over the last ns of the

simulations. All C-alpha atoms were RMSD-fitted to the

minimized initial structure in order to remove overall rotation

and translation. RMSD-clustering was performed on the protein

residues that constitute the DNA-binding interface. These

residues were clustered into groups of similar conformations

using the atom-positional RMSD of the entire amino acid,

including side chains and hydrogen atoms, as the similarity

criterion. The optimal numbers of clusters were chosen after

evaluation of the Davies-Bouldin index (DBI)[45] and the ‘‘elbow

criterion’’[44] clustering metrics for different cluster counts. A

high-quality clustering scheme is expected when high DBI values

are calculated. On the other hand, using the elbow criterion, the

percentage of variance explained by the data is expected to
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plateau for cluster counts exceeding the optimal number.[44]

Using these metrics, a local minimum for DBI and a horizontal

line for the percentage of variance explained by the data are

expected for adequate clustering when the number of clusters is

varied. figure 7 illustrates the outcome of clustering analysis using

the DBI and elbow criterion at 300 K for the WT protein. Local

minima can be identified in the DBI plot at cluster counts of 7,

12, 15 and 17. However, as the corresponding percentage of

variance explained by the data started to plateau after 14 clusters,

we concluded that 17 clusters is a reasonable cutoff to extract

structures from the trajectory. The same procedure was followed

in all simulations. Table 3 summarizes the results of clustering

analysis for the rest of the simulations. The centroid of each

cluster, the structure having the smallest RMSD to all members

of the cluster, was chosen as the cluster representative structure

and the dominant structures were used for hydrogen bonding

analysis.

Hydrogen Bonding Analysis
Hydrogen bond analyses were performed using the visualization

software VMD[46] on the dominant structures extracted from

clustering analysis. A hydrogen bond was defined by a cutoff

distance of 3.5Å between a donor and acceptor atom and an

absolute angular deviation below 50u from linearity.

Figure 7. Clustering analysis for the wild type at 300 K. DBI exhibited local minima at cluster counts of 7, 12, 15 and 17. The percentage of
variance explained by the data (sum of squares regression/total sum of squares, i.e., SSR/SST) started to plateau after 14 clusters. Therefore, 17 clusters
were extracted from the trajectory.
doi:10.1371/journal.pone.0027651.g007
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Binding Energy Calculation and Decomposition
The binding energy between p53 and DNA was calculated using

the molecular mechanics Poisson-Boltzmann surface area (MM–

PBSA) method, introduced by Kollman et al.[47] In this work we

used the method as implemented in the software AMBER 10.[34]

That is, the total free energy is the sum of average molecular

mechanical gas-phase energies (EMM), solvation free energies (Gsolv),

and entropy contributions (-TSsolute) of the binding reaction:

G~EMMzGsolv{TSsolute ð1Þ

The molecular mechanical (EMM) energy of each snapshot was

calculated using the SANDER module of AMBER10 with all pair-

wise interactions included using a dielectric constant (e) of 1. The

solvation free energy (Gsolv) was estimated as the sum of electrostatic

solvation free energy, calculated by the finite-difference solution of

the Poisson–Boltzmann equation in the Adaptive Poisson-Boltz-

mann Solver (APBS) and non-polar solvation free energy, calculated

from the solvent-accessible surface area (SASA) algorithm. The

solute entropy was approximated using normal mode analysis.

Applying the thermodynamic cycle for each protein-DNA complex,

the binding free energy could be approximated by:

DGo~DGDNA{protein
gas zDG

DNA{protein
solv { DGDNA

solv zDG
protein
solv

n o
ð2Þ

Here, (DGDNA{protein
gas ) represents the free energy per mole for the

non-covalent association of the DNA-mutant complex in vacuum

(gas phase) at a representative temperature, while ({DGsolv) stands

for the work required to transfer a molecule from its solution

conformation to the same conformation in vacuum (assuming that

the binding conformation of the DNA-protein complex is the same

in solution and in vacuum). The total molecular mechanical

energies could be further decomposed into contributions from

electrostatic (Eele), van der Walls (Evdw) and internal energies (Eint):

