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Abstract

We have constructed the clustered Protein Data Bank and obtained clusters of chains of different identity inside each
cluster, http://bioinfo.protres.ru/st_pdb/. We have compiled the largest database of disordered patterns (141) from the
clustered PDB where identity between chains inside of a cluster is larger or equal to 75% (version of 28 June 2010) by using
simple rules of selection. The results of these analyses would help to further our understanding of the physicochemical and
structural determinants of intrinsically disordered regions that serve as molecular recognition elements. We have analyzed
the occurrence of the selected patterns in 97 eukaryotic and in 26 bacterial proteomes. The disordered patterns appear
more often in eukaryotic than in bacterial proteomes. The matrix of correlation coefficients between numbers of proteins
where a disordered pattern from the library of 141 disordered patterns appears at least once in 9 kingdoms of eukaryota
and 5 phyla of bacteria have been calculated. As a rule, the correlation coefficients are higher inside of the considered
kingdom than between them. The patterns with the frequent occurrence in proteomes have low complexity (PPPPP,
GGGGG, EEEED, HHHH, KKKKK, SSTSS, QQQQQP), and the type of patterns vary across different proteomes, http://bioinfo.
protres.ru/fp/search_new_pattern.html.
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Introduction

Intrinsically disordered regions serve as molecular recognition

elements, and play an important role in the control of many

cellular processes and signaling pathways [1–6]. It is useful to be

able to predict positions of disordered regions in protein chains.

Prediction methods are aimed at identifying disordered regions

through the analysis of amino acid sequences using mainly the

physicochemical properties of amino acids [7–16] or evolutionary

conservation [17–20].

Many examples of proteins with intrinsically disordered regions

which exhibit coupling between folding and binding have been

described in the literature [4–6,21–23]. Nevertheless, the univer-

sality of this phenomenon and functional importance of many

disordered regions remain unclear.

A database of continuous protein fragments (Molecular

Recognition Features or MORFs) was compiled from the Protein

Data Bank which includes short protein chains (with fewer than 70

residues) bound to larger proteins [24,25]. It has been argued that

MORFs participate in the coupling of binding and folding, a

hypothesis that was supported by the analysis of the composition

and predicted disorder of MORF segments. As a result of studying

the subtle structural differences of the same proteins in bound

(Complex) and unbound (Single) states in relation to their intrinsic

disorder the database of protein structures (ComSin) has been

constructed [26].

Recently several computational tools for identifying Linear

motifs [27] and minimotifs in protein-protein interactions [28]

have been published. Linear motifs are short segments of multi-

domain proteins that provide regulatory functions independently

of protein tertiary structure [27] but minimotifs are short

functional peptide sequences obtained after analysis of known

protein-protein interactions [28].

Low-complexity regions attract our attention since they are

regions of a protein in which a particular amino acid, or a small

number of different amino acids, are enriched. Single amino acid

repeats (homorepeats) belong to these regions. It turned out that

homorepeats play important roles in some biological process [29]

and may play a more important role in human diseases than it was

previously recognized.

In the current study we search for sequence patterns consisting

of a number of consecutive residues along the polypeptide chain

that are nearly always associated with disordered segments. It has

been found that two types of patterns appear to be recurrent: a

proline-rich pattern and a positively or negatively charged pattern

[30]. It should be noted that the old and new versions of our libraries

include patterns enriched by proline and charged residues [31].

The statistical analysis of disordered residues was done

considering 34 464 unique protein chains taken from the PDB

database. In this database, 4.95% of residues are disordered (i.e.

invisible in X-ray structures) [31]. The statistics was obtained

separately for the N- and C-termini as well as for the central part of

the protein chain. It has been shown that frequencies of occurrence

of disordered residues of 20 types at the termini of protein chains

differ from the ones in the middle part of the protein chain [31,32].
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It is necessary to construct a clustered PDB because this

simplifies the filtering process of protein structures under their

analysis and searches general structural characteristics among non-

identical proteins. It is necessary to construct a clustered PDB

which is important for the analysis of actualized data.

In this work we constructed a clustered PDB and used clusters of

protein chains where identity between chains inside of the cluster

exceeds 75% (version of 28 June 2010). Combining the motif

discovery and disorder protein segment identification in the

clustered PDB allows us to create the largest library of disordered

patterns [31]. At present the library includes 141 disordered

patterns. Such an approach is new and promising for further

studying and understanding the functional role of the obtained

patterns in different proteomes. Taking into consideration the

library of disordered patterns will help one improve accuracies of

predictions for residues to be structured or unstructured inside the

given region. The previous version of the library includes 109

disordered patterns and has restrictions on the minimal length of the

patterns. Using more simple rules without restriction on the pattern

length and clustered PDB of the same version we constructed the

largest library of disordered patterns.

