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Abstract

Large-scale molecular profiling technologies have assisted the identification of disease biomarkers and facilitated the basic
understanding of cellular processes. However, samples collected from human subjects in clinical trials possess a level of
complexity, arising from multiple cell types, that can obfuscate the analysis of data derived from them. Failure to identify,
quantify, and incorporate sources of heterogeneity into an analysis can have widespread and detrimental effects on
subsequent statistical studies. We describe an approach that builds upon a linear latent variable model, in which expression
levels from mixed cell populations are modeled as the weighted average of expression from different cell types. We solve
these equations using quadratic programming, which efficiently identifies the globally optimal solution while preserving
non-negativity of the fraction of the cells. We applied our method to various existing platforms to estimate proportions of
different pure cell or tissue types and gene expression profilings of distinct phenotypes, with a focus on complex samples
collected in clinical trials. We tested our methods on several well controlled benchmark data sets with known mixing
fractions of pure cell or tissue types and mRNA expression profiling data from samples collected in a clinical trial. Accurate
agreement between predicted and actual mixing fractions was observed. In addition, our method was able to predict
mixing fractions for more than ten species of circulating cells and to provide accurate estimates for relatively rare cell types
(,10% total population). Furthermore, accurate changes in leukocyte trafficking associated with Fingolomid (FTY720)
treatment were identified that were consistent with previous results generated by both cell counts and flow cytometry.
These data suggest that our method can solve one of the open questions regarding the analysis of complex transcriptional
data: namely, how to identify the optimal mixing fractions in a given experiment.
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Introduction

With its capacity for simultaneous monitoring of the transcrip-

tional state of thousands of genes, high-throughput transcriptional

profiling using DNA microarrays has provided investigators with a

unique opportunity for genome-wide regulatory analysis in clinic

trials and biomarker identification. Molecular analysis of cells in

their native tissue environment provides the most accurate picture

of the in vivo disease state [1]. The complicated structures of tissues

and cellular environments, composed of large numbers of

disparate yet interacting cell populations, makes this difficult.

RNA prepared from heterogeneous tissue samples might contain

only a fraction of the total cell subpopulation of interest [2].

Consequently, the expression signal of any gene detected directly

from a complex sample is a convolution of expressions of all

present cell types. Therefore, if tissues or cells are used without

consideration of such a mixing phenomenon, measurement of

differential gene expression will certainly be confounded by the

heterogeneous cell populations [3,4]. Similarily, heterogeneity of

cell populations across different samples could drown out the

variability resulting from other, perhaps more relevant differences

between samples [5].

There are several approaches used to identify changes in gene

expression that occur in different cellular compartments within

tissues or tumors comprised of multiple cell types. Microdissection

techniques that might allow a purer sampling of cells from fresh

tumor specimens is time-consuming and requires an amplification

of the sample that could distort transcriptional profiles [6]. Blood

cell-type subset composition can be measured by complete blood

counts (CBCs). CBCs typically offer a fixed, low resolution survey

of circulating cell populations. For example, a typical CBC will

provide one measurement that describes all circulating lympho-

cytes. Such data can not be used to tease apart contributions from

important cell populations including CD4+ and CD8+ T-cells, B-
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cells, or Natural Killer (NK) cells, each of which is derived from a

distinct lineage and carries out a different immunological purpose.

Nevertheless, it has been demonstrated that the incorporation of

CBC measurements helps ellucidate meaningful transcriptional

signals in blood [3].

The inversion of sample heterogeneity can be facilitated by

providing accurate estimates of the mixing percentages of different

cell types through computational deconvolution. Since computa-

tional dissection does not require microdissection of all samples or

change of routine biological protocols, several authors have tried to

answer whether it is possible to decompose the DNA microarray

data from a cell population to survey the proportions of different cell

types, by treating specific transcriptional patterns in DNA

microarray data as cell-type-specific markers through computation-

al methods [3,5,7,8,9,10,11]. Lu et al. pioneered the application of a

simulated annealing-based algorithm to identify the proportions of

cells [11]. Abbas et al. [8] first applied microarray deconvolution for

measuring proportions of cell types in blood samples and employed

the results to study immune disease. Quon uses Latent Dirichlet

Allocation (LDA) to implement the deconvolution strategy in

conjunction with digital high-throughput sequencing data [9]. Very

recently, Shen-Orr et al. described cell-type-specific significance

analysis of microarrays (csSAM) for analyzing differential gene

expression for each cell type in a biological sample by incorporating

heterogeneity in gene expression [3]. Nevertheless, previously

developed approaches for tackling heterogeneity in transcriptional

profiling data from complex samples have several drawbacks which

we aim to address and alleviate in this study. Some methods can

only be applied to two-source systems; that is to say, complex

mixtures composed of only two tissue or cell types [7], which is not

practical for application to more complex samples. Other

approaches have been reported to deconvolute heterogeneous

expression profiles into their individual component profiles and

thereby infer the mixing proportions. However, these do not

guarantee a globally optimal solution, nor do they guarantee

physically meaningful solutions. These approaches use heuristic

methods that non-deterministically identify local optima [5,11], or

require ad hoc post-processing to eliminate non-physical results such

as negative mixing fractions [8].