EMM~EelezEvdwzEint ð3Þ

Essential collective dynamics
The multi-scale dynamics of DNA-p53 complexes were

analyzed according to the theory of essential collective dynam-

ics.[34] First, essential coordinates were determined by applying

principal component analysis (PCA) to each equilibrated trajec-

tory. The covariance matrix was constructed from the mean

square displacement of atomic positions over the course of 0.2 ns

segments of the trajectories as follows:

Cij~S Xi(t){SXiTð Þ Xj(t){SXjT
� �

T,i,j~1,2, . . . ,3N: ð4Þ

In the above equation, Xi (t) denote the time-evolved Cartesian

coordinates of atom i and N is the total number of atoms in the

p53-DNA complex. Subsequent matrix digitalization yields

eigenvalues lk (k = 1, 2,…,3N) and their corresponding eigenvec-

tors (or principal components) Ek~ Ek
1 ,Ek

2 , . . . ,Ek
3N

� �
. Together

the normalized eigenvectors represent the intrinsic collective

coordinates of the complex in configuration space and the

eigenvalues correspond to the mean-square displacements along

these coordinates. The collective degrees of freedom were ranked

according to the magnitude of their corresponding eigenvalues and

segregated into two orthogonal subspaces. A truncated set of

collective degrees of freedom {E1, E2,…,E20} associated with the

20 largest displacements {l1, l2,…,l20} and representing at least

80% of the total displacement, was identified as the essential

degrees of freedom. The complementary set of coordinates {E21,

E22,…,E3N } can be attributed to small fluctuations in the motion

of the p53-DNA complexes and was excluded from subsequent

analyses. Unlike existing analyses of collective modes of molecular

motion, in the present theory[19] the essential collective

coordinates are used as dynamical variables in the Mori projection

operator formalism[37],[38] to derive generalized Langevin

equations. The resulting description of the collective conforma-

tional dynamics provides a means of identifying dominant

dynamical correlations from short trajectory segments (0.2 ns

long).[19] By grouping together individual contributions to

essential collective coordinates of each atom such that

Ek~ rk
1,rk

2, . . . ,rk
N

� �
, where rk

i ~ Ek
i,x,Ek

i,y,Ek
i,z

n o
, it is possible to

identify dynamical correlations from the atomic distribution in the

subspace of essential motions. In particular, the distance between

atoms in the 3K-dimensional space of essential motions represents

the extent of dynamic correlation between them and does not

depend on their locations in Cartesian coordinates. Dynamically

correlated atoms are located within close proximity of one another

in the subspace. Conversely, a relatively large separation between

atoms is indicative of weakly correlated atomic motion. Therefore,

the correlation descriptor, d, was defined as the distance between

pairs of atoms i and j in the 3K-dimensional subspace of essential

motions as follows:

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX60

k~1
Ek

i {Ek
j

� �2
r

ð5Þ

d was computed between selected interfacial side-chains atoms of

p53 and all atoms of the DNA molecule in order to probe the local

changes in the slow dynamics. For the sake of clarity, a single value

of d (corresponding to the maximum correlation) is plotted for

every DNA residue. The qualitative features of the plots are

unaffected by this choice.

The slow backbone dynamics of the DBD of p53 molecules

was investigated by computing their main-chain flexibility

profiles. The flexibility, F, of individual Ca atoms was determined

from the distances between their essential collective coordinate

Ek
Ca

and the centroid ek calculated over the coordinates of all Ca
atoms, i.e., [32]

Table 3. Summary of the clustering analysis.

Structure
Temperature
(K)

Optimal number
of clusters

Population of
largest cluster

Wild type 300 17 25%

305 10 31%

310 12 28%

Mutant 300 14 24%

305 7 40%

310 14 27%

doi:10.1371/journal.pone.0027651.t003
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FCa ið Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX60

k~0

Ek
i {ek

� �2

vuut ð6Þ

where,

ek~
1

NCa

XNCa

i~1

Ek
i ð7Þ

and NCa
is the number of Ca atoms and i is the index running over

them. The calculations were performed for both DNA-free and

DNA-bound p53 molecules, in order to identify changes in the

conformational dynamics upon DNA-binding.
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