
Impact of MUC1 Mucin Downregulation in the
Phenotypic Characteristics of MKN45 Gastric Carcinoma
Cell Line
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Abstract

Background: Gastric carcinoma is the second leading cause of cancer-associated death worldwide. The high mortality
associated with this disease is in part due to limited knowledge about gastric carcinogenesis and a lack of available
therapeutic and prevention strategies. MUC1 is a high molecular weight transmembrane mucin protein expressed at the
apical surface of most glandular epithelial cells and a major component of the mucus layer above gastric mucosa.
Overexpression of MUC1 is found in approximately 95% of human adenocarcinomas, where it is associated with oncogenic
activity. The role of MUC1 in gastric cancer progression remains to be clarified.

Methodology: We downregulated MUC1 expression in a gastric carcinoma cell line by RNA interference and studied the
effects on cellular proliferation (MTT assay), apoptosis (TUNEL assay), migration (migration assay), invasion (invasion assay)
and aggregation (aggregation assay). Global gene expression was evaluated by microarray analysis to identify alterations
that are regulated by MUC1 expression. In vivo assays were also performed in mice, in order to study the tumorigenicity of
cells with and without MUC1 downregulation in MKN45 gastric carcinoma cell line.

Results: Downregulation of MUC1 expression increased proliferation and apoptosis as compared to controls, whereas cell-
cell aggregation was decreased. No significant differences were found in terms of migration and invasion between the
downregulated clones and the controls. Expression of TCN1, KLK6, ADAM29, LGAL4, TSPAN8 and SHPS-1 was found to be
significantly different between MUC1 downregulated clones and the control cells. In vivo assays have shown that mice
injected with MUC1 downregulated cells develop smaller tumours when compared to mice injected with the control cells.

Conclusions: These results indicate that MUC1 downregulation alters the phenotype and tumorigenicity of MKN45 gastric
carcinoma cells and also the expression of several molecules that can be involved in tumorigenic events. Therefore, MUC1
should be further studied to better clarify its potential as a novel therapeutic target for gastric cancer.
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Introduction

Gastric cancer is one of the most common and life-threatening

cancers worldwide (for review see [1]).The poor prognosis of this

disease reflects our poor understanding of its etiological factors and

pathogenesis and the lack of effective treatments.

MUC1 is a high molecular weight transmembrane protein that

is expressed at the apical surface of most glandular epithelial cells

[2]. MUC1 is overexpressed in almost 95% of cancer cells [3], a

molecular pathological feature that is associated with carcinogen-

esis and poor prognosis [4,5,6,7,8]. Moreover, aberrant glycosyl-

ation and loss of apical expression of MUC1 have been reported

for gastric carcinomas [9,10,11].

MUC1 protein consists of a highly variable extracellular domain

composed of a variable number of tandem repeats (VNTR), and a

highly conserved cytoplasmic domain (CD), which are both

essential for MUC1-driven oncogenic activities [12,13]. The

MUC1 extracellular domain can be extensively glycosylated [14]

and was shown to interact with several extracellular ligands,

including ICAM-1[15] and galectin-3[16]. These interactions

influence cell adhesion [16], motility and migration [17,18],

metastasis [19] and cell-cell aggregation [20], which contribute to

the maintenance of a normal cell phenotype, and upon

disregulation contribute to tumor progression. The MUC1

cytoplasmic domain (MUC1-CD) engages in signal transduction

through several residues that can be phosphorylated by receptor

tyrosine kinases (and other kinases), which in turn regulate MUC1-

CD affinity to other mediators of signal transduction and

transcriptional regulation [for review see [21] and [22]. MUC1-

CD associates with molecules such as b-catenin, c-Src, Grb2/Sos,
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p53, GSK-3b, EGFR and PKC-d [for review see [22], Lyn [23] ,

Lck and Zap 70 [24] , ER-a [25], NFKb [26], c-Abl [27], ATM

[28] and CAML [29], that regulate processes of cell survival,

proliferation, apoptosis, adhesion, migration and cell-cell aggre-

gation. These functions of MUC1 are known to contribute to

tumor progression and poor survival of cancer patients [for review

see [6,30]. Nonetheless, the relevance of MUC1 in gastric cancer

progression has not been previously investigated.

In the report presented here we used retrovirus-mediated

transfection of short-hairpin RNAs (shRNA) to induce a stable

downregulation of MUC1 in the gastric carcinoma- derived cell

line MKN45. The effects of MUC1 downregulation were studied

in vitro with respect to cell proliferation, apoptosis, migration,

invasion and cell-cell aggregation. MUC1 downregulated cells

were more proliferative and apoptotic than the controls and

exhibited lower degrees of cell-cell aggregation. No significant

differences were found in terms of cell migration and invasion.

Global gene expression analysis, evaluated by oligonucleotide

microarrays, identified several genes influenced by MUC1

downregulation that may contribute to the observed phenotypic

alterations. In vivo studies have shown that MUC1 downregulation

impacts tumor development.

Materials and Methods

Cell culture
A human cell line derived from diffuse-type gastric carcinoma –

MKN45 (poorly differentiated adenocarcinoma, Japan Health

Sciences Foundation [31]) was grown in RPMI 1640 containing

GlutamaxTMI and 25mM HEPES, supplemented with 10% fetal

bovine serum (FBS) and 50 mg/ml gentamicin (Invitrogen). The

packaging cell line PhoenixGP [32] was maintained in Dulbecco’s

Modified Eagle Medium containing GlutamaxTMI, 4,500 mg/l D-

Glucose and Sodium Pyruvate, supplemented with 10% FBS and

1% (v/v) penicillin/streptomycin. Stable MUC1 downregulated

clones derived from MKN45 cells were grown in standard growth

medium supplemented with 5 mg/ml puromycin (Sigma). After

evaluation of MUC1 levels at different time points in culture, all

the assays were performed considering the time of cell culture in

which the downregulation was higher, at 96 hours of cell culture.