What we sought to demonstrate here was an in silico approach to

deconvolute gene expression profiles obtained from heterogeneous

clnicial samples into cell-type-specific patterns when the mixing

matrix is unknown. We developed an approach built upon linear

latent variable models that efficiently identifies the globally optimal

solution in the least squares sense. Moreover, our approach

explicitly incorporated physical constraints, specifically the mixing

weights were required to be non-negative and sum to one, and

therefore generated results that can be directly interpreted as

mRNA mixing fractions. Technically, we employed a supervised

selection of cell-type-specific genes to provide a basis that

described the transcriptional state of ‘‘pure’’ cell populations.

These cell-type-specific transcripts were then used to deconvolute

the samples of interest using a quadratic programming technique

that was highly efficient, providing directly interpretable results

(i.e., the mixing fractions), and guaranteed to find the globally

optimal solution. The results demonstrated that our method was

able to accurately predict mixing fractions for more than ten

species of circulating cells, and was even able to provide accurate

estimates for relatively rare cell types.

Results

We implemented our procedure for estimating fractions of

different cell types in multiple gene expression data sets. First we

assessed the utility of our method by applying it to three well

controlled benchmark data sets with known mixing fractions.

Satisfied that our approach worked, we then applied it to more

challenging mRNA expression profiling data from human blood

samples collected as part of a clinical trial.

Proof of Concept: Deconvolution Accurately Predicts
Mixing Fractions

Datasets. We used three benchmark datasets as proof of

concept experiments. In the first experiment, tissues used for

microarray analyses included independent, triplicate pools of

blood and breast tissue samples from female adults. Double

standed cDNA synthesis and labeling was carried out with 5 mg of

total RNA, each sample was hybridized to Human Genome 133

Plus 2.0 GeneChips as specified by the manufacturer and the

resulting CEL files were processed by Robust Multiarray Average

(RMA) normalization [12] and scaled to a 2% trimmed mean of

150. Six purified reference sample data files and nine other

mixtures included RNA from each of the two tissues at varying

proportions were summarized in Table 1. The array data can be

accessed via Gene Expression Omnibus (GEO), GSE 29832.

In the second experiment, we employed the MAQC Rat

Toxicogenomics Dataset [13] which includes RNA samples using

Rat Genome 230 2.0 GeneChips. The RNA derived from rat liver

and kidney bio-specimens from a single rat was mixed in four

different proportions, two of which were from each of the tissues in

isolate (100% liver and 100% kidney). The two other mixtures

included RNA from each of the two tissues are 75:25/25:75

respectively (Table S1). MIAME-compliant array data can be

accessed via Gene Expression Omnibus (GEO), GSE5350.

For the last benchmark dataset, we used rat liver and brain as

described in [3]. Each sample was hybridized to rat-specific

RAE230_2 whole-genome expression arrays (Affymetrix), and the

resulting CEL files were processed by RMA normalization for

deconvolution. Each of the samples was analyzed in triplicate. The

detailed mixture information is shown in Table S2. The

microarray data used in this study (series number GSE19830)

are available at NCBI-GEO [14].

Expression Signatures. Microarray expression data were

used to generate cell-type-specific gene lists through pairwise

comparisons of expression between all pure samples as described in

Materials and Methods. Statistical associations between GO annotation

and lists of differentially expressed genes were identified using

MetaCoreTM [15]. We applied the False Discovery Rate (FDR)

multiple testing correction [15] and applied a final cutoff of FDR

adjusted p,0.05 to identify statistically significant associations.

Inspection of annotation of identified gene list in blood vs. breast

cell line data confirmed this approach returned known cell specific

Table 1. Experimental design for blood vs. breast microarray
experiment.

Tissue Type % Blood mRNA % Breast mRNA # Replicates

Pure 0% 100% 3

Mixed 33% 67% 6

Mixed 67% 33% 3

Pure 100% 0% 3

RNA derived from 15 female adults were homogenaized, extracted and mixed
in 4 different proportions, two of which are each of the tissues in isolate (100%
blood and 100% breast).
doi:10.1371/journal.pone.0027156.t001
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transcripts, pathways, and biological processes. The gene signature

included genes whose expression is specific for blood specific genes

(BANK1, BCL11B), breast specific genes (ERBB3, CA12,

CCND1, ESR1) (Table S3). And all these genes are enriched in

cell cycle control, role APC in cell cycle regulation, the metaphase

checkpoint; human Cell-cycle/CDKN1A Mediated Pathway and

their enriched GO categories included mitosis (biological process),

M phase of mitotic cell cycle (biological process), M phase

(biological process), cytokinesis (biological process) and cell division

(biological process). These findings support the validity of this

approach to identify cell-type-specific genes. Detailed annotations

and Gene Ontology over-representation analyses are shown in

Table S3.

Expression Deconvolution on Cell Line Mixing
Experiments

First, we measured the accuracy of our method with three

benchmark experiments where known proportions of different

tissues or cells are mixed, assayed on expression microarrays, and

computationally separated.