The patterns occur more often as short fragments. Patterns of

four-six residues long occur more frequently (105 out of 141) among

the disordered patterns of the library. It should be noted that six

residue patches affect the folding/aggregation features of proteins,

and they are important ‘‘words’’ for the understanding of protein

dynamics [33]. Moreover, nucleation sites are constrained by patches

of approximately six residues [34,35]. There is evidence that the

minimum length necessary for a peptide to elicit an allergenic

response and molecular mimicry (a patch of a protein eliciting an

immune response equivalent to the entire protein) is about six [36].

All these facts suggest the existence of a fragment of biologically

meaningful information located along approximately six residues

[33].

With the library of disordered patterns taken into account, it

would be easier to improve accuracy of prediction of ordered/

disordered residues inside the given region.

Proteome-wide calculations are a great way to place our work in a

larger, evolutionary frame. In this paper of interest is the occurrence

of 141 disordered patterns in 97 eukaryotic proteomes, since

eukaryotic proteomes include more disordered regions than other

proteomes [17,37,38], and for comparison, in 26 bacterial pro-

teomes. A comparative analysis of the number of proteins containing

the 141 disordered selected patterns in these proteomes has been

performed. The disordered patterns with the most frequent occur-

rence in eukaryotic and bacterial proteomes have low complexity.

It should be noted that each proteome has a specific set of

disordered patterns, and this results in different correlation coef-

ficients between numbers of proteins where a disordered pattern

appears at least one time. We came to some important observations

of a higher correlation coefficient within a kingdom or a phylum

than across kingdoms or phyla after analysis of occurrence of dis-

ordered patterns in 123 proteomes. The disordered patterns appear

more often in eukaryotic than in bacterial proteomes. One can sug-

gest that such short similar motifs are responsible for common func-

tions for nonhomologous, unrelated proteins from different organisms.

Materials and Methods

Construction of clustered PDB
We have considered all protein structures determined by X-ray

analysis with a resolution better than 3 Å, and the size of protein is

larger than or equal to 40 amino acid residues, published in the

PDB (version of June 28, 2010); the structures contain 116 997

protein chains (51 048 PDB entries). At the first step these 116 997

chains can be divided into 34 464 classes. We call these classes as

clusters with 100% identity. This means that the chains from the

same cluster have the same amino acid sequences, the sequences of

chains from different classes are different i.e. they differ at least at

one position. In total these 34 464 different sequences contain

9 085 893 residues. At the second step we created clusters of

chains with identity inside each cluster $75%.

Identity is calculated by using equation:

Id~
I

L1zL2{I
|100% ð1Þ

where I is the number of identical residues, L1 and L2 are the

numbers of amino acid residues in each considered protein. For

calculation of Identity we used BLAST with default parameters

[39].

At the beginning a pair of chains with maximal identity was

combined, then another pair of chains or a chain with the cluster

again with maximal identity, etc. If the combining of a chain with

the cluster or combining of clusters occurred, then the average

identity of gathering was considered. If identity of at least a pair of

chains from different clusters was less than 75%, then the clusters

were not combined. The procedure was repeated until there were

clusters which could be combined. At the second step of grouping

of chains, we obtained 18775 clusters of chains with identity inside

each cluster $75%. Then the clusters C75 have been combined

into clusters with identity Id$50%, etc. Figure 1 demonstrates the

dependence of the number of clusters on identity between chains

inside the cluster. Further we consider the identity of 75% because

the general grouping has occurred below 90% identity.

Construction of the library of disordered patterns
Among 116 997 chains, approximately 4.5% of their residues

are disordered, i.e. are not resolved by X-ray analysis. To reveal

such residues, we compared (for each protein chain) records

SEQRES and records ATOM in the corresponding PDB-file.

Residues which were present in record SEQRES, but their

coordinates were absent in record ATOM (namely, the coordi-

nates of the Ca-atom were absent in record ATOM), were

considered as unstructured ones. We considered the residues as

disordered if there were not coordinates of Ca atoms.

Below we consider only clusters with $75% identities between

any pair of chains inside each cluster because the general grouping

has occurred below 90% identity. Considering this level of

identity, we have created the Clustered Disordered Residues Data

Base (CDRDB), its elements are 18 775 clusters of protein chains.

Figure 2 illustrates two clusters with 100% identity combined in

one cluster with 75% identity. One can see that the sequences

from two clusters are different in one position 110, serin is changed

for cystein, and the weight of the chain from the first cluster is

w3kn2A~w2a4rC~
1

NC100|MC75

~
1

8|2
, ð2Þ

and the weight of the chain from the second cluster is

w2a4gA~
1

2|2
, respectively. Analogously the weight of each chain

from any cluster is calculated by using equation:

wchain~
1

NC100|MC75
, ð3Þ

Disordered Patterns in Data Bank and in Proteomes
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where NC100 is the number of chains in the cluster with 100%

identity and MC75 is the number of clusters with 75% identity. It

should be noted that the sum of weights inside one cluster with

75% identity will be equal to one. The weight of residue we

consider to be the same as the weight of chain so at the level of

75% identity a cluster may include protein chains of different

lengths.

