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Abstract

Background: Baylisascaris procyonis (Nematoda: Ascaridida), an intestinal nematode of raccoons, is emerging as an
important helminthic zoonosis due to serious or fatal larval migrans in animals and humans. Despite its significant veterinary
and public health impact, the epidemiology, molecular ecology and population genetics of this parasite remain largely
unexplored. Mitochondrial (mt) genomes can provide a foundation for investigations in these areas and assist in the
diagnosis and control of B. procyonis. In this study, the first complete mt genome sequence of B. procyonis was determined
using a polymerase chain reaction (PCR)-based primer-walking strategy.

Methodology/Principal Findings: The circular mt genome (14781 bp) of B. procyonis contained 12 protein-coding, 22
transfer RNA and 2 ribosomal RNA genes congruent with other chromadorean nematodes. Interestingly, the B. procyonis
mtDNA featured an extremely long AT-rich region (1375 bp) and a high number of intergenic spacers (17), making it unique
compared with other secernentean nematodes characterized to date. Additionally, the entire genome displayed notable
levels of AT skew and GC skew. Based on pairwise comparisons and sliding window analysis of mt genes among the
available 11 Ascaridida mtDNAs, new primer pairs were designed to amplify specific short fragments of the genes cytb (548
bp fragment) and rrnL (200 bp fragment) in the B. procyonis mtDNA, and tested as possible alternatives to existing mt
molecular beacons for Ascaridida. Finally, phylogenetic analysis of mtDNAs provided novel estimates of the
interrelationships of Baylisasaris and Ascaridida.

Conclusions/Significance: The complete mt genome sequence of B. procyonis sequenced here should contribute to
molecular diagnostic methods, epidemiological investigations and ecological studies of B. procyonis and other related
ascaridoids. The information will be important in refining the phylogenetic relationships within the order Ascaridida and
enriching the resource of markers for systematic, population genetic and evolutionary biological studies of parasitic
nematodes of socio-economic importance.
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Introduction

Baylisascaris procyonis, a ubiquitous helminth parasite of raccoons

(Procyon lotor), is increasingly being recognized as an emerging

public health concern in North America, Europe and parts of Asia

[1,2]. B. procyonis is the most common cause of clinical visceral

(VLM), ocular (OLM) and neural larva (NLM) migrans in various

species of birds and mammals, including humans [3]. Humans, as

accidental intermediate hosts, become infected by the accidental

consumption of infective B. procyonis eggs from the environment

or articles contaminated with raccoon faeces [4]. Human infec-

tion with B. procyonis typically results in fatality or long-term

neurological sequelae [5–10]. Clinical manifestations include

eosinophilic encephalitis, ocular disease and eosinophilic cardiac

pseudotumor. Fifteen recognized human cases of B. procyonis NLM,

six of them fatal and predominantly involving children, were

reported by Murray and Kazacos (2004). More than 12 additional

unpublished cases of infection are also known (K.R. Kazacos,

personal observation) [2,11]. Epidemiological studies suggest

that pica or geophagia and exposure to infected raccoons or

environments contaminated with their faeces are the most

important risk factors for human infection with B. procyonis.

Current diagnosis of this parasitic infection is typically based on

morphological examination. However, morphological character-

istics can often be unrecognized even by experienced microsco-

pists, and mistaken identification, particularly of helminth larvae,

is not uncommon [12]. Moreover, the diagnosis becomes more

difficult when identification and differentiation of eggs or larval are

performed among a number of possible environmental cross-

contaminating eggs of other parasites, including morphologically
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similar Baylisascaris spp. [2], and of possible contaminating

nematode larvae, including those of Toxocara canis, Toxocara cati,

Toxascaris leonina, Ascaris lumbricoides, and species of Angiostrongylus

and Ancylostoma [12,13]. Therefore, obtaining a more efficient and

reliable way to identify and differentiate B. procyonis eggs or larvae

has become crucial for clinical diagnosis, epidemiological

investigation and laboratory tests, and achieving this goal is

foreseeable only through utilization of molecular methodologies.

Recently, mitochondrial (mt) genomics have received increased

attention, and mt DNA is regarded as an important and efficient

source of genetic markers, being widely used for species-specific

identification and differentiation of many zoonotic nematodes.

Sequences of the mt cytochrome-oxydase I (cox1) and NADH

dehydrogenase subunit 4 (nad4) genes have been used to identify

and differentiate hookworm species [14] and other Strongylida

[15], respectively. Additionally, the cytochrome-oxydase II (cox2)

gene has also proven useful as a genetic marker for differentiation

of species among T. canis, T. cati, T. leonina, Ascaris suum and B.

procyonis [2,16]. Surprisingly, based on the cox2 gene, B. procyonis

and Baylisascaris columnaris cannot be distinguished between each

other because of the high nucleotide sequence similarity [2].