In each case, we generated gene signatures by analyzing the

data from the ‘‘pure’’ samples (Training Data) and then applied

these signatures into our approach to estimate the mixing fractions

for the complex samples (Test Data). The results of the first

mixtures - blood vs. breast are as depicted to the Fig. 1(a). The

congruence between our predictions and the actual mixing

fractions suggests the validity of this deconvolution approach.

Secondly, we deconvoluted rat liver and kidney mixture dataset.

As expected, this algorithm also correctly estimated the compo-

sition of each of the 12 samples as consisting entirely of its

appropriate corresponding cell types (Fig. 1(b)). In the third

experiments, expression deconvolution was performed on data sets

of the mixture of rat liver and brain (Fig. 1(c)). These estimates

closely paralleled changes in component sizes that were observed

by known fractions, thereby confirming the validity of this

approach.

Deconvolution of Circulating Cells from Whole Blood
Samples

To test the utility of our algorithm to track clinically relevant

changes in blood populations, we applied our method to

expression profiling data generated for whole-blood samples

collected from Multiple Sclerosis patients (MS) treated with

Fingolimod (FTY720), a novel immunomodulator. Fingolomid is

a structural analog of sphingosine that, in its phosphorylated form

(FTY720-P), antagonizes S1P1 receptors expressed on the surface

of lymphocytes. This in turn prevents the egress of lymphocytes

from the lymph nodes, thereby impacting the trafficking of

lymphocytes in the circulation [16]. It was previously shown that

Fingolomid preferentially reduces the number of circulating CD4+
and CD8+ T-cells in human subjects [16].

Blood is a particularly complex tissue type, with over a dozen

distinct cell types that can vary in frequency up to 10,20-fold

between healthy individuals [3]. We applied our method to whole

blood samples, using previously published signatures [8] for 17

circulating cell types (Table S4). We aggregated our predictions

within three major cell types (lymphocytes, monocytes and

neutrophils) to facilitate direct comparison to the CBC results.

Agreement between our predictions and measured values was

excellent (Fig. 2), with Pearson correlation coefficients ranging

from 0.61 to 0.85. Agreement between predicted and measured

values was greatest for lymphocytes, which is notable due to the

complexity of sub-populations present in this fraction. In contrast,

previous attempts to deconvolute blood samples using the same

signatures have only achieved lower correlations against CBC data

(0.52 and below) [8]. As depicted in Fig. 2, agreement between

predicted and actual cell fractions shows good correlation, but

deviates from the diagonal. This can be attributed to intrinsic

differences in mRNA amounts per cell type and extrinsic

differences in mRNA yield. These deviations are linear in nature,

and therefore would not impact most downstream applications.

Inspection of the predicted mRNA fractions revealed that our

method was able to dissect the lymphocyte population and track

Figure 1. Statistical deconvolution of complex tissues yields accurate estimates of pure tissue fractions. Plotting of proportions of cell
lines determined from deconvolution (y axis) vs. proportions of the cell lines actually mixed (x axis) shows strong congruity. (a) Proportions of blood
cells determined by deconvolution are similar to proportions determined by actual blood fraction. Diagonal lines are y = x, shown for reference,
highlighting the agreement between the two methods. The training data in blue circles are from pure reference samples. The test data are from
mixed samples with various mixing proportions. (b) Proportions of liver fraction determined by deconvolution are similar to actual liver fraction. (c)
Proportions of liver cell lines determined from deconvolution vs. proportions of the cell lines actually mixed are shown a high consistency in rat liver
vs. brain dataset.
doi:10.1371/journal.pone.0027156.g001
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changes in specific populations induced by Fingolomid. Fig. 3

depicts a detailed breakdown of our predictions, stratified on

treatment group and time point. Our method correctly identified

reduction in circulating CD4+, CD8+, and B-cells following

Fingolomid treatment. Reductions relative to baseline were

significant for both treatment arms (p,0.01, Wilcoxon ranked

sum test). Several other populations had increases in their relative

predicted proportions in the treated subjects. Specifically, the

predicted relative abundance of monocytes, NK cells and dendritic

cells increased following Fingolomid treatment. These populations

are not sequestered in the lymph nodes following treatment by

Fingolomid, so their absolute numbers in circulation remain

unchanged. Because microarray data is inherently semi-quantita-

tive, we are only able to determine the relative abundance of each

cell type in a sample. Consequently, the relative abundance of the

cells appears to increase concomitant with the Fingolomid-induced

reduction in other lymphocytes. Notably, none of the populations

demonstrated changes in the placebo-treated subjects (p.0.4),

which suggested that our approach was capable of a high degree of

specificity even in complex, highly variable data sets.

Comparison to Other Methods
All surveyed microarray deconvolution methods make use of a

system similar to that described in equation (1), X = AS. They

differ substantially, however in how they dissect this system of

equations, their optimization methods, and other important

details. A summary of the methods surveyed here, and their main

characteristics can be found in Table 2.