Our goal is to create a database of disordered patterns i.e.

amino acid sequences that are likely to be found in disordered

parts of protein chains using CDRDB by applying simpler rules for

the creation of the library of disordered patterns than in our

previous work [31]. Let P be a protein chain and A be a pattern of

length L. The database was compiled using a two-stage procedure.

At the first stage, we created a list of candidate patterns. To be a

candidate in the patterns the considered pattern should be

disordered in half cases among the chains from the cluster with

100% identity. Then the desired disordered patterns were selected

into the candidate list. 855 775 candidates in the disordered

patterns were gathered.

We say that pattern A matches chain P at position s if the

following conditions are valid:

1) two residues from each end should coincide:

A 1½ �~P sz1½ �, A 2½ �~P sz2½ �,

A L{1½ �~P szL{1½ �, A L½ �~P szL½ �;

2) there could be done substitutions at most L/5 positions r in

the middle of pattern in which

A r½ �=P szr½ �:

This means that for patterns with a length of L#5 no change is

possible, for 5,L#10 – only 1 change, for 10,L#15 – 2 changes,

etc. The occurrence is terminal if it belongs to the first 40 residues

(‘‘N-terminal’’) or last 40 residues (‘‘C-terminal’’) of the chain. The

other occurrences are called internal ones.

If the distance between the edges of the pattern and the chain is

less than 40 residues the pattern is considered to match these

Figure 1. Dependence of the number of clusters on identity between protein chains. Inside each cluster at the given identity between
chains the identity is larger than the considered identity between clusters.
doi:10.1371/journal.pone.0027142.g001

Figure 2. Example of two clusters with 100% identity combined in one cluster with 75% identity. The sequences from two clusters are
different only in one position (110), serin is changed for cystein. U denotes disordered residues in the chain and dash denotes ordered residues,
respectively.
doi:10.1371/journal.pone.0027142.g002
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residues. The pattern length is not limited in this paper. Further we

consider the following terminology: Nu is the sum of weights (wchain)

of disordered residues matched by the pattern; Nf is the sum of

weights (wchain) of ordered residues matched by the pattern; Cu is

the number of clusters with identity 75% (C75) in which Nu.Nf;

Cf is the number of clusters with identity 75% (C75) in which

Nu#Nf. Protein P has an occurrence of pattern A if A matches P at

position s.

Fragment A = Pj[s+1, s+L] of chain Pj is considered as a

candidate disordered pattern if it meets the following conditions:

C1Þ Cu§5; C2Þ CuwCf ; C3Þ NuwNf :

There are 16 918 patterns meeting conditions C1, C2, and C3.

The longest pattern has the length of 45 amino acid residues

(HHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGT-

DDDDKAMA), and the shortest pattern has 2 residues (HH). In the

next step we selected disordered patterns from the candidate list

using the following iterative greedy procedure. From 16 918

patterns we chose the pattern with the maximal value D = Nu2Nf.

Then for the rest patterns the values of Nu, Nf, Cu, Cf were

recalculated not taking into account the residues matched by the

first pattern. Again all the rest patterns were checked to meet

conditions C1, C2, and C3. Among the rest patterns meeting

conditions C1, C2, and C3 the pattern with a maximal D value was

chosen. If there were no patterns meeting conditions C1, C2, and

C3, then the procedure was stopped. The iterative procedure was

stopped when 390 patterns were selected (D.0). Finally, we were

interested in the patterns for which D$10 and D$25 (the value 25

corresponds to the summation of weights of 5 whole disordered

patterns with 5 residues in length in 5 clusters without neighboring

regions, or terminal occurrence). The numbers of such patterns are

249 and 141, respectively (see Dataset S1). The lengths of patterns

are in the region: 4#L#24. Further we will consider only the set of

patterns meeting the condition that D$25.

Significance of disordered occurrences
We have studied the statistical significance of the selected

patterns from two points of view. First, we were interested whether

the disordered fragments are overrepresented among the occur-

rences of each pattern, and, second, whether the patterns are

overrepresented in the database. The features are described with

the proper Z-scores, called Zdisorder and Zoccur, respectively. To

estimate the significance of the number of disordered occurrences

of pattern P we have implemented the following procedure. First,

we determined the fraction of disordered fragments among all

fragments with the given length taking into account the weight of

the disordered residues in each case:

p nð Þ~

XN

i~1

XLi{nz1

k~1

widik

XN

i~1

XLi{nz1

k~1

wi

ð4Þ

where N is the number of chains in the CDRDB, Li is the length of

the considered chain, n is the fragment length, wi is the chain

weight, dik is equal to 1 if the fragment with adjoining regions is

disordered more than in half positions, and 0 in the opposite case.