Similar problems may be further exacerbated in attempts to

perform species-specific differentiation between B. procyonis and

other Baylisascaris spp., thus limiting the ability to accurately

identify and to assess genetic variability in B. procyonis populations,

which would be problematic for studies of its epidemiology,

diagnosis and control. Compared to the use of partial mt genes, a

complete mt genomic dataset would be especially powerful for

displaying sufficient interspecies sequence variability and describ-

ing species specificity [15,17]. Moreover, mt genomes contain

useful genetic markers for studying the genetic structure within

and among Baylisascaris spp., due to mutation rates which are

proposed to be more rapid than nuclear genes, and presumed lack

of recombination and maternal inheritance [15,18–22]. However,

no complete information on the mt genome of B. procyonis was

previously available.

Herein, we first report the complete nucleotide sequence of the

mt genome from a representative B. procyonis from China and

compare the sequence and genome organization with the three

other available complete mt genomes from the congeneric

Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga

[23], as well as the sequences from related nematodes in the same

order. Based on comparative mitogenomics, whether mt gene

fragments currently utilized as genetic markers (such as cox2) offer

the best regions for characterization or species identification and

recognition is discussed. Additionally, new PCR primer pairs

designed to amplify short fragments of mtDNA for B. procyonis were

developed with the aim of providing the ability to differentiate

between B. procyonis and other species of ascaridoids, including

morphologically similar Baylisascaris spp. Finally, the phylogenetic

relationships of the species B. procyonis within the genus Baylisasaris

and of the genus Baylisascaris within the order Ascaridida were also

investigated by the construction of phylogenetic trees (NJ, MP and

ML) using the protein-coding amino acid sequence dataset.

Results and Discussion

Main features of the mt genome of B. procyonis
The complete mt genome of B. procyonis was 14781 bp in size

(GenBank accession No. JF951366) and encoded 36 genes,

including 12 protein-coding genes (1 subunit of the ATP synthase,

atp6; 3 subunits of cytochrome c oxidase, cox1-3; 1 subunit of

cytochrome c-ubiquinol oxidoreductase, cytb; and 7 subunits of

NADH dehydrogenase, nad1-6 and nad4L), 22 transfer RNA (trn)

genes (two coding for leucine and two coding for serine) and the

small and large subunit ribosomal RNAs (rrnS and rrnL) (Figure 1;

Table S1). As with other chromadorean nematode mtDNAs

sequenced thus far, the B. procyonis mt genome also lacked the gene

encoding atp8. All genes were distributed on the same strand and

transcribed in the same direction (59 to 39), typical for other

nematodes reported to date (except for Trichinella spiralis and

Xiphinema americanum) (Figure 1) [24,25]. Gene order for B. procyonis

mtDNA followed the GA7 arrangement [26], with the exception

of the relative positions of the AT-rich region and the number of

non-coding regions (NCRs). A similar gene arrangement was

described previously for members of the orders Ascaridida and

Strongylida as well as for the free-living nematode Caenorhabditis

elegans [23,27–33]. Only one long unassigned region was present

between the genes rrnS and nad1, flanked at the 59 end by the gene

trnS (UCN) and at the 39 end by the genes trnN and trnY, and it

was deemed homologous to the AT-rich region (also known as the

control region) by analysis of positional homology, general

structure and base content. In addition, the B. procyonis mtDNA

contained 17 intergenic spacers ranging in length from 1 to 118 bp

(211 bp in total) including the NCR region (Table S1), which was

the highest number of intergenic spacers identified in a nematode

mt genome thus far [23]. There were only two overlaps found

between the genes, with one (1 bp) between cox1 and trnC and

another (3 bp) between trnF and cytb (see Table S1).

Base composition and codon usage
The overall base composition (coding strand) for the mt genome

sequence of B. procyonis was as follows: A = 22.0%, C = 8.1%,

G = 21.4%, T = 48.5%. The A+T bases comprised 68.6% of the

protein-coding genes, 72.0% of the rRNAs, 69.6% of the tRNAs

and 82.8% of the AT-rich region, giving a total A+T content of

70.5% in this mt genome. This figure was slightly higher than that

in the congeneric species B. ailuri (69.5%), B. transfuga (69.4%) and

B. schroederi (68.6%), and it was well within the range of the AT

contents reported for other nematode species in the same order

(68.3–72.0%) (Table 1). In general, the AT and GC skews on the

two complementary DNA strands for each mtDNA are regarded

as a measure of the compositional asymmetry [34]. For the entire

B. procyonis mtDNA, the AT and GC skews for the coding strand

were 20.376 and 0.448, respectively, which were significant

compared with those of other nematodes characterized to date

(AT skews ranging from 20.384 to 20.353, and GC skews from

0.320 to 0.457). A similar trend was also observed in the protein-

coding genes. The nucleotide frequency of the protein-coding

genes was observed to be in the order T . G . A . C, which

excessively favored T (50.8%) and was skewed against C (8.31%).