These methods approach equation (1) in one of three ways: (A)

Given microarray data X and mixing fractions A, estimate the

basis matrix S. Shen-Orr et al. [3] used this approach to combine

cell count and microarray data as input for further analysis to

identify disease-associated transcriptional disregulation. (B) Given

microarray data X and basis matrix S, estimate the mixing

fractions A. Our approach falls into this category. (C) Given

microarray data X, simultaneously estimate the mixing fractions A
and basis matrix S. This approach is unsupervised. Consequently,

such methods require prior information to initialize the optimi-

zation [17], use non-deterministic optimizers that can become

trapped in local minima [18], must label the pure cell types in

post-processing steps [18], and vary in performance depending on

the amount of input data [18].

Immune cell-specific expression is a critical indication of a

gene’s role in the immune response [19]. Fortunately, a

compendium of microarray expression data for human genes

from key immune cell types has been compiled [19], making it

possible to supervise the decomposition with respect to these

known primary immune cell types and these subsets of genes. As a

demonstration, we applied our method, and two methods with

available source code [18] and [17] to two benchmark data sets.

These methods are designed to solve the more general and

challenging problem (category (C) above) of solving for cell

signatures and cell fractions simultaneously. Method [18] operates

in a completely unsupervised fashion, wheres method [17] requires

an initial estimate of the cell fractions. A direct comparison of the

performance of these methods is challenging, however we believe

it provides some insights into the relative strengths and weaknesses

of each, and helps to assess the importance of prior biological

knowledge when deconvoluting complex data. Our first bench-

marks were run on the blood/breast data set. The method of

Erkkila et al. [17] requires initial estimates of the mixing fractions.

To test this method, we provided it with initial estimates based on

the known fractions with Gaussian noise added at 20dB (i.e. 100:1

signal to noise ratio (SNR)). A second set of benchmarks were run

on the 24 whole-blood microarrays described in [3], and

compared to the published Complete Blood Counts (CBCs) to

assess accuracy. Again, we seeded method [17] with random

numbers, CBCs with 20dB Gaussian noise (100:1 SNR), and

CBCs with 10dB Gaussian noise (10:1 SNR) respectively. Results

are presented in Table 3. For the simple blood/breast system, all

methods performed well; performance for our method and

Repsilber et al. ’s [18] was similar (correlation .0.99) and slighlty

better than the performance of Erkkila et al. ’s approach [17]

(correlation .0.96). For the more complex blood sample, our

method and Repsilber et al. ’s performed similarly for neutrophils,

whereas ours performed substantially better for lymphocytes and

monocyte. Erkkila et al. ’s approach performed better than the

other methods when seeded with the actual CBC values with mild

Figure 2. Comparison of CBC data and statistical deconvolution in whole blood samples. Determination in whole blood samples of
relative abundance of total lymphocytes, neutrophils, or monocytes by CBC compared to determination of relative abundance by deconvolution.
Each green dot here corresponds to one sample in the dataset. Diagonal lines are y = x, shown for reference, highlighting the agreement between the
two methods.
doi:10.1371/journal.pone.0027156.g002
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noise (20 dB); however its performance degraded for more realistic

tests with added noise. At 10 dB noise its performance drops but is

similar to the results of our method; in the absence of prior

information (i.e. seeded with random estimates) it could not find

any solutions. These benchmarks indicate that deconvolution

performance varies by the complexity of the experimental system,

and the availability of prior biological knowledge. Our method,

when fed with cell-type-specific transcriptional signatures, appears

to perform well across a number of different biological systems of

varying complexity. For the more general case in which both cell-

type-specific signatures and cell fractions are not known, the

performance of available methods varies substantially. For simple

systems with few cell types, all tested methods perform well. For

more complex systems, the use of accurate prior knowledge in the

form of signatures (our method) or accurate cell fraction estimates

(Erkkila et al. ’s method [17]) results in better performance. The

results from Repsilber el al. ’s method [18] indicates that

reasonable cell fraction estimates are still possible in the absence

of prior knowledge. Taken together, these results suggest that (1)

there is no one size fits all solution to this problem and (2) one

should take advantage of any available prior biological knowledge

when attempting to deconvolute transcriptional data.

Robustness of the Gene Signature Selection
The foundation for this approach is the identification of a set of

signatures that are generally representative of the cell types of

interest. Any errors or uncertainities introduced in the design of

this basis matrix could propogate through the analysis and impact

the final results. Our approach leverages the thousands of

expression level measurements made on each microarray to

Figure 3. Estimated fractions for several circulating cell populations. Strip charts display relating quality of CD4+ cells/CD8+/B cells/NK cells/
Monocytes/Dendritic cells. The data are stratified in three different subgroups: placebo (black), low dose: 1.25 mg/day (red) and high dose: 5 mg/day
(blue). Data points are from each donor. Y axis is the estimated mRNA fraction. P-values are calculated by Wilcoxon’s Signed Rank test.
doi:10.1371/journal.pone.0027156.g003
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define a system of linear equations that are overdetermined, and

can be optimally solved globally via quadratic programming.