For each pattern we know the number of clusters Cu where this

pattern in more than half cases is disordered, and also the number

of clusters Cf where this pattern is folded in more than half cases

(see Dataset S1, columns J and K). We should calculate the

probability P (Y) that the number of successes will be larger or

equal to Cu at the given number of trials Y = Cu+Cf.

In other words, this is the probability that at the given or larger

number of trials:

P~
XY

i~Cf

i

Y

� �
� pi � 1{pð ÞY{i ð5Þ

where p is the probability of success of one trial (see above). The

significance of disordered occurrences is estimated with the Z-

score:

Zdisorder~
Cu{Y :pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y :p: 1{pð Þ

p : ð6Þ

Statistical significance of the observed number of
occurrences of pattern X in proteomes

The probability of finding patterns with possible changes is

equal to the summation of probabilities over all sequences

compatible with the given pattern.

~pp(X )~
X

i

p(X
0
i ), ð7Þ

X
0
i is the sequence compatible with the given one (see the rules of

coincidence, for example i = 39 for n = 6).

p(X )~ P
n

i~1
pi ð8Þ

where the probability p(X) that pattern X occurs in a sequence and

pi is the probabilities of occurrence of amino acids in the

considered proteome. We calculated the probability p(X, N) that

pattern X with n amino acid residues occurs in a sequence of

length N:

p X ,Nð Þ~p Xð Þ: N{nz1ð Þ: ð9Þ

The probability distribution on protein sequences is assumed to be

binomial.

The statistical significance of pattern X is estimated with the Z-

score

Zoccur~Z(X ,N)~
S{R:p(X ,N)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R:p(X ,N):(1{p(X ,N))
p , ð10Þ

where S is the number of sequences containing at least one

occurrence of homorepeat X. R is the number of proteins in the

considered proteome. N is the average length of proteins in the

considered proteome.

Statistical significance of the observed number of
occurrences of pattern X in two different proteomes

Let ni and nj be the numbers of proteins with the given pattern X

in proteomes i and j. Ni and Nj are the whole numbers of proteins

in both proteomes, and p~n=N is the frequency of proteins with

Disordered Patterns in Data Bank and in Proteomes
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the given pattern. s~
ffiffi
n
p

N
is the standard deviation. Li and Lj are the

average length of proteins in the considered proteomes i and j. The

scoring function is:

Zdiff ,ij~

pi=Li
{pj

�
Ljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

si=Li

� �2

z sj
�
Lj

� �2
r ð11Þ

We consider that the difference is significant if its Z-score exceeds

the proper value with absolute meaning 3 and 5. These values

correspond to the probabilities 3*1023 and 6*1027, respectively.

The correlation coefficient (r) was calculated using the equation:

r~

1

n

Xn

i~1

(xi{�xx)(yi{�yy)

sx sy

ð12Þ

where Sx and Sy are standard deviations for variables x and y.

Database of proteomes
We considered 3279 proteomes from the EBI site (ftp://ftp.ebi.

ac.uk/pub/databases/SPproteomes/uniprot/proteomes/). Since

the patterns with the frequent occurrence in proteomes have low

complexity we did a preliminary analysis. The analysis showed

that the number of proteins with at least one occurrence of

homorepeats of 6 residues long is less than 500 for proteomes with

an overall number of residues below 2500000. Even so, only 22

proteomes out of 3156 have more than 100 proteins with at least

one occurrence of 6-residue homorepeats. The data gave grounds

for our research involving only proteomes with an overall number

of residues exceeding 2500000.

We obtained 123 proteomes taking into account the length of

proteomes representing 9 kingdoms of eukaryotes and 5 phyla of

bacteria (see Table 1 and Dataset S2). Unfortunately, only three

kingdoms of eukaryotes (Metazoa, Viridiplantae, and Fungi) are

given at http://www.ncbi.nlm.nih.gov/Taxonomy/. In other

cases, the rank of kingdom is missing. In such situations, we chose

the highest taxonomic category proceeding from the subkingdom

of eukaryotes instead of the kingdom. We chose 97 out of 120

eukaryotic proteomes, and a small number of bacterial proteomes.

The smallest eukaryotic proteome belongs to Hemiselmis andersenii,

class Cryptophyta. It is evident that 498 proteins with an overall

number of 167452 of amino acid residues are not sufficient for

reliable statistics. Historically, the superkingdom of bacteria is

divided into phyla but not kingdoms. We preferred to consider

such phyla separately.

Among 97 eukaryotic proteomes, 17 belong to the kingdom of

Metazoa or animals: Homo sapiens (51778 protein sequences), Bos

Taurus (18405), Mus musculus (42120), Rattus norvegicus (28166),

Gallus gallus (12954), Danio rerio (21576), and Tetraodon nigroviridis

(27836) belong to Chordata phylum, Drosophila melanogaster (15101),

Drosophila pseudoobscura (16000), Aedes aegypti (16042), Anopheles

darlingi (11437), and Anopheles gambiae (12455) to arthropods, and

Caenorhabditis briggsae (18531), Caenorhabditis elegans (23817), Loa loa

(16271), and Trichinella spiralis (16040) belong to nematodes,

Nematostella vectensis (24435) belongs to cnidaria phylum.

Results and Discussion

Library of disordered patterns
Following the procedure described in the Materials and

Methods section, we constructed the clustered PDB (CDRDB) at

the level identity of 75% (http://bioinfo.protres.ru/st_pdb/) and

obtained a library of disordered patterns. The dataset includes 141

patterns (see Dataset S1). Figure 3 demonstrates the distribution of

the patterns according to their lengths. The patterns occur more

frequently as short fragments (105 out of 141 are patterns of 4–6

residues long). The largest pattern with condition D$25 consists of

17 amino acid residues (HHHHHHSSGLEVLFQGP). It is

interesting that the strong pattern is HHHH, but not HHHHHH

as in the last version of the library [31]. We suggest that the

residues matched by these patterns will be disordered in new

protein chains because more than half of residues in these patterns

are disordered (see conditions C2 and C3 in the Materials and

Methods section).

The statistical significance of disordered occurrences in the

selected patterns was estimated with the Z-score (see Materials and

Methods). We calculated the probability that the number of

successes will be larger or equal to Cu at the given number of

Cu+Cf (for each pattern we know the number of clusters Cu where

this pattern in more than half cases is disordered, and also the

number of clusters Cf where this pattern is ordered in more than

half cases). This probability for all 141 disordered patterns is less

than 7N1025.

All 141 patterns have Zdisorder.6.4 that corresponds to the P-

value of 7N1025, which is in good agreement with the procedure of

the disordered patterns determination. The worst variant is Cu = 5,

Cf = 4, and the length of patterns is 6. We have four such cases:

SVAESS, ASIGQA, PPSGSP, and DSDVSL (see Dataset S1,

columns O and P).

Comparison of the new and the previous libraries of
disordered patterns

After construction of the new library the question about

similarity of two databases (previous and new) arises. For this

purpose the previous patterns matched the clustered pdb

(CDRDB) and the sum of weights was calculated analogously to

the new patterns. Then we calculated the sum of weights for

residues matching both the previous and the new patterns

(intersections, I12). The number of clusters with identity of 75%

in which there were new and previous patterns was calculated, as

well as the number of intersections. The degree of coincidence was

calculated using equations (13) and (14):

F1~I12= N1zN2{I12ð Þ ð13Þ

F2~I12=min N1, N2ð Þ ð14Þ

where I12 is the sum of weights for intersections (coincidences), and

N is the weight of a single pattern. We considered only pairs where

F2.0.1, F2(C75).0.1, I12$3, and the number of clusters where

two patterns appear together, C12$3 (see Dataset S3). The

measure F1 points to the coincidence between two considered

patterns. At the same time the measure F2 demonstrates a level of

inclusion of the pattern with smaller N into a larger one. Large

difference between N1 and N2 results in a wide difference between

F1 and F2.

For example, the sequence GSSHHHHHHSSGLVPRGSHM
occurs in 393 clusters on the N-termini, where it is disordered

more than half in 387 clusters. This sequence is matched by

pattern GSHM, and its beginning is matched by the HHHH

pattern. If we have a test database with one protein where there is

such a sequence at the N-end, then NGSHM = 20. N is the weight of

a pure pattern with the neighboring part, in this case this is the

length of the whole N-terminal fragment, NHHHH = 9, I12 = 9,

Disordered Patterns in Data Bank and in Proteomes
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Table 1. Names of 97 eukaryotic and 26 bacterial proteomes.