This nucleotide bias would have an appreciable effect on both the

codon usage pattern and the relative synonymous codon usage

(RSCU). Indeed, the protein-coding genes of B. procyonis were

biased towards codons with many T residues [e.g., 13.9% were

TTT (phenylalanine)] over those with many C residues [e.g.,

,0.1% were TCC (serine) or CTC (leucine)] (see Table S2). This

phenomenon could be explained by synonymous codon usage

bias. Generally codon bias is proposed to be highest in gene

regions of functional significance and believed to be important for

maximizing translation efficiency [35,36]. Interestingly, similar

nucleotide bias was also reflected in the choices of initiation and

termination codons. The most frequently used start codon for B.

procyonis was TTG (6 of 12 protein-coding genes; cox1-2, nad1,

nad3-4 and nad6) followed by GTG (three genes; nad2, cytb and

cox3), and ATT (nad4L and nad5) and ATA (atp6) were also used as

initiation codons (Table S1). Ten of the 12 protein-coding genes

were predicted to use TAG (atp6, cytb, cox1-3, nad1, nad4 and nad6)
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or TAA (nad3 and nad4L) as the termination codons, while the

remaining genes (nad2 and nad5) were deduced to end with an

incomplete codon T.

Twenty-two tRNAs were predicted in B. procyonis mtDNA,

ranging from 51 to 62 bp in size, and all anti-codon sequences

were the same as in other nematodes examined [23,28] (see Table

S1). Their secondary structures were similar to those of all other

secernentean nematodes studied to date [23,27–33,37–39], but

they were distinctly different from the conventional cloverleaf-like

structures described in other metazoan mtDNAs (Figure S1). The

Figure 1. Graphical representation of B. procyonis mt genome. Gene abbreviations are as follows: atp6, ATP synthase subunits 6; cox1-3,
cytochrome oxidase c subunits 1–3; cytb, cytochrome b; nad1-nad6 and nad4L, NADH dehydrogenase subunits 1–6 and 4L; rrnL and rrnS, ribosomal
RNAs. Transfer RNA genes are indicated by one letter symbol according to the IPUC-IUB single-letter amino acid codes. The two leucine and the two
serine tRNA genes are differentiated by their respective anti-codons. AT denotes the AT-rich region. The direction of transcription is indicated by an
arrow (59 to 39).
doi:10.1371/journal.pone.0027066.g001

Table 1. Size and nucleotide composition of different genomic regions in 11 ascarids reported within Ascaridida.

Species mtDNA PCGsb rRNAs tRNAs AT-region References

Size a AT% Size a AT% Size a AT% Size a AT% Size a AT%

Anisakis simplex 13916 71.2 10274 69.5 1656 74.3 1208 72.4 515 87.2 Kim et al. (2006)

Ascaris suum 14284 72.0 10397 70.5 1661 74.7 1252 71.0 886 84.6 Okimoto et al. (1992)

Baylisascaris ailuri 14657 69.5 10287 67.9 1657 69.5 1241 67.0 1282 82.0 Xie et al. (2011)

Baylisascaris procyonis 14781 70.5 10289 68.6 1664 72.0 1246 69.6 1375 82.8 This study

Baylisascaris schroederi 14778 68.6 10290 67.1 1657 69.8 1241 67.3 1406 78.9 Xie et al. (2011)

Baylisascaris transfuga 14898 69.4 10290 67.6 1658 69.7 1244 67.5 1516 82.3 Xie et al. (2011)

Contracaecum rudolphii B 14022 70.4 10281 69.0 1650 72.3 1256 70.6 588 89.1 Unpublished

Toxocara canis 14163 68.3 10294 67.3 1617 69.6 1222 69.3 828 78.1 Jex et al. (2008)

Toxocara canis 14322 68.6 10308 67.2 1655 69.8 1251 68.5 975 79.5 Li et al. (2008)

Toxocara cati 14029 69.9 10284 68.8 1651 71.5 1248 70.2 711 81.3 Li et al. (2008)

Toxocara malaysiensis 14266 68.9 10297 67.8 1651 68.5 1252 70.3 936 78.4 Li et al. (2008)

aIn base pairs.
bAll protein-coding genes were taken into account.
doi:10.1371/journal.pone.0027066.t001
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lengths of B. procyonis rrnS and rrnL were 700 bp and 964 bp,

respectively, and the corresponding secondary structures are

shown in Figure 2 (rrnS) and Figure 3 (rrnL). However, it seemed

that the relatively high AT content displayed in B. procyonis

mtDNA was conspicuous for the tRNAs and rRNAs genes,

compared with those of the congeneric species. The AT-contents

of the rRNAs sequence were 2.5%, 2.2% and 2.3% greater than

that of B. ailuri (69.5%), B. schroederi (69.7%) and B. transfuga

(69.8%), respectively. Likewise, the AT contents of the tRNAs

sequence were 2.6%, 2.3% and 2.1% more than those found

in B. ailuri (67.0%), B. schroederi (67.3%) and B. transfuga (67.5%),

respectively (Table 1) [23]. Interestingly, this level of AT content of

the B. procyonis mt tRNAs and rRNAs genes does not influence

their secondary structures. As shown in Figures S1, 2 and 3, the

secondary structures of tRNAs and rRNAs in B. procyonis were

similar with those exhibited in the congeneric B. ailuri, B. transfuga

and B. schroederi as well as other nematodes described in Ascaridida

to date [23,27,28,30,33].