Taken together, this strategy should be robust to small deviations

in the basis matrix; it uses many measurements of probes on the

chip (j.100) to estimate a small number of parameters in the

linear system (n,20), so errors in any one measurement should

have only a minimal effect on the final estimations. We performed

several simulations using the blood/breast data to verify the

robustness of our approach to fluctuations in the construction of

the basis matrix.

For the first simulation, we sought to address the impact of the

selection of differentially expressed genes inlcuded in the basis

matrix. There were 1320 differentially expressed probesets

identified in the blood/breast experiment. We randomly selected

either 100 or 200 probesets from these 1320 for inclusion in the

basis matrix and then estimated the mixing fractions using the new

basis matrices. This procedure was repeated 100 times. Results are

depicted in Fig. 4 panel (a). As expected, results were robust to the

precise selection of differentially expressed genes, with correlations

between estimated and actual fractions above 0.99 for almost all

simulated matrices.

We then examined the accuracy of our approach by increasing

the number of cell-type-specific gene probes stepwise from 40 to

1000. The correlation coefficients plot (Fig. 4(b)) shows that our

approach accurately estimated the mixing proportions as long as

the basis matrix includes at least 240 probesets. The estimation

could steadily achieve the correlation coefficient above 0.99.

Finally, the basis matrices might also be challenged through the

introduction of biological variability. Ideally, one would like to

construct basis matrices from training experiments that are as

similar as possible to the eventual test conditions. This however is

not always possible. Clinical samples are precious commodities,

cell-sorting techniques can be cumbersome or costly, and real-

world applications often involve systems perturbed by disease or

other interventions. We conducted several simulations to further

evaluate the generalizability of our approach when genes selected

for the basis matrix were differentially expressed in the test

systems. We randomly selected 5, 10, or 15 percent of the genes in

the basis matrix and altered their values by factors of +/22 fold

and +/25 fold. This process was repeated 100 times, and we

compared the estimates using the modulated basis matrices to the

actual fractions. The two-fold changes simulation results are

Table 2. Summary of current major deconvolution methods.

Decoupled/simultaneously
estimation

Deterministic/
probabilistic

Global/local
optimal solution

Non-negative
constraint

Related to
sample size

Source code
available

Our method Decoupled, estimate A deterministic global optimal solution by
quadratic programming

Yes No -

Abbas, plus ONE, 2009 Decoupled, estimate A deterministic Local No No No

Shen-Orr, Nature
Methods, 2010

Decoupled, estimate S deterministic Global No No Yes

Repsilber, BMC
bioinformatics, 2010

Simultaneously
estimate A and S

deterministic Local Yes No Yes

Erkkila, Bioinfoamtics,
2010

Simultaneously
estimate A and S

probabilistic Local Yes (implicitly) Yes Yes

Stuart, PNAS, 2004 Decoupled, estimate S deterministic Global No No No

Lu, PNAS, 2003 Decoupled, estimate A probabilistic,
simulated
annealing-based
algorithm

the probability that the
simulated annealing
algorithm terminates with
the global optimal solution
approaches 1 as the annealing
schedule is extended

Yes (implicitly) No The software
link no longer
works

doi:10.1371/journal.pone.0027156.t002

Table 3. The comparison of deconvolution methods on cell line data and Shen-Orr et al.’s 24 whole-blood microarray data.

Methods Breast/blood cell line data

Human whole-blood gene expression array data from kidney
transplant recipients

Neutrophils Lymphocytes Monocytes

Our method 0.9912 0.7198 0.6926 0.6492

Repsilber et al., BMC bioinformatics, 2010 0.9901 0.7092 0.4764 0.2783

Erkkila et al., Bioinformatics, 2010 - -0.1135a 0.2926a 0.1147a

Erkkila et al., Bioinformatics, 2010 - 0.6324b 0.7381b 0.5359b

Erkkila et al., Bioinformatics, 2010 0.9665c 0.955c 0.9094c 0.8865c

The numbers of the table showed the correlation coefficients between predicted and measured values for mixing proportions. For cell line data, we initialized the
mixing matrix for Erkkila et al.’s approach with measured CBC fractions added 20 dB noisec. For Shen-Orr et al.’s data, we provided three different kinds of prior
knowledge for the initialization of mixing matrix for Erkkila et al.’s approach: random numbers from normal (or Gaussian) distribution as the mixing fractiona, measured
fractions with 10 dB noiseb and measured fractions with 20 dB noisec. We aggregated our predictions within three major cell types (neutrophils, lymphocytes and
monocytes) to direct compare to the CBC results.
doi:10.1371/journal.pone.0027156.t003

Computational Deconvolution of Complex Samples

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e27156



shown in Fig. 5, while the five-fold change simulation experiments

are presented in Fig. S4. Fig. 5(a) illustrates that our algorithm still

achieves very significant accuracy with the correlation coefficients

between the estimated and measured proportions above 0.99. This

is true even in the extreme case where 15% of the genes in the

basis matrix are changed.

These three sets of simulations demonstrate that our approach –

an overdetermined system of equations coupled to efficient global

optimization – is robust against the kind of biological and technical

noise we expect to see in real world applicaitons.

Discussion

We have developed a novel computational approach for

deconvoluting mRNA expression profiling data from complex

samples into contributions from an aribirtrary number of cell types

for which prior biological knowledge is available. We built upon

the well accepted practice of describing such data as a system of

linear equations through the introduction of a least squares

solution with equalities and inequalities that can be optimally

solved via quadratic programming. The use of quadratic

programming has several advantages over methods previously

used to address this problem. Specifically, this approach allows for

the explicit modeling of physical constraints in both the description

of the problem as well as its solution. Application of equalities and

inequalities in turn enables direct interpreation of the results as

mRNA proportions. In addition, the introduction of quadratic

programming as an optimizer provides a computationally efficient

algorithm that gurantees the identification of a globally optimal

solution to the system of equations. The introduction of quadratic

Figure 4. Robustness of the signature matrix. (a) Boxplot displaying robustness of chosen signature matrix to gene content. The correlation
coefficient distribution (Y axis) is depicted for signatures composed of 100 or 200 randomly selected differentially expressed probesets. (b)
Deconvolution performance across a range of signature sizes. The experiment is conducted by increasing the number of cell-type-specific gene
probes step-wisely from 40 to 1000.
doi:10.1371/journal.pone.0027156.g004

Figure 5. Stability of the signature matrix. (a) Boxplot displaying the stability of chosen signature matrix. The chosen signatures are distorted by
randomly selecting 5, 10, or 15 percent of its genes and randomly modulating their values with 2 fold changes. The distribution of correlations
between actual mixing fractions and fractions estimated using these signatures is depicted. (b) Condition number of the basis matrix with respect to
the percentage of simulated differentially expressed genes in the basis matrix.
doi:10.1371/journal.pone.0027156.g005

Computational Deconvolution of Complex Samples
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programming should close one of the open questions in this field,

namely how best to solve the system of equations used to represent

complex microarray data. Going forward, we believe there is still

substantial room to improve other aspects of this framework. As

examples, the generation of cell-specific signatures is still a largely

heuristic endeavor, and the lower limits of detection of rare cell

types remains largely uncharacterized.

Our approach yielded predictions with excellent agreement to

measured values across a number of simple controlled mixing

experiments. Through the use of accurate transcriptional signatures

for various circulating cell types, we have demonstrated that our

method is capable of generating accurate predictions of even rare

cell types in complex blood samples. Moreoever, this approach has

clearly demonstrated an ability to track clinically relevant changes in

blood populations that would be missed in standard CBCs.

This work provides a critical step toward the improved analysis of

transcriptional data derived from complex clinical samples. In the

case decribed here, our method was able to accurately predict drug-

induced changes in lymphocyte trafficking based solely on mRNA

expression profiling data. These and other changes in cicrulating

cell populations in clinical settings are of sufficient magnitude to

dominate the signals measured via transcriptional profiling, and

would color any analysis that does not account for them. Previous

work has suggested that it is possible to dissect cell-specific

transctiptional changes in silico [3] using CBC data as a guide post.

Our methodology and results allow for a much finer grained view of

cell heterogeneity that should enable more precise in silico dissection.

Looking forward, we see several natural extensions of our

method. The rapid adoption of Next Generation Sequencing

platforms (NGS) promises the delivery of increasingly higher

resolution views of the transcriptome. Data from such RNA-Seq

experiments is already providing more exquisite views of low-

abundance transcripts and alternative splicing [20]. Identification

of new transcriptional species is likely to make deconvolution more

sensitive and accurate. The ability to detect low-abundance

transcripts should allow us to detect rarer cell populations, while

the broader sampling of the transcriptome should aid in the

idenfitication of cell-type-specific isoforms that will more precisiely

delineate closely related cell populations. This is likely to be of

great importance in the application to blood samples, where

increased resolution and sensitivity would allow us to differentiate

between clinically relevant subpopulations (e.g. Th1, Th2, and

Th17 CD4+ T-cells). Another natural example would be

application to metagenomics experiments to explicitly estimate

the relative abundance of various microorganisms based on the

abundance of their DNA in a sample.

In general, the application of highly sensitive, high throughput

experimental technologies to complex biological samples will

require increasing sophistication in the way that we think about

and analyze our data. In some cases, this complexity has the

potential to obfuscate relevant phenomenon if not addressed. In

others, accurately estimating the complexity itself can be a useful

endpoint. The approach we introduced here represents one

specific application of a general framework for explicitly handling

such complexities. The mathematical underpinnings and optimi-

zation algorithm are agnostic to the details of the biological system,

and are generalizable to other data types that can be described via

a system of overdetermined linear equations.

Materials and Methods

Patients and Whole Blood Smaples
Whole blood transcriptional analysis was performed as part of a

clinical trial [21] (CFTY720D2201, a double-blind, randomized,

placebo-controlled, parallel-group, multicenter study evaluating

the safety, tolerability and effect on MRI lesion parameters of

Fingolomid vs. placebo in patients with relapsing multiple sclerosis)

(ClinicalTrials.gov identifier NCT00333138). Patients meeting

pre-defined disease criteria were treated with Fingolomid at one of

two doses (5 mg/day, 1.25 mg/day) or with placebo [16]. The

study adhered to the International Conference on Harmonization

Guidelines for Good Clinical Practice and was conducted in

accordance with the Declaration of Helsinki [22,23]. All patients

gave written informed consent. Characteristics of patients are

given in [16]. Whole blood samples were collected in PAXGene

tubes for cDNA microarray analysis at baseline (pre-treatment)

and at six months after treatment commenced. Samples were then

analyzed as described above. The data were also pre-processed

using RMA [12] and scaled to a 2% trimmed mean of 150.

Latent Variable Model
Estimating the proportions of different cell types is based upon a

latent variable model framework [24,25]:

X~AS, ð1Þ

where X is the microarray data from complex biological samples,

A is the set of unknown proportions of the cellular constituents of

X, and S is the known matrix of expression levels of the genes in all

the cellular constituents of X.

Based on this model, we will first describe how we modeled the

total expression signal of each microarray probe as the sum of the

expression signals of its constituent parts in each mixture sample

and solve it in constrained linear least-squares problems. We will

then describe the identification of expression signatures using

Limma (Linear Models for Microarray Data) [26] for differential

expression analysis and how to estimate the number of expression

signatures through condition number of the signature matrix.

Computational Deconvolution by Linear Least-square
Problems

Expression deconvolution, which takes advantage of the linear

latent model to represent the original expression signals as a

mixture of each compartment signal, was performed on linear,

untransformed data as follows. Starting from Eq. (1), the

expression level xjk of gene j in a sample k is the average of cell

type expectations, sij, weighted by cell type fractions aki:

xjk~
X

i

akisij : ð2Þ

For one probeset, we had many more unknown fractions of

mRNA (aki) in the sample than known expression level measured

on the chip (xjk), so the system was underdetermined.

For multiple probesets, we could extend this to a system of

linear equations:

x1k~ak1s11zak2s21z � � �zaknsn1

x2k~ak1s12zak2s22z � � �zaknsn2

..

.

xjk~ak1s1jzak2s2jz � � �zaknsnj:

ð3Þ

When j.n (more probesets than cell types), this system of

equations is over determined. Physical constraints could be

explicitly added to this system. Microarray data sets are inherently
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closed. Consequently, we were limited to estimating the propor-

tions of mRNA present from each cell type, and these proportions

must sum to one:
P

i

aki~1. In addition, to insure a physical

solution, we required that all mRNA fractions must be non-

negative: aki§0,Vi.

Ideally, we would like to find mRNA fractions (aki) that satisfy:

As{x~0. We were unlikely to find such solutions in noisy

biological systems. We could, however, find an optimal (aki) that

minimizes the residuals for As{x~0 in the least squares sense:

min As{xk k2
� �

, s:t:

P
i

aki~1

aki§0,Vi

(
ð4Þ

where the coefficient aki is a scalar parameter between 0 and 1 to

represent the fraction of cell subtype. When linear non-negative

inequalities and equalities were given, Eq. (4) could be solved with

quadratic programming [27]. We solved this series of equations

using the lsqlin function in MATLAB.

It should be noted that this approach has been previously used

for deconvoluting populations in complex biological samples,

albeit in a completely different setting. Specifically, Mackey et al.

introduced this approach to successfully estimate the contributions

of different phytoplankton classes in oceanic samples based on

HPLC measurements of various pigment concentrations [28].

This method is very general and could easily be applied to other

data types as well (see Discussion). It also has several clear

advantages over approaches reported elsewhere. Explicit incorpo-

ration of the non-negativity constraint allows clear physical

meanings for the solution, which can be directly interpreted as

mRNA fractions. Therefore, we do not need to remove the lowest

negative coefficient from the equation as in [8], or apply an

iterative approach of the solution until all coefficients were

nonnegative [5,11]. Moreover, this system satisfies the criteria

necessary to be solvable by quadratic programming, which

therefore guarantees a globally optimal solution. Finally, quadratic

programming routines are readily available and highly optimized.

Solutions even for experiments with hundreds or thousands of

samples can be rapidly and efficiently identified on a standard

computer workstation.

Expression signature identification
Expression signatures of homogeneous samples of cells are

critical to model the cellular composition of complex tissues. Such

signatures provide prior biological knowledge about the ‘‘baseline’’

physiological condition of each cell type. On balance, it is assumed

that the baseline condition is represented in complex environ-

ments. Generally, many genes remain unchanged across different

phenotypes or phenotypic changes [29,30]; only a subset of the

entire gene set potentially discriminates between cell types and

may be used to estimate the mixing parameters and represent the

pure signals. Hence, only those genes that are able to differentiate

cell types of interest are useful as a basis set for microarray

deconvolution.

We further reasoned that the expression profiles for high and

low abundance genes could fall outside of the linear range of the

microarrays, especially in artificial cell line experiments. We

observed that there are huge fold changes between different

tissues, and therefore only included the genes with the expression

value within the range of 0.1,5000.

The probesets comprising the basis for deconvolution were

determined as follows. First, the differential expression of each

gene for different tissues or phenotypes was assessed by linear

modeling and empirical Bayes methods using Limma (version

3.2.3, [26]) from the Bioconductor project [29]. Genes with an

adjusted p-value (FDR),1e-5 were retained for further evaluation.

In the next step, we wanted to adjust the number of genes included

in the signature to derive a high performance basis matrix that

would be attributable to the estimated proportions. Following [8],

probesets were ranked by their degree of differential expression

according to the absolute t-statistic, and a complete set of matrices

comprised of different quantities of the most differentially-

expressed probesets was tested by comparing the results of each

matrix to the known mixture fractions. A matrix’s condition

number estimates the sensitivity of a system of linear equations to

errors in the data. Consistent with [8], we also observed that the

condition number tracked with the accuracy of predictions in a

largely continuous fashion (Fig. S1(a)). Additional plots of

condition number as a function of matrix size for the liver/kidney

and liver/brain experiments are provided in Figs S2 and S3 and

their detailed gene lists are in Table S3. These systems had optimal

matrices with 210 and 160 probesets, respectively. To test the

feasibility of using the condition number as an appropriate

selection marker to generate baseline transcriptomes representing

genome-wide profiles for different tissues, we did the following

experiments.

We validated the ‘optimal’ number of expression signatures in

terms of condition number [8] by testing the relationship between

the goodness of fitting and different quantities of the most

differentially-expressed probesets. Overall, experimentally mea-

sured root mean square deviation (RMSD) between the estimated

fractions and the actual fractions correlated very closely with how

well conditioned (i.e., condition number) each matrix (Fig. S1 (b),

Fig. S2 (b) and Fig. S3 (b)). And the RMSD of the fitting residual

also had high correlation with the condition number (Fig. S1 (c),

Fig. S2 (c) and Fig. S3 (c)). When we selected the ‘optimal’ number

of expression signature, the slope of the RMSD of the fitting

residual began to gently ease off. All these results supported us to

select condition number as a high-fidelity marker for the ability of

a basis matrix to accurately deconvolute the mixtures.

In this manner, we obtained optimized size of expression

signatures for cell-type-specific genes from each purified reference

sample and averaged across samples obtained from the same cell

or tissue type. These signatures were taken as estimates of basal

expression for computationally deconvolution of mixed samples.

Supporting Information

Figure S1 Condition number of signature basis matrix
varies with number of probesets included. (a) Function of

the condition number vs. the number of probesets from the gene

signature was characterized in blood and breast mixture cell lines.

The local minima of condition number is shown in green line and

the corresponding number of genes was selected as the ‘optimal’

number of expression signature; (b) Root mean square deviation

(RMSD) between the estimated fractions and the actual fractions

showed clear patterns to support the ‘optimal’ number of

expression signature selected in (a). To the right of the green line,

the RMSD almost formed a horizontal line with minor

oscillations, suggesting that increasing the number of genes would

not increase the accuracy of the deconvolution estimates. (c) The

RMSD of the fitting residual also had high correlation with the

condition number. This correlation is weaker when selecting more

than the ‘optimal’ number of genes (shown in green line here).

(TIF)

Figure S2 Condition number varies with the number of
probesets included in liver/kidney signatures. (a) Func-
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tion of the condition number vs. the number of probesets from the

gene signature was characterized in rat liver and kidney mixture

cell lines. The local minima of condition number is shown in green

line and the corresponding number of genes was selected as the

‘optimal’ number of expression signature; (b) shows the relation-

ship between the RMSD of the estimated fractions and the

number of genes in basis matrix; (c) is the plot of the RMSD of the

fitting residual vs. the number of genes in basis matrix.

(TIF)

Figure S3 Condition number varies with the number of
probesets included in liver/brain signatures. (a) Function

of the condition number vs. the number of probesets from the gene

signature was characterized in rat liver and brain mixture cell

lines. The local minima of condition number is shown in green line

and the corresponding number of genes was selected as the

‘optimal’ number of expression signature; (b) shows the relation-

ship between the RMSD of the estimated fractions and the

number of genes in basis matrix; (c) is the plot of the RMSD of the

fitting residual vs. the number of genes in basis matrix.

(TIF)

Figure S4 Stability of chosen signature matrix. (a)

Boxplot displaying the stability of chosen signature matrix. The

chosen signatures are distorted by randomly selecting 5, 10, or 15

percent of its genes and randomly modulating their values with 5

fold changes. The distribution of correlations between actual

mixing fractions and fractions estimated using these signatures is

depicted. (b) Condition number of the basis matrix with respect to

the percentage of simulated differentially expressed genes in the

basis matrix.

(TIF)

Table S1 Experimental design for rat liver vs. kidney
microarray experiment.

(DOC)

Table S2 Experimental design for rat brain vs. liver
microarray experiment.

(DOC)

Table S3 Gene Annotation for blood vs. breast, liver vs.
kidney and liver vs. brain experiments.

(XLS)

Table S4 Leukocyte types used as the basis for whole
blood deconvolution.

(DOC)
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