Eukaryota Eukaryota (Fungi) Bacteria***

Metazoa 25.H_sapiens 34310.A_capsulata_ATCC_26029 Acidobacteria 25797.S_usitatus

22974.B_taurus 34967.A_capsulata_H143 Actinobacteria 37022.A_mediterranei

59.M_musculus 34495.A_dermatitidis_SLH14081 33926.C_acidiphila

122.R_norvegicus 34498.A_dermatitidis_ER-3 35278.Frankia_sp_EuI1c

21457.G_gallus 35919.A_benhamiae 35534.F_sp

20721.D_rerio 29154.A_clavatus 74443.K_setae

22388.T_nigroviridis 33020.A_flavus 33113.R_opacus

17.D_melanogaster 22118.A_fumigatus_FGSC_A1100 25456.Rhodococcus_sp

25396.D_pseudoobscura 31018.A_fumigatus_CEA10 131.S_avermitilis

31436.A_aegypti 29130.A_niger 36666.S_bingchenggensis

78607.A_darlingi 23077.A_oryzae 84.S_coelicolor

22426.A_gambiae 28239.A_terreus 34910.S_scabies

21633.C_briggsae 30100.B_fuckeliana 35554.S_sp_ACT-1

9.C_elegans 22024.C_albicans_SC5314 58962.S_violaceusniger

64800.L_loa 32738.C_dubliniensis 34011.S_roseum

79720.T_spiralis 19665.C_glabrata Proteobacteria 112.B_japonicum

30565.N_vectensis 34491.C_tropicalis 22343.Burkholderia_sp_ATCC_17760

Viridiplantae 23214.O_sativa 25585.C_globosum_IFO_6347 25388.B_xenovorans

3.A_thaliana 34493.C_lusitaniae 33223.H_ochraceum

33157.Micromonas_sp 34218.C_posadasii 23351.M_xanthus

29351.O_lucimarinus 79902.C_graminicola 32044.P_pacifica

25972.O_tauri 20018.D_hansenii 30295.S_cellulosum

Stramenopiles* 35109.E_siliculosus 34482.L_thermotolerans 33616.S_aurantiaca

Choanoflagellida** 30562.M_brevicollis 29447.L_elongisporus Bacteroidetes 33930.C_pinensis

Euglenozoa* 83400.L_braziliensis 22028.M_oryzae 32144.M_marina

83363.L_infantum 34471.N_otae Chloroflexi 36622.K_racemifer

71330.T_brucei 34970.N_haematococca

33602.T_cruzi 29157.N_fischeri

Alveolata* 32114.P_berghei 22025.N_crassa

31998.P_chabaudi 34307.P_brasiliensis_Pb03

493.P_falciparum 34389.P_brasiliensis_Pb18

31342.P_knowlesi 34392.P_brasiliensis_ATCC_MYA-826

31632.P_vivax 31898.P_chrysogenum

21631.P_yoelii 32999.P_marneffei

Amoebozoa* 21395.D_discoideum 25591.P_nodorum

35301.P_pallidum 29448.P_guilliermondii

Diplomonadida* 33600.G_intestinalis_ATCC_50803 28727.P_stipitis

35295.G_intestinalis_ATCC_50581 79908.P_graminis

65115.G_intestinalis 79905.P_teres

30091.S_cerevisiae_YJM789

31651.S_cerevisiae_RM11-1a

34506.S_cerevisiae_JAY291

35062.S_cerevisiae_Lalvin_EC1118

71242.S_cerevisiae

30103.S_sclerotiorum

35280.S_macrospora

33056.T_stipitatus

35921.T_verrucosum

34386.U_reesii

30097.V_polyspora
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F1 = 9/20 = 0.45, F2 = 9/9 = 1. In a real situation in the whole

CDRDB NHHHH = 29 560.4, NGSHM = 8 452.0, I12 = 3 163.1,

F1 = 0.09, F2 = 0.37. It should be noted that real F2 is less than

test F2. This occurs because GSHM appears usually in sequence

GSSHHHHHHSSGLVPRGSHM or in similar sequences. Yet

sometimes GSHM appears alone.

The result of intersections of the two libraries (the previous

library includes 109 patterns and the new one includes 390

patterns if D.0) is presented in Fig. 4. One can see that there are

16 precise coinciding patterns: ENLYFQ, ASMTGGQQMGR,

GSSHHH, WSHPQFEK, EGGSHHHHH, RRGKKK, PTTE-

NLYFQGAM, PTTENLYFQGAM, SHHHHHHSQDP, HHH-

HHMA, SMTGGQQMGRGS, KKGEKK, SRSHHHH, EN-

LYFGGS, GGRHHH, HHHGSM, GSHMSQ, and 8 with not

precise coincidence, for example HHHHHH and HHHH

(Dataset S3).

It is interesting that some patterns appear in a protein together

with other patterns (57 out of 141). Such pairs can be seen in

Dataset S4. Also we calculated the number of patterns which

appear in proteins together with the considered pattern (see Fig. 5).

Pattern HHHH occurs more often with other patterns in proteins.

It should be noted that there are several patterns which appear

alone in the CDRDB (see Fig. 5, Dataset S4). We used the same

criteria as for the intersections of the two libraries.

Occurrence of disordered patterns in 97 eukaryotic and
26 bacterial proteomes

After creating the library of disordered patterns taken from the

CDRDB, another interesting question arises: how often the

obtained patterns could occur in some proteomes. Since

eukaryotic proteomes include more disordered regions than other

proteomes [17,37,38] we compared 97 eukaryotic proteomes and

26 bacterial ones (see Table 1, Dataset S1, and Materials and

Methods).

We considered two cases for coincidence. In the first case we

calculated the number of proteins where the patterns match with

precise coincidence a polypeptide chain fragment. In the second

case we analyzed the coincidence according to the definition

Eukaryota Eukaryota (Fungi) Bacteria***

35359.V_albo-atrum

20011.Y_lipolytica

31020.C_cinerea

20846.C_neoformans_JEC21

21380.C_neoformans_B-3501A

31023.L_bicolor

33031.P_placenta

22029.U_maydis

*Category without rank is given.
**The name of order is given because the highest ranks are missing in the taxonomic description.
***The superkingdom of bacteria is divided in phyla rather than kingdoms.
doi:10.1371/journal.pone.0027142.t001

Table 1. Cont.

Figure 3. Dependence of the number of patterns on the length (number of amino acid residues).
doi:10.1371/journal.pone.0027142.g003
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suggested here and in the paper [31]. According to the rule

mentioned in the Materials and Methods section for patterns with

a length of L#5 no change may occur, for 5,L#10 – only 1

change may take place, for 10,L#15 – 2 changes, etc.

Among 141 disordered patterns 17 occur (with precise

coincidence) only in the PDB but are very sparse in 123 proteomes

(see Dataset S5). Such patterns as RASQPELAPEDPED,

SMTGGQQMGRGS, SHHHHHHSQDP, PTTENLYFQGAM,

HHHHHHSSGLEVLFQGP, EQKLISEEDLN, and ASMTG-

GQQMGR do not appear in the analyzed proteomes even in two

cases (precise coincidence and exact coincidence of two terminal

residues and no coincidence in L/5 positions) (see Figure 6). This

suggests that such patterns are an artificial addition to proteins from

the CDRDB for their better purifications.

From Figure 6 it is evident that the homorepeats occur very

often in eukaryotic proteomes. The patterns with the most

frequent occurrence in the eukaryotic proteomes have low

complexity: PPPPP, GGGGG, EEEED, HHHH, KKKKK,

SSTSS, and QQQQQP. From Tables 2 and 3 it is evident that

the disordered patterns with the most frequent occurrence in the

eukaryotic and even in bacterial proteomes are patterns with low

complexity GGGGG, PPPPP, TTTPTT, GGGGSGG, KKKKK,

etc.

According to work [31] we suggest that these patterns will be

disordered in most cases. It should be noted that low-complexity

regions can additionally include ordered structural proteins or

proteins with strong structural propensity, like collagens, coiled-

coils or fibrous proteins [40]. Recently, it has been demonstrated

that an increased number of perfect tandem repeats correlates

with their stronger tendency to be unstructured [41]. Moreover,

strong association between homorepeats and unstructured regions

was shown elsewhere [42]. Such patterns as GGGGSGG,

EEEEVEE, EDEREE, APIPAP, and PSRSPS (see Table 2) often

occur in the considered 17 animal proteomes.

It should be noted that poly H fragments are artificial parts of

proteins in the PDB which have been added for better purification

of proteins, but in eukaryotic proteomes such a repeat is likely to

have a biological function. The locations of poly-H fragments can

Figure 4. Dependence of the number of coinciding patterns between previous and new libraries of disordered patterns at the given
level of coincidence (F1). The measure F1 points to the coincidence of protein regions covered by the considered patterns.
doi:10.1371/journal.pone.0027142.g004

Figure 5. Number of patterns with which the given pattern appears together in the same protein in the clustered PDB. Pattern HHHH
appears 45 times together with some other patterns from the library and 84 patterns appear alone in the clustered PDB.
doi:10.1371/journal.pone.0027142.g005
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be found in different proteomes from our site, http://bioinfo.

protres.ru/fp/search_new_pattern.html.

We calculated the statistical significance of the observed

patterns in 123 proteomes by using equation (10) (see Materials

and Methods). It should be noted that the average length of

proteins in considered proteomes is larger (about 400 residues)

than the average length of the protein in the PDB database (about

260 residues). On the one hand, Zoccur#0, varies from 40 patterns

for the human proteome to 91 ones for the bacterial proteome B.

xenovorans. On the other hand, Zoccur.5 varies from 65 patterns in

the rice proteome (O. sativa) to 8 patterns in the bacterial proteome

B. xenovorans. Several examples deserve our attention. For instance,

the appearance of pattern GGSGGGGSGGG varies from 7 cases

in T. spiralis (the expected occurrence is 0.0004) to 149 cases in

humans (the expected occurrence is 0.013), but the Zoccur value is

353 and 1291, respectively. Such patterns as MSLN and SNAM

appear more sparsely in comparison with the expected value

(Zoccur,0) for all considered 17 animal proteomes. Although the

first pattern occurs 100 times (that is not rare) in the human

proteome, and the second pattern appears 61 times, correspond-

ingly. At the same time pattern HHHH appears more often than

expected (from 10 for the human to 4 for the actinia (N.vectensis)),

but Z is 68 and 12, respectively.

We calculated the frequencies of occurrence of 141 disordered

patterns in 123 proteomes. To make a statement that the given

pattern X occurs more often in the i proteome than in the j one we

introduced the scoring function for such difference between

occurrences of the pattern in two proteomes (by using equation

(11), see Materials and Methods). This scoring function should

have a normal distribution according to the central limit theorem.

We considered the difference occurrence of 141 patterns in some

pairs of proteomes (see Dataset S5) and illustrated here the

example for eukaryota and bacteria superkingdoms. It turns out

that the appearances of 55 patterns in the two superkingdoms do

not differ significantly at the level of 1027. The negative value of

the scoring function points out that the frequency of appearance of

the given pattern is higher in bacteria than in eukaryota

superkingdoms. For example pattern APIPAP occurs 1.5 times

more frequently in 26 bacterial proteomes than in 97 eukaryotic

proteomes (Zdiff = 220.4). It should be added, that HHHH and

QQQQQP patterns occur in Arthropoda’s proteomes more often

than in the Chordata proteomes (Zdiff = 238.4 and 234.7,

correspondingly) (see Table 2 and Dataset S5).

For each proteome we calculated a set of 141 values reflecting

the number of proteins containing at least one disordered pattern

for each of the 141 patterns from the library. Then considering all

possible pairs of proteomes, the correlation coefficients between

the 141 values have been calculated resulting in the matrix of

correlation coefficients. The correlation coefficient was calculated

for each pair of proteomes separately (see Table 4), and then

averaging has been done inside each kingdom and phylum (see

Table 5). As a rule, the correlation coefficients are higher inside

the studied kingdom and phylum than between them.

From Table 4 four clusters can be selected with a high

correlation coefficient between the numbers of proteins where all

considered patterns appear for all pairs between 17 animal

proteomes. The first cluster corresponds to phylum Chordata (7

proteomes), the second corresponds to Arthropoda (5 proteomes),

the third to Nematoda (4 proteomes), and the fourth to Cnidaria

(only 1 proteome). In Tables 4 and 5, bold formatting is used to

show a correlation higher than 75%, normal size of numbers to

show the correlation from 50% to 75%, and smaller size of

numbers to show the correlation smaller than 50%. From Table 4

it is evident that the number of proteins from the human proteome

Figure 6. Occurrence of disordered patterns in four proteomes. (A) H. sapiens, Chordata phylum; (B) D. Melanogaster, Arthropoda phylum;
(C) C. elegans, Nematoda phylum; (D) N. vectensis, Cnidaria phylum. The blue color corresponds to precise coincidence of the considered patterns
with the fragment of polypeptide chains, the aqua color corresponds to exact coincidence of two terminal residues from both termini and
incomplete coincidence in the L/5 positions.
doi:10.1371/journal.pone.0027142.g006
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correlates with that from chicken and fish lesser than with bovine,

rat, and mouse proteomes. At the same time, the correlation

between the number of proteins from proteomes from the

Chordata phylum is high for such proteomes as C. briggsae and C.

elegans. High correlation coefficients also are observed for such

pairs as T. spiralis for the Arthropoda proteomes, and N. vectensis for

the Chordata proteomes.

Combining the motif discovery and disorder protein segment

identification in the clustered PDB allows us to create the largest

library of the disordered patterns. At present the library includes

141 disordered patterns. Such an approach is promising for

further studying and understanding the functional role of the

obtained patterns in different proteomes. We came to some

general conclusions after analysis of 123 proteomes. The

disordered patterns appear more often in eukaryotic than in

bacterial proteomes. We can conclude that the occurrence of

disordered patterns is more monotonous within the same kingdom

(phylum) than between kingdoms (phyla). One can suggest that

such short similar motifs are responsible for common functions for

nonhomologous, unrelated proteins from different organisms.

Supporting Information

Dataset S1 List of 141 disordered patterns.

(XLS)

Dataset S2 Number of proteins and residues for each out of 123

proteomes.

(XLS)

Dataset S3 Comparison of the new and the previous libraries of
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(XLS)

Dataset S4 Pairs of patterns which appear in the same protein
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(XLS)
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39. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 25: 3389–3402.
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