Figure 2. Predicted secondary structure for the small ribosomal RNA gene subunit (rrnS) in B. procyonis mtDNA. Base-pairing is
indicated as follows: Watson-Crick pairs by lines, wobble GU pairs by large dots and other non-canonical pairs by small dots. Conserved secondary
structure elements are denoted by bold numbers (1–48) [29]. Binding sites for the amino-acyl trn (A) or peptidyl-transferase (P) [54] are indicated by
lines.
doi:10.1371/journal.pone.0027066.g002

Baylisascaris procyonis mtDNA

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e27066



The length of the AT-rich region was 1375 bp in the B. procyonis

mtDNA (Table S1 or Figure 1), and its predicted complex stem-

loop structures are shown in Figure S2. This region along with its

counterpart in B. schroederi (1406 bp), B. ailuri (1282 bp) and B.

transfuga (1516 bp) represented the longest studied thus far among

most other secernentean nematodes [23]. In secondary structure

analysis, it appeared that there was an additional stem-loop

structure at the end of the AT-rich region in B. procyonis compared

with that of B. ailuri, while some stems or loops were missing

compared with that of B. transfuga and B. schroederi (not shown).

These differences may relate to the AT-rich region as being the

most variable portion of the genome both in terms of length and

nucleotide sequence. However, many similar stem-loop structures

found in these four Baylisascaris species implied that they may be

conserved and function in regulation of transcription and control

of DNA replication [40]. Additionally, the AT-rich region of the B.

procyonis mtDNA contained 31 regions with varying numbers of the

dinucleotide (TA) repeat (n = 3 to 21) within a total of 344 bp.

Similar multiple TA repeats have been described in the AT-rich

region of the mt genomes for other Ascaridida and Strongylida

species [23,27–33]. Currently the function or role of these AT

repeats remains unclear. Other repetitive elements, such as CR1-

CR6 identified in the C. elegans AT-rich region [27] were not found

in B. procyonis.

Figure 3. Predicted secondary structure for the large ribosomal RNA gene subunit (rrnL) in B. procyonis mtDNA. Symbols for base-
pairings are as in Figure 2. Binding sites for the amino-acyl trn (A), peptidyl-transferase (P) or both (AP) [54] are indicated by lines.
doi:10.1371/journal.pone.0027066.g003

Baylisascaris procyonis mtDNA

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e27066



Levels of variability and informativeness within and
between Ascaridida mtDNAs

The comparison of protein-coding and rRNA genes in B.

procyonis mtDNA with those of ten other published Ascaridida

nematodes [B. ailuri, B. transfuga, B. schroederi and A. suum

(Ascarididae family); Anisakis simplex and Contracaecum rudolphii B

(Anisakidae family); T. canis, T. cati and Toxocara malaysiensis

(Toxocaridae family)] is shown in Table S3. The deduced length

of the 12 protein-coding genes were consistent with those of the

congeneric B. ailuri, B. transfuga and B. schroederi, except for the cox1

(which was one amino acid longer than that of B. ailuri) and nad2

(which was one nucleotide shorter than that of B. transfuga and B.

schroederi) genes, and along with two rRNA genes were in the size

range of those of the other seven nematode mtDNAs. The

nucleotide and amino acid sequences similarities for each of the 12

mt proteins of B. procyonis ranged from 85.9–92.2% and 83.9–

98.3%, respectively, between B. procyonis and the congeneric B.

ailuri, B. transfuga and B. schroederi; and from 82.5–92.1% and 82.3–

97.9%, respectively, between B. procyonis and A. suum. The

nucleotide and amino acid sequences similarities between B.

procyonis and each species of Toxocaridae were 77.6–89.1% and

74.0–95.4%, respectively; and 73.8–85.9% and 71.5–93.1%,

respectively, between B. procyonis and each species of Anisakidae.

Based on the sequence similarities, the most conserved protein-

coding genes among the 11 species (including B. procyonis) were

cox1 and cox2, while the least conserved were cytb and nad4. For the

genes rrnS and rrnL, the highest nucleotide similarities were

observed between those of B. procyonis and the congeneric B. ailuri,

B. transfuga, B. schroederi and A. suum, with the percent identities

being above 91.0% and 85.9%, respectively, followed by the

similarities between B. procyonis and individual species representing

the Toxocaridae and Anisakidae families, with the percent

identities ranging from 78.1–81.9% and 75.9–79.2%, respectively

(Table S3). In addition, the nucleotide sequence of the AT-region

in the B. procyonis mtDNA appeared to share low similarity (all

values ,60%) with that of the ten described Ascaridida species,

including the congeneric B. ailuri, B. transfuga and B. schroederi (not

shown). Combined, these results from pairwise comparisons of

nucleotide and amino acid sequences from the protein-coding

genes as well as the nucleotide sequences of the rRNA genes

suggested that B. procyonis mtDNA most closely resemble those of

members of the Ascarididae family, followed by members of the

Toxocaridae and Anisakidae families.

Sliding window analysis of the complete nucleotide alignment of

11 available Ascaridida mtDNAs provided an indication of

nucleotide diversity Pi (p) within and between mt genes (see

Figure 4). In the curve, the nucleotide variation within and

between mt genes among the aligned Ascaridida genomes was

intuitively displayed for any given window of 200 bp and steps of

20 bp, with the Pi (p) ranging from 0.075 to 0.262. Coupled with

computation of the number of variable positions per unit length of

gene, the sliding window showed that the genes with low sequence

variability included cox1 (0.305), cox2 (0.326), nad4L (0.336), nad3

(0.348) and rrnS (0.348), while the genes with high sequence

variability included nad2 (0.463), nad6 (0.458), cytb (0.446), nad4

(0.437), nad5 (0.418) and rrnL (0.410). Interestingly, amongst the

genes with high sequence variability, the genes with pronounced

peaks and troughs of Pi (p) appeared to possess higher sequence

variability than others, such as nad2, cytb, nad4, nad5 and rrnL (see

Figure 4). Based on these results, it seemed that cox1 and cox2 were

still the most conserved protein-coding genes, and cytb and nad4

were still within the least conserved ones. These observations were

remarkably consistent with the findings from pairwise comparisons

made among the nucleotide and amino acid sequences from the

protein-coding genes in B. procyonis mtDNA with those of the other

ten published Ascaridida nematodes. These results further

suggested that there are still a considerable number of alternative

genes (aside from the cox2 gene [2]) to be determined as new

genetic markers for phylogenetics, population genetics and

diagnostics. Current mt genes used as molecular targets for PCR

assays based approaches for detection/diagnostics in the order

Ascaridida include cox2 and cytb [2,41], and cox2 is also targeted for

Figure 4. Sliding window analysis of the alignment of complete mtDNAs of 11 species of Ascaridida. The black line shows the value of
nucleotide diversity Pi (p) in a sliding window analysis of window size 200 bp with step size 20, and the value is inserted at its mid-point. Gene
boundaries are indicated with a variation ratio per gene.
doi:10.1371/journal.pone.0027066.g004
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development of a probe-based (using a molecular beacon) real-

time PCR for diagnosis [16]. Although relatively easy to amplify

routinely, based on pairwise comparison and sliding window

analysis of mt genes among the available 11 Ascaridida mtDNAs,

cox2 is among the slowest evolving and least variable genes

available in B. procyonis mtDNA. Therefore, more reliable, or at

least more informative, markers should be considered for future

work, especially for diagnostics/detection involving cross contam-

ination or other Baylisascaris species. From the analysis in the

present study, compared with the cox2 gene, it seemed that cytb and

nad4 may be more suitable as molecular genetic markers for

diagnosis and identification between B. procyonis and other related

ascaridoids because of their higher variability. As shown in sliding

window analysis (Figure 4), both the cytb and nad4 genes were

found to possess more variable positions per unit length of gene

than cox2. Perhaps these markers can be further validated when

additional Ascaridida mt genomes become available, especially

from the genus Baylisascaris.

Prediction of novel mt fragments for PCR specific
identification within Ascaridida

Considering the level of nucleotide variability and nucleotide

and/or amino acid sequence similarity within and between mt

genes among the available Ascaridida mtDNAs, the genes rrnL and

cytb were selected as potentially new mt fragments for PCR specific

identification within the Ascaridida species. Subsequently, PCR

primer pairs were designed targeting a 200 bp fragment in rrnL

and a 548 bp fragment in cytb after manual inspection of the pre-

aligned rrnL and cytb sequences. The primer pairs were: A (rrnL)

forward 59-GAGAACTGGCGGGG-39, reverse 59-CTCACACT-

GACTTACACACC-39; B (cytb) forward 59-TCCTTAGTAAT-

GAGTATTGCGT-39, reverse 59-TATAACGACATTTGAAA-

AACACC-39. The specificities of the two primer pairs designed

herein were tested by PCR of the mt DNA from B. procyonis, T.

canis, T. leonina, A. suum and the four congeners (B. schroederi, B.

ailuri, B. transfuga and B. columnaris). As expected, the two targeted

PCR amplification bands (200 bp rrnL and 548 bp cytb) were

observed only in B. procyonis (data not shown). The PCR results

demonstrated that the two fragments could be readily used to

differentiate B. procyonis from other related ascaridoids, including

the morphologically similar Baylisascaris spp. This finding would

not only fill the technical gap by providing new mt fragments for

effectively and specifically distinguishing between B. procyonis and

B. columnaris [2], but it would also be useful for improving the

efficiency and accuracy of environmental investigations for B.

procyonis. Samples of B. procyonis eggs collected in nature are often

cross-contaminated with eggs of other congeners, such as B.

transfuga (from bears), B. columnaris (from skunks) and B. melis (from

badgers), due to the presence of various infected hosts in an area.

Such conditions could make it time-consuming or difficult for

accurate identification of the parasitic species based on either the

current methods of morphological examination [11] or existing

molecular beacons (e.g., cox2) [2,16]. Herein, we postulated that

PCR amplification of the pair of the newly identified mt fragments

(200 bp rrnL and 548 bp cytb) using primers developed in this study

could rapidly and accurately identify and discriminate between B.

procyonis and B. transfuga, B. columnaris and B. melis. However, other

faint bands were also detected in our PCR assays, such as a 300bp

band in B. procyonis and multiple bands in B. transfuga (not shown),

which may relate to the specificity of primer pair A. These results

suggested that the limited number of available mt genomes in the

genus Baylisascaris is still a major barrier for screening effective mt

fragments for PCR specific amplification used for identification

and differentiation between B. procyonis and other congeners.

Phylogeny
The availability of the B. procyonis mt genome provided us with

another opportunity to probe the phylogenetic positions of the

species B. procyonis within the genus Baylisasaris and of the genus

Baylisascaris within the order Ascaridida. As expected from and

Figure 5. Phylogenetic relationships of ten Ascaridida species for which complete mtDNAs are available, inferred from NJ, MP and
ML analysis for amino acid sequence data derived from 12 protein-coding genes, utilizing one filarioid species (O. volvulus) as the
outgroup. Numbers above the branches represent bootstrap values derived from different analyses in the order: NJ/MP/ML. The scale indicates an
estimate of substitutions per site, using the optimized model setting. The branches that were not universally supported with values of #50% are
indicated with ‘‘-’’ in each supporting values of the node.
doi:10.1371/journal.pone.0027066.g005

Baylisascaris procyonis mtDNA

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e27066



congruent with previous phylogenetic analyses [23,28,29,31,38],

phylogenies in this study inferred from the concatenated amino

acid sequence dataset derived from 12 protein-coding mitochon-

drial genes. After the final alignment, the concatenated amino acid

sequences (containing 3423 residues, including 2151 variable and

662 parsimony-informative) of 12 protein-coding genes for the 11

taxas (B. procyonis B. schroederi, B. ailuri, B. transfuga, A. suum, T. canis,

T. cati, T. malaysiensis, A. simplex, C. rudolphii B and Onchocerca

volvulus) were used to reconstruct the phylogenetic relationships

based on maximum parsimony (MP), neighbor-joining (NJ) and

maximum likelihood (ML) methods (Figure 5). All three

phylogenetic analyses (NJ/MP/ML) conducted clearly supported

the distinct classification positions of the genera Baylisascaris and

Ascaris (family Ascarididae), Toxocara (family Toxocaridae), Anisakis

(family Anisakidae) in the order Ascaridida, each as a monophy-

letic group with high statistical support (all bootstrap values .80)

(Figure 5). Among the genus Baylisascaris, the phylogenetic analysis

indicated a closer relationship between B. procyonis and B. schroederi

than between B. procyonis and B. ailuri or B. transfuga. This finding

was congruent with the results of a previous study using partial

sequences of nuclear internal transcribed spacers (ITS) as genetic

markers [42] and further confirmed the phylogenetic position of B.

procyonis within the genus Baylisascaris. For the interrelationships of

B. ailuri, B. transfuga and B. schroederi in the genus Baylisascaris and T.

canis, T. cati and T. malaysiensis in genus Toxocara, their phylogenetic

topologies were consistent with previously proposed molecular

phylogeny based on mt data [23,28].

In addition, the genus Baylisascaris was determined to be more

closely related to Ascaris than to Toxocara, Anisakis and Contracaecum

in the order Ascaridida in our phylogenetic analysis (Figure 5),

which was consistent with results of previous morphological and

molecular studies [23,42–44]. But relationships between any of the

Baylisascaris spp. (B. procyonis B. schroederi, B. ailuri and B. transfuga),

Toxocara spp. (T. canis, T. cati and T. malaysiensis), Ascaris spp. (A.

suum) and Anisakis spp. (A. simplex) and Contracaecum spp. (C. rudolphii

B) were poorly inferred in the NJ and ML analyses (Figure 5).

Therefore, a larger study of the evolutionary relationships among

taxa within the order Ascaridida using mt data is warranted. The

recent validation of the high-throughput sequencing technique for

the sequencing of mt genomes provides a platform for an in-depth

phylogenetic analysis of the order Ascaridida [32].

In conclusion, the complete mt genome of B. procyonis involved

in 98–99% of Baylisascaris NLM and OLM cases in humans or

other animals [11] was reported in our study. B. procyonis mtDNA

showed a typical chromadorean mitogenome structure, but a long

AT-rich region and high number of intergenic spacers made it

unique compared with other nematodes characterized to date. In

addition, the entire genome displayed notable levels of AT and

GC skewing. Based on pairwise comparison and sliding window

analysis within and between mt genes among the available 11

Ascaridida mtDNAs (including B. procyonis mtDNA), two new mt

fragments (200 bp rrnL and 548 bp cytb) proved to be suitable as

molecular targets for PCR based diagnosis and identification of B.

procyonis. Finally the analysis of amino acids deduced from

mtDNAs provided substantial support for the phylogenetic

relationships of Ascaridida species; B. procyonis was more closely

related to B. schroederi than to B. ailuri and B. transfuga in the genus

Baylisascaris, and the genus Baylisascaris was more closely related to

Ascaris than to Toxocara, Anisakis and Contracaecum in the order

Ascaridida. The complete mitogenome of B. procyonis sequenced

here is expected to render implications for molecular diagnostic

methods, epidemiological investigations and ecological studies of

B. procyonis and other related ascaridoids. The findings are

important in the refinement of the phylogenetic relationships

within the order Ascaridida and in accumulating valid markers for

systematic, population genetic and evolutionary biological studies

of parasitic nematodes of socio-economic importance.

Materials and Methods

An adult female specimen of B. procyonis was obtained from an

infected raccoon housed in the Chengdu Zoological Garden,

Sichuan Province of China, after treatment with pyrantel

pamoate. After washing in physiological saline, the morphological

identification of the worm was performed based on the taxonomic

key of Hartwich (1962). Total genomic DNA was isolated from a

small portion (1 cm) of the specimen using the Universal Genomic

DNA Extraction Kit Ver. 3.0 (TaKaRa, Japan). In order to

further verify the identity of the specimen, the ITS1 and ITS2

sequences of nuclear ribosomal DNA (rDNA) were amplified by

the PCR and compared with those previously reported for B.

procyonis (Accession numbers: AB053230 and AB051231) [45].

The entire mt genome was amplified in ten overlapping

segments (ranging in length from 873 bp to 2.47 kb) by PCR

with Ex Taq Polymerase (TaKaRa, Japan), using ,15 ng of total

genomic DNA from the sample as template. The PCR primers

were designed based on the alignments of the relatively conserved

regions of congeneric B. schroederi, B. ailuri and B. transfuga and A.

suum mt genome sequences. The names and corresponding primer

sequences are shown in Table S4. All PCR reactions were carried

out in a final reaction volume of 25 ml containing 1.5 ml of

genomic DNA extract, 1 U Ex Taq Polymerase, 106 Ex Taq

buffer, 0.2 mM of each dNTP, 10 pmol of each primer and

ddH2O. PCR cycling conditions carried out in a Mastercycler

Gradient 5331 thermocycler (Ependorf, Germany) were 5 min

denaturation at 95uC, followed by 35 cycles of 30 s at 95uC, 30 s

at 55uC and 2 to 5 min at 68uC according to the product length,

with a final extension at 68uC for 10 min. Each PCR yielded a

single band, detected in a 1% (W/V) agarose gel stained with

ethidium bromide (not shown). Each amplicon was then purified

using the TIANgel Midi Purification Kit (TiangenBiotech, China)

and was subjected to automated sequencing, either directly or

following sub-cloning into the pMD19-T vector (TaKaRa, Japan).

To ensure maximum accuracy, each amplicon was sequenced

twice independently, and in case of discrepancies a third PCR

product was sequenced. Sequencing was performed using

terminator-based cycle sequencing with BigDye chemistry (Ap-

plied Biosystems, Foster City, CA, USA) on an ABI 3730 DNA

sequencer (Applied Biosystems), utilizing a primer-walking strategy

(in both directions). The consensus sequences were assembled

manually in a single contig and aligned with the published

complete mt genome sequences of B. transfuga and A. suum [23,27]

using the Clustal X program, and the circular map was drawn

using the program MacVector v. 9.5 (http://www.macvector.

com/index.html). Genome annotation, and the comparisons with

congeneric B. schroederi, B. ailuri and B. transfuga as well as other

nematodes in the same order were performed using DNAMAN

version 3.0 (Lynnon Biosoft, Quebec, Canada) and on-line blast

tools available through the NCBI website [46]. Base composition

and codon usage were calculated in DNAStar software (DNAStar,

USA). Secondary structures of tRNA and rRNA were predicted

using standard approaches [29]. The complete nucleotide

sequences of mtDNAs for 11 Ascaridata species (including B.

procyonis) were aligned using the MEGA 3.1 [47]. Subsequently,

the complete alignment was used to accomplish sliding window

analyses with the DnaSP ver.5.10 software package (http://www.

ub.es/dnasp) [48]. A sliding window of 200 bp and steps of 20 bp

were used to estimate nucleotide diversity Pi (p) for the complete

Baylisascaris procyonis mtDNA
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alignment. Nucleotide diversity for the complete alignment was

plotted against midpoint positions of each window, and gene

boundaries were indicated. Based on Pi (p) values and nucleotide

and/or amino acid sequence similarities within and between mt

genes among the available Ascaridida mtDNAs, new mt fragments

for PCR specific identification were selected, and corresponding

PCR primer pairs for amplification were developed with either

Primer Premier version 5.0 (Premier Biosoft International, Palo

Alto, CA) or an on-line program PRIMER3 (www.genome.wi.mit.

edu/cgi-bin/primer/primer3www.cgi), with the parameters mod-

ified as follows: melting temperature = 45.0,55.0uC, minimum

number of 39-end matches = 3, optimal primer length interval

= (14, 24 bp), optimal PCR product length interval = (200, 400,

600 bp), minimum product length = 150 bp. The specificities of

the primer pairs designed were tested by PCR. All PCR reactions

containing 10,20 ng of the genomic DNA were performed in

50 ml volumes with 10 pmol of each primer, 250 mM of each

dNTP, 2.0 mM MgCl2, and 2 U Taq polymerase under the

following conditions: an initial denaturation at 94uC for 4 min

followed by 35 cycles of 94uC for 30 sec, 50,55uC for 30 sec,

72uC for 45 sec, and a final step at 72uC for 10 min.

For the phylogenetic analysis, in addition to B. procyonis mt

genome sequenced in this study [GenBank: JF951366], the

following mtDNAs from Nematoda were retrieved from GenBank:

B. ailuri [GenBank: HQ671080], B. transfuga [GenBank:

HQ671079], B. schroederi [GenBank: HQ671081], A. suum

[GenBank: NC_001327], T. canis [GenBank: NC_010690], T.

cati [GenBank: NC_010773], T. malaysiensis [GenBank:

NC_010527], A. simplex [GenBank: NC_007934], C. rudolphii B

[GenBank: NC_014870] and O. volvulus [GenBank: NC_001861].

Phylogenetic analyses were performed using the ten ascaridoid

species (B. procyonis, B. schroederi, B. ailuri, B. transfuga, T. canis, T.

cati, T. malaysiensis, A. suum, A. simplex and C. rudolphii B) as

ingroups, and one filarioid species (O. volvulus) serving as outgroup.

Twelve mitochondrial protein sequences were inferred using the

Invertebrate Mitochondrial Code (Table five GenBank; http://www.

ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode = c#SG5).

The predicted amino acid sequences were aligned using T-

COFFEE 7.81 [49], the ambiguous regions within these alignments

filtered with GBLOCKS 0.91 b [50], and then the filtered

individual sequences were concatenated for subsequent phyloge-

netic analysis. The Dayhoff matrix model determined by ProtTest

2.0 [51] was employed in the NJ analysis using MEGA 3.1 [47]. MP

phylogenetic reconstructions were conducted in PAUP* 4.0b10

[52], using heuristic searches with a tree-bisection-reconnection

(TBR) branch-swapping algorithm and 1000 random-addition

sequence replicates with ten trees held at each step, and finally the

optimal topology was obtained using Kishino-Hasegawa. The ML

computations were performed using PHYML 3.0 [53] under the

LG +C4 + F + I model of amino acid substitution selected with

ProtTest program. Branch supports were evaluated by boot-

strapping analysis of 1000 replicates for NJ and MP trees, and 100

replicates for the ML tree.
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41. Leles D, Araújo A, Vicente AC, Iñiguez AM (2009) Molecular diagnosis of

ascariasis from human feces and description of a new Ascaris sp. genotype in

Brazil. Vet Parasitol 163: 167–170.

42. He GZ, Niu LL, Yang GY, Deng JB, Wang S, et al. (2008) Sequence analysis of
ITS-2 rDNA of roundworms from Ailuropoda melanoleuca and rare wild animals.

Chin J Vet Sci 38: 933–938.

43. Nadler SA, Hudspeth DS (1998) Ribosomal DNA and phylogeny of the

Ascaridoidea (Nemata: Secernentea): implications for morphological evolution
and classification. Mol Phylogenet Evol 10: 221–236.

44. Hartwich G (1974) Keys to genera of the Ascaridoidea. In: Anderson RC,

Chabaud AG, Willmott S, eds. CIH keys to the nematode parasites of
vertebrates, Volume 2 Commonwealth Agricultural Bureaux, Farnham Royal.

pp 1–14.

45. Blizzard EL, Davis CD, Henke S, Long DB, Hall CA, et al. (2010) Distribution,

prevalence, and genetic characterization of Baylisascaris procyonis in selected areas
of Georgia. J Parasitol 96: 1128–1133.

46. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.

47. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular
Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:

150–163.

48. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA

polymorphism analyses by the coalescent and other methods. Bioinformatics 19:
2496–2497.

49. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast

and accurate multiple sequence alignment. J Mol Biol 302: 205–217.

50. Castresana J (2000) Selection of conserved blocks from multiple alignments for

their use in phylogenetic analysis. Mol Biol Evol 17: 540–552.

51. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of
protein evolution. Bioinformatics 21: 2104–2105.

52. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other

methods). Sunderland, MA, Sinauer Associates.

53. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate

large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

54. Okimoto R, Macfarlane JL, Wolstenholme DR (1994) The Mitochondrial
Ribosomal RNA Genes of the Nematodes Caenorhabditis elegans and Ascaris suum:

Consensus Secondary-Structure Models and Conserved Nucleotide Sets for

Phylogenetic Analysis. J Mol Evol 39: 598–613.

Baylisascaris procyonis mtDNA

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e27066