Cells were grown at 37uC with 5% CO2 in humidified

atmosphere.

MUC1 downregulation strategy
MUC1 downregulated cells were produced using a retroviral

expression system with short hairpin RNAs. Briefly, a 21-

nucleotide sequence of the MUC1 gene, with no homology to

other DNA sequences detected in a BLAST search, was chosen

according to standard RNAi rules [33]. The scramble control was

designed and tested for homology in a BLAST search as well.

Sense and antisense oligos (Proligo) were ligated and inserted in

the pSUPER.retro.puro vector (Oligoengine). The oligos used

were the following: MUC1 Exon 2 (sense: GATCCCCACCTC-

CAGTTTAATTCCTCTTCAAGAGAGAGGAATT AAACT-

GGAGGTTTTTTA; antisense: AGCTTAAAAAACCTCCAGT-

TTAATTCCTCTC TCTTGAAGAGGAATTAAACTGGAG-

GTGGG; the MUC1-cDNA target region is underlined) and

scramble control (sense: GATCCCCATCACCTTCGTACT-

CCTTA TTCAAGAGATAAGGAGTACGAAGGTGATTT-

TTTA, antisense: AGCTTAAAAAATC ACCTTCGTACTCCT-

TATCTCTTGAATAAGGAGTACGAAGGTGATGGG; the

‘‘unpaired’’-cDNA target region is underlined). The MUC1

specific target or the scrambled control constructs were transfected

into PhoenixGP packaging cell line by calcium-phosphate

mediated transfection and transfected cells were selected using

puromycin. Stable transfectants were seeded in a 6-well plate

(1x106cells/well) and incubated for 24 hours at 32uC. The media

containing the virus was collected, filtered through a 0.45 mm filter

to remove remnant cells, and used to infect MKN45 cells, during

24 hours at 37uC. The viral supernatant was then replaced by the

standard growth medium and cells were incubated 48 hours at

37uC. Efficiently transduced cells were selected and grown in

standard media supplemented with puromycin. Two independent

MUC1 downregulated clones (C1 and C2) were isolated and

expanded for three times using cloning rings.

Immunofluorescence
MKN45 cells at 96h in culture were harvested, seeded in 12-

well slides (Cell Line) and air-dried overnight at room tempera-

ture. Cells were then fixed in ice cold acetone for 5 minutes,

washed twice with PBS and blocked with normal rabbit serum

(DAKO) diluted 1:5 in 10% bovine serum albumin (BSA) for

30 minutes. Serum was then replaced by the MUC1 monoclonal

antibody HMFG1 (NovoCastra) diluted 1:50 in 5% BSA, and

incubated overnight at 4uC. After three washes with PBS, cells

were incubated with a rabbit anti-mouse FITC labeled antibody

(DAKO) diluted 1:70 in 5% BSA for 30 minutes in the dark at

room-temperature. Cells were washed 3 times with PBS and

mounted in vectashield (Vectorlabs). Images were acquired in a

Leica DMIRE2 fluorescent microscope. Results are representative

of three independent experiments.

Protein extraction and Western blot
MKN45 cells were cultured in 60-mm dishes to 80–90%-

confluence at 96h in culture. After washing twice with PBS, lysis

buffer (10mM Tris pH 7.4, 150mM NaCl, 0.1% (p/v) SDS, 1mM

PMSF, 1% (v/v) Triton X-100) was added and cells were scraped.

Lysates were incubated on ice for 1 hour and centrifuged for

2 minutes at 4uC to collect the supernatants. Protein content was

assessed by the bicinchoninic acid method (Pierce), as described in

the manufacturer’s instruction manual. Protein extracts were

analyzed by a 4–10% SDS-PAGE (Invitrogen), transferred to a

nitrocellulose membrane (Amersham Biosciences), and blotted

overnight at 4uC with anti MUC1-Ab5 monoclonal antibody

(1:300, ThermoScientific), anti-beta-actin polyclonal antibody

(1:8,000, Sigma), anti ERK1/2(1:1,000, Cell Signaling Technol-

ogy) and anti b-catenin (1:1,000, BD Transduction Laboratories)

in 5% non-fat milk in TBS-0.1%Tween20 (Sigma). Membranes

were washed 3 times with TBS-0.1%Tween20 and the primary

antibodies were revealed using goat anti-mouse peroxidase-

conjugated antibody (1:1,000, DAKO) in 5% non-fat milk in

TBS-0.1%Tween20, followed by ECL detection kit (BioRad).

Results are representative of three independent experiments.

RNA extraction and Real-Time PCR
Total RNA was isolated from MKN45 cells at 96h in culture

using TriReagentTM (Sigma), according to the manufacturer’s

instructions. 5 mg of RNA were primed with random hexamers

(Invitrogen) and reverse transcribed with Superscript II (Invitro-

gen) in a final volume of 20 ml. 2 ml of a 1:10 dilution of cDNA

were amplified with 300nM of each primer and SYBRGreen

(Applyed BioSystems) in a final volume of 20 ml, using the

fluorescence reader ABI Prism 7000. Each sample was run in

duplicate. The primers used were the following: MUC1 (sense:

CTCCTTTCTTCCTGCTGCTG, antisense: CTGGAGAGