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Abstract

Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness
patterns. A corollary hypothesis of water–energy dynamics theory is that the influence of water decreases and the influence
of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this
hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset
was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the
less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp.), whose species richness and distributions are
known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain
palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in
agreement with water–energy dynamics theory were found, but the results did not differ qualitatively between
hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables
were identified as important methodological challenges. We overcame these problems by using simultaneous
autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species
richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within
megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are
related to gradual latitudinal changes in ambient energy (related to solar flux input) rather than to abrupt transitions at
specific latitudes, such as the occurrence of frost.
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Introduction

Among the contemporary environmental factors that are

correlated with species richness on broad scales, water and energy

have emerged as key influences [1–4]. However, these two factors

do not appear to be equally important worldwide. Based on a

review of 85 studies of broad-scale richness gradients, Hawkins et

al. [2] hypothesized that ‘the relative importance of the two

components of water–energy dynamics shifts latitudinally’ (p.

3111). This conjecture has not received much attention (but see

[5]), although appropriate tools exist for exploring spatial non-

stationarity in environment–richness relationships [6–10].

The question of how patterns of species richness are controlled

has been debated for decades [11,12] and remains a central issue

in macroecological and biogeographical research [13–15]. Various

explanations have been proposed that emphasize the importance

of area [16], geometric constraints [13], history [17], synergism

between climate and history [18], and, most commonly,

contemporary environment [2,3,19]. Many studies have focused

on the role of contemporary climate as the main predictor of

species richness, concluding in favor of a central role for water-

and energy-related variables [2,4,19,20]. Different mechanisms

have been proposed to explain the suggested primacy of water and

energy, including trophic, physiological, and metabolic effects

[2,21,22]. Fundamentally, a dynamic relationship between energy

and water may result from life’s dependence on both liquid water

and ambient energy [2,4,20].

Of interest, richness gradients at low latitudes appear to

correlate most strongly with water availability, while energy (for

animals) or water–energy variables (for plants) are the best

correlates of most richness gradients at high latitudes [2]. This

pattern finds a convincing a posteriori explanation in the latitudinal

gradient of solar flux. Accordingly, energy is expected to be the

most limiting factor at high latitudes where energy levels are low,

while water gradients should be more important at low latitudes

where ambient energy is high and thus not limiting [2]. For plants,

the mechanism causing this predictor shift is thought to be related

to physiological processes, while for animals it is more difficult to

determine whether the shift results from direct physiological effects

or from plant productivity [2,4,23]. Worth noting, the pattern

appears to be asymmetric, with predictor shifts being largely

restricted to the northern hemisphere, whereas water is more

important than energy in most southern hemisphere regions [2]. A

potential explanation may lie in the more oceanic climates of the

southern hemisphere [2]. Increasing evidence also suggests that

climate–richness relationships depend on evolutionary processes
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(e.g., [24]), which may introduce spatial non-stationarity. In

particular, phylogenetic niche conservatism can cause groups to be

most species rich in their ancestral climates [25]. To the extent

that different groups originate from different climates, this

mechanism may lead to climate–richness relationships that vary

among groups and regions [24].

Since the meta-analysis by Hawkins et al. [2], only one study

has formally tested the hypothesized predictor shifts and found

support for it for plants and animals in Europe [5]. The questions

of whether predictor shifts are abrupt or gradual, at which

latitudes they occur, whether they can be related to specific

climatic transitions (such as the subtropical-temperate boundary),

and to what degree those parameters are taxon-specific await

further investigation.

Geographical shifts in the explanatory power of environmental

predictors are broadly relevant to macroecological research

because they pose a challenge to ‘global’ models of biodiversity.

Regression techniques that are typically used to analyze

environment–richness relationships, such as ordinary least squares

regression [1], generalized additive models (e.g. [5]), or spatial

autoregressive models [26], assume that the relationship is

described by one set of parameters that applies equally throughout

the study area. It has been argued that such models are misleading

if the analyzed relationship is indeed variable in space (spatial non-

stationarity) [6] (but see [27]). If the purpose is simply to identify

correlates of richness, the problem can be referred to the scale-

dependency of environment–richness relationships [28], with

different correlations on global and smaller scales correctly

describing a given pattern. If, however, the purpose is to

understand the actual drivers of richness, the ‘average’ parameters

obtained from a global model [6,29] might not be informative if

the driving dynamics occur at a scale smaller than the model. It is

therefore relevant to explore both scale-dependency and spatial

non-stationarity of such relationships [6,7]. Specifically, spatial

non-stationarity is a promising source of information because the

relationship as such can be related to (second-order) predictor

variables.

Geographically weighted regression (GWR) is a geographically

local modeling technique specifically designed to deal with spatial

non-stationarity in the modeled relationships [8]. GWR performs

one weighted ordinary least squares regression per observation in

the analyzed dataset. Weights are applied as a (typically inverse)

function of the distance from the location of the ‘focal’ data point.

Of importance, modeling is carried out at a scale smaller than the

study extent, defined by the distance decay (‘bandwidth’) of the

weighting function. Thus, GWR should not be used as an

alternative to global regression models but as a complementary

technique for quantifying spatial variability (non-stationarity) in

relationships between the predictor and response variables [27].

By allowing regression model parameters to vary in space and then

mapping these coefficients, GWR makes it possible to quantify and

test the spatial variability in the species–environmental relation-

ships. GWR is increasingly used for analyzing species richness

patterns [6,10,22,29,30,31], and some of these studies [22,29,30]

have produced results that are in agreement with the predictor

shifts conjectured by Hawkins et al. [2]. However, no study has to

date applied GWR in a formal test of this hypothesis.

Using GWR, we tested for predictor shifts not by comparing

disparate studies from different regions, but by quantifying

geographic variation in the ability of water and energy to explain

the species richness of a single group of organisms (palms) across

a continuous region, the American tropics and subtropics. Palms

are a diverse, pan-tropical family of ca. 2,400 species worldwide

[32]. They are important constituents of many vegetation types in

tropical, subtropical, and, more rarely, warm-temperate parts of

the New World [33]. Several previous studies have investigated

the controls of the large-scale diversity patterns in American

palms and have found water-related variables to be of primary

importance among contemporary environmental factors [34,35].

Thus, as a low-latitude group when regarded on a global scale,

the palms conform well to the conjecture of Hawkins et al. [2].

However, here we focus on assessing whether the relative

importance of water and energy also changes with latitude within

the range of palms. Moving away from the tropics, the American

palms are likely to become more controlled by available energy

than many other plant groups because of key aspects of palm

architecture and anatomy that have been previously described

[32,36,37]. Thus, they are good candidates for displaying

latitudinal predictor shifts sensu Hawkins et al. [2] at relatively

low latitudes. Here, we used GWR to formally test the following

two predictions for a species-rich organism group within the

tropics/subtropics: (1) Temperature is a stronger correlate of

palm species richness at high latitudes than at low latitudes, while

water shows the opposite trend, as hypothesized by Hawkins et al.

[2]; (2) this latitudinal shift is strongest in the northern

hemisphere, reflecting the more oceanic southern hemispheric

climates.

Methods

Study species and area
We used distribution data for the complete palm family

(Arecaceae) across the Americas (n = 547 spp.) extracted using

ArcView 9.2 (ESRI Inc., Redlands, California, USA) from the

range maps in the Field Guide to the Palms of the Americas [38]. The

number of palm species present was registered for all cells of a

continuous grid covering the whole range of palms in the Americas

ranging from 34u North to 33u South. Based on the quality of the

maps and our knowledge of the distribution of the palm family, we

decided to work at a resolution of 1u61u grid cells. Cells with less

than 25% land surface were excluded from the analysis because

their species richness might be more strongly determined by area

than by climate. Moreover, we excluded 59 also mostly coastal

grid cells for which climate variables (see below) were not

available. These criteria resulted in 1510 grid cells across the

Americas (Figure S1).

Environmental variables
As predictors, we used the environmental variables of mean

annual precipitation (AP), minimum precipitation of the driest

month (MPDM), mean annual temperature (MAT), and minimum

temperature of the coldest month (MTCM) from the WorldClim

global climate database [39] at a resolution of 30 arc seconds

(http://www.worldclim.org/current). Moreover, we used potential

evapotranspiration (PET) and actual evapotranspiration (AET)

from the 30 arc minutes resolution UNEP GNV183 data set

(www.grid.unep.ch/GRID_search_details.php?dataid = GNV183/)

[40]. To match the resolution of the palm grid cells, the average

of each variable was taken for the terrestrial part of each 1u61u
grid cell using ArcInfo 10 (ESRI Inc., Redlands, California,

USA). AET was only used to calculate water deficit (WD = PET

– AET), representing drought [10]. We did not use AET directly

because it represents both water and energy [41], running

counter to the study purpose of separating these two aspects of

climate. Thus, we worked with two sets of variables, one set

denoting water (AP, MPDM, and WD), and one denoting energy

(MAT, MTCM, and PET). Non-climatic variables were not

included because the explicit aim was to infer the roles of water

Testing the Water-Energy Theory on American Palms
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and energy, not to explain as much variation in species richness

as possible (cf. [5]).

Statistical analyses
The software SAM [42] was used to fit GWR models using

palm species richness as the response variable and different

combinations of climatic variables as predictors. In a first step, we

performed information-theoretic model selection using the cor-

rected Akaike information criterion (AICC; [43]) to determine

which combination of predictor variables had the highest

explanatory power within each set of climatic variables (water

and energy, respectively). In each set, AICC was calculated for all

possible combinations of one to three predictor variables.

We then computed local R2 values for the best water model, the

best energy model, and a model including the predictor variables

of both the best water model and the best energy model

(‘combined model’ in the following). These values represent the

fraction of local variation in palm richness explained by water (Rw)

and energy (Re). For each grid cell, variation partitioning [44,45]

was performed to determine the amount of variation that is

uniquely explained by water and energy. Those fractions were

calculated as Rpe = Rt – Rw for pure energy and Rpw = Rt – Re

for pure water, where Rt is the local R2 value of the combined

model.

The results of GWR depend on the choice of the spatial kernel

function that determines how observations are weighted as a

function of spatial distance from the focal cell [6,8,46,47]. To

ensure that our conclusions did not depend on a specific choice of

this function, we repeated all GWR analyses with four different

kernels. First, we used the bi-square function, which applies a

continuous, near-Gaussian weighting function up to a distance b

(the ‘bandwidth’) from the regression point and then zero weights

to any observation beyond b. Two values of b were used, 1200 km

and 1800 km. Second, we used the moving window approach,

which assigns equal weights to observations within the bandwidth

and zero to observations beyond [8], with the same two b values.

The bandwidths were chosen based on the resolution of the palm

diversity data (1u61u, i.e., 111 km 6110 km at the equator) and

the total extent of the study area (approx. 10,000 km between the

most northerly and most southern data points) to ensure a

reasonable local sample size and a scale that was clearly local

relative to the whole study area. Because we were specifically

interested in responses from the marginal areas (alone and not

lumped together to obtain a certain number of grid cells), we did

not use adaptive spatial kernels, which adapt the bandwidth

according to the variation in observations so that it is large in areas

with low density of data and smaller in areas with plenty of

observations [8].

To determine how the amount of local variation in palm

richness explained by water and energy changes with latitude, we

regressed Re, Rpe, Rw, and Rpw on absolute latitude separately for

the northern and southern hemispheres. This was done using both

ordinary least squares (OLS) regression and simultaneous auto-

regressive (SAR) models [26]. The local results of GWR are

inherently spatially autocorrelated because the local results for

geographically close cells are based on overlapping datasets.

Spatial autocorrelation may cause false significance of parameter

estimates or bias the parameter estimates themselves, and it has

Figure 1. Inherent spatial autocorrelation of local GWR results. Moran’s I correlogram of the amount of variation in American palm species
richness locally explained by water and energy in geographically weighted regression. The black line shows the kernel function of the GWR analysis
for comparison, a bi-square function with a bandwidth of 1200 km. Distance in km.
doi:10.1371/journal.pone.0027027.g001
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even been reported to sometimes invert the relationship between

predictor and response when standard OLS regression is used

[26,48]. Here, the spatial scale of inherent autocorrelation was

related to the GWR kernel function (Fig. 1). The neighborhood

and distance weighting for the SAR models was thus implemented

using the same function as for the GWR kernel; for the local

results of the 1200-km bi-square GWR, for example, we used a

neighborhood of 1200 km and weighted the cells according to the

bi-square function. Lagged SAR models were used because these

are designed to model inherent (as opposed to induced) spatial

autocorrelation [26]. All regression analyses were carried out in R

2.10.1 [49]; the package spdep 0.5-31 (http://cran.r-project.org/

web/packages/spdep/index.html) was used for the SAR analyses.

Results

There was strong spatial heterogeneity in palm richness–climate

relationships, as evidenced by a minimum AICC difference

between GWR and OLS models of DAICC = 663 (median

1515, maximum 3043) (Tables S1, S2, S3, S4). The model

selection procedure clearly favored the models containing all water

variables and all energy variables, respectively, with AICC

differences of 108–179 and 103–146, depending on the GWR

kernel, to the next best model (Tables S1, S2, S3, S4). Local R2

values also provided evidence for strong spatial heterogeneity in

the importance of water and energy (Fig. 2). Of note, evidence was

consistent for a decrease in the unique explanatory power of water

(Rpw) with absolute latitude and a simultaneous increase in the

unique explanatory power of energy (Rpe; Tables 1 and 2, Fig. 3).

Latitudinal trends in the amount of variation of palm richness that

is locally explained by water or energy (Fig. 3) were largely robust

to the choice of models, i.e., the spatial kernel used in GWR and

the use of OLS vs. SAR models for evaluating the GWR results

against latitude (Tables 1 and 2). Different model combinations

produced no significant latitudinal trends of opposite sign, but

relationships were non-significant in some cases (Tables 1 and 2).

Figure 2. Variation in American palm species richness locally explained by water and energy. Local R2 values obtained from
geographically weighted regression (GWR) of palm species richness on annual precipitation, precipitation of the driest month, and water deficit (A)
and mean annual temperature, minimum temperature of the coldest month, and potential evapotranspiration (B). Fraction of variation uniquely
explained by the water variables (C) and energy variables (D) obtained from variation partitioning. The green circle in (A) shows the GWR bandwidth
for a cell situated at the equator.
doi:10.1371/journal.pone.0027027.g002
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As was apparent from the mapping of the local R2 values and

fractions of variation uniquely explained by water and energy

(Fig. 2), the GWR results exhibited strong spatial autocorrelation

(Fig. 1), as expected based on the functional principles of GWR.

However, comparison of the OLS and SAR results showed that

this autocorrelation did not qualitatively affect the estimated

latitudinal relationships (Tables 1 and 2, Fig. 3).

Discussion

Water–energy dynamics theory predicts that species richness is

primarily controlled by the availability of water and ambient

energy, with water being most influential at low latitudes and

energy being most influential at high latitudes [2]. Results from

our tests using American palms as a model group strongly support

this latitudinal predictor shift (Tables 1 and 2). Similar water–

energy predictor shifts have also been found for European

mammals, birds, amphibians, and plants [5]. Whittaker et al. [5]

used global modeling techniques on separate northern and

southern datasets and found that energy had a relatively larger

contribution to explained variance in northern data. Evidence

also indicates that the relationship between Australian pterido-

phyte richness and water becomes weaker towards higher

latitudes, while the relationship with temperature becomes

stronger [30]. Similar conclusions have been drawn for American

amphibians [29] and European dragonflies [22]. These three

studies used GWR but did not involve statistical analysis of the

resulting spatial patterns.

Here, we moved beyond previous tests of water–energy

dynamics theory in several ways. Water–energy predictor shifts

were originally observed between tropical/subtropical areas,

where water is the dominant environmental predictor of plant

species richness, and temperate areas, where energy or water–

energy variables are most influential [2]. For detection of such a

shift, the analysis must include a part of the climatic gradient in

which energy is clearly limiting for the studied taxon (either in

terms of physiology, productivity, or food availability). In the

previously studied taxa, this shift seems to occur at relatively high

latitudes, usually north of the transition between subtropics and

tropics (see [2,5] for examples). Our results show that latitudinal

predictor shifts can also occur within the tropical/subtropical

zone, at least for megathermal taxa such as palms. Palms are

thought to be maladapted to meso- or microthermal climates

because of their soft and water-rich tissue, their inability to

undergo dormancy, and their lack of physiological adaptations to

frost [37]. These characteristics are obviously highly phylogenet-

ically conserved, making the palms a prime example of a group

that fits the tropical conservatism hypothesis [25]. Palms exhibit a

strong latitudinal gradient of diversity in the Americas, with

highest diversity close to the equator and no species beyond 34uN
and 34uS [34,35,50]. In line with the expectations of water–energy

dynamics theory for low latitudes, the broad-scale pattern of palm

diversity in the Americas is best explained by water [34,35], but

energy plays an additional role [50–52]. Given that the latitudinal

limits of palm occurrence are almost certainly set by low

temperatures [53], an influence of energy especially on the high-

latitude tails of the diversity gradient is plausible.

The prediction that the latitudinal predictor shift is strongest in

the northern hemisphere [2] is not supported by our results.

Neither the magnitude nor the significance of the latitudinal trends

in variable importance differ systematically between the hemi-

spheres (Tables 1 and 2). This finding is likely due to our study

being restricted to tropical and subtropical latitudes, where

climatic gradients apparently do not differ strongly enough

between the hemispheres to entail significant differences in

latitudinal predictor shifts. Such differences may still be found in

taxa that extend into temperate or arctic zones.

Previous groups have tested for latitudinal differences in the

predictive power of variables by dividing datasets into latitudinal

bands [2,5]. Central to this approach is finding the appropriate

latitudinal threshold at which to split the dataset, and interpre-

tation relies on the assumption that relationships are stationary

within each latitudinal band. If this is not the case, ‘global’ models

such as OLS or SAR models provide average estimates that can be

difficult to interpret because they may not apply to any of the

location within the study region [6,29]. GWR is specifically

designed to deal with geographic non-stationarity of model

coefficients [6–8]. It is therefore a suitable approach to studying

predictor shifts if no good argument can be made for dividing the

dataset at a particular point, or spatial stationarity within the

partial dataset is not guaranteed.

A downside of GWR compared to the latitudinal-bands

approach is that the datasets used for local models overlap

excessively, resulting in strong spatial autocorrelation of local

Table 1. Latitudinal trends in the amount of variation in
American palm species richness locally explained by water
and energy (OLS).

Bi-square Moving window

Model Hemisphere 1200 km 1800 km 1200 km 1800 km

Energy (total) North 0.728 0.753 0.703 0.757

Energy (pure) North 0.26 0.179 0.25 0.207

Water (total) North 0.256 0.503 0.345 0.462

Water (pure) North 20.559 20.665 20.59 20.827

Energy (total) South 20.001 0.285 0.11 0.259

Energy (pure) South 0.14 0.185 0.235 0.482

Water (total) South 20.34 20.157 20.39 20.448

Water (pure) South 20.246 20.421 20.369 20.435

Values are slopes of ordinary least squares regressions on standardized
variables. Positive signs indicate increase with absolute latitude. Bold: p,0.05.
doi:10.1371/journal.pone.0027027.t001

Table 2. Latitudinal trends in the amount of variation in
American palm species richness locally explained by water
and energy (SAR).

Bi-square Moving window

Model Hemisphere 1200 km 1800 km 1200 km 1800 km

Energy (total) North 0.256 0.245 0.017 0.059

Energy (pure) North 0.104 0.085 0.078 0.069

Water (total) North 0.128 0.18 20.022 20.041

Water (pure) North 20.151 20.189 20.007 20.129

Energy (total) South 0.037 0.144 0.027 0.115

Energy (pure) South 0.013 0.07 0.041 0.204

Water (total) South 20.051 20.049 20.079 20.191

Water (pure) South 20.088 20.195 20.083 20.186

Values are slopes of simultaneous autoregressive models using standardized
variables. Positive signs indicate increase with absolute latitude. Bold: p,0.05.
doi:10.1371/journal.pone.0027027.t002
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coefficient estimates (Fig. 1). Our results illustrate how difficult it is

to visually interpret GWR results because of the high degree of

inherent spatial autocorrelation; latitudinal trends are not that

obvious when R2 values are mapped (Fig. 2). Moreover, OLS

regressions that use local GWR results as the dependent variable

are prone to bias because of the inherently strong spatial

autocorrelation. The use of lagged SAR models is a way to

overcome this bias [26], so that GWR results can be used to

Figure 3. Latitudinal trends in the ability of water and energy to explain American palm species richness. The amount of variation in
palm species richness locally explained by energy variables (A–D) and water variables (E–G) plotted against latitude. A, B: total energy (Re). C, D: pure
energy (Rpe). E, F: total water (Rw). G, H: pure water (Rpw). Regression lines obtained from OLS regression (black) and SAR regression (red).
doi:10.1371/journal.pone.0027027.g003
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quantify the strength and shape of predictor shifts along latitudinal

(or other) gradients.

GWR is also an efficient tool for exploring the scale-dependency

of relationships [6,7,27]. Predictors of species richness are thought

to vary systematically with spatial scale [28]; this effect is also well

documented for palms [36]. Predictor shifts sensu Hawkins et al.

[2] might therefore depend on the scale at which climate–richness

relationships are quantified. In the present study, the GWR

bandwidth defined this scale. Latitudinal trends in energy and

water effects on palm richness emerged irrespective of the scale of

the GWR analysis (1200 km vs. 1800 km bandwidth). Smaller

bandwidths were not used because GWR tends to over-fit at very

small scales, leading to unrealistic R2 values [27]; and larger

bandwidths were not used because they would approach the extent

of the total dataset and therefore not allow for sufficient geographic

variability. However, our results indicate that the observed latitudinal

trends are not restricted to a certain spatial scale.

To our knowledge, no previous study, whether it used global or

local modeling techniques, has quantified the independent effects

of water and energy on species richness. Our results show that

taking into account parallel or synergistic effects of water and

energy can strongly influence conclusions when testing for

predictor shifts. When the water was analyzed irrespective of

energy (‘‘total water,’’ Tables 1 and 2), the influence of water

increased with latitude in the northern hemisphere in contrast to

the predictions [2]. However, this finding for the northern

hemisphere seems to be the result of an interaction with energy.

When variation partitioning [44,45] was used to identify the

amount of local variation in palm species richness that is uniquely

explained by water-related variables (‘‘pure water,’’ Tables 1 and

2), the expected negative relationship emerged also for the

northern hemisphere. This finding suggests that studies that

compare the explanatory power of variables (or sets of variables)

without taking the interactions of these variables into account (e.g.,

[30,54]) must be interpreted with caution.

Scale dependency and spatial non-stationarity are prevalent

features of environment–richness relationships and require

consideration in the effort to explain spatial patterns of species

diversity. Parallel to the current progress in finding global

determinants of diversity (e.g., [55]) and understanding their

scaling (e.g., [56]), evidence is accumulating for predictable

patterns of spatial non-stationarity. Increases in the predictive

power of water and decreases in the predictive power of energy

variables with absolute latitude have been documented across

continents, climatic zones, and taxa [2,5,22,29,30]; the current

work now extends that to the tropics/subtropics. However, more

exploration is needed into the universality of this relationship, its

shape, and its variation across taxa. GWR or similar local

modeling techniques are more powerful tools for this task than

traditional ‘global’ models but are not without issues, and further

statistical development is desirable, especially concerning spatial

autocorrelation both at the level of single (local) models and the

overall GWR fit.

Supporting Information

Figure S1 Maps of American palm species richness and
climatic variables. (A) Palm species richness, (B) mean annual

temperature, (C) mean temperature of the coldest month, (D)

potential evapotranspiration, (E) actual evapotranspiration, (F)

water deficit, (G) annual precipitation, and (H) minimum

precipitation of the driest month.

(TIF)

Table S1 Model selection for GWR with bi-square kernel,

b = 1200 km. AP: annual precipitation; MPDM: minimum

precipitation of the driest month; WD: water deficit; MAT: mean

annual temperature; MTCM: minimum temperature of the

coldest month; PET: potential evapotranspiration; DAICC is the

difference between the corrected Akaike information criterion

values of two models; GWR: geographically weighted regression;

OLS: ordinary least squares regression; *Best water model/best

energy model.

(DOC)

Table S2 Model selection for GWR with bi-square kernel,

b = 1800 km. AP: annual precipitation; MPDM: minimum

precipitation of the driest month; WD: water deficit; MAT: mean

annual temperature; MTCM: minimum temperature of the

coldest month; PET: potential evapotranspiration; DAICC is the

difference between the corrected Akaike information criterion

values of two models; GWR: geographically weighted regression;

OLS: ordinary least squares regression; *Best water model/best

energy model.

(DOC)

Table S3 Model selection for GWR with moving window

kernel, b = 1200 km. AP: annual precipitation; MPDM: minimum

precipitation of the driest month; WD: water deficit; MAT: mean

annual temperature; MTCM: minimum temperature of the

coldest month; PET: potential evapotranspiration; DAICC is the

difference between the corrected Akaike information criterion

values of two models; GWR: geographically weighted regression;

OLS: ordinary least squares regression; *Best water model/best

energy model.

(DOC)

Table S4 Model selection for GWR with moving window

kernel, b = 1800 km. AP: annual precipitation; MPDM: minimum

precipitation of the driest month; WD: water deficit; MAT: mean

annual temperature; MTCM: minimum temperature of the

coldest month; PET: potential evapotranspiration; DAICC is the

difference between the corrected Akaike information criterion

values of two models; GWR: geographically weighted regression;

OLS: ordinary least squares regression; *Best water model/best

energy model.

(DOC)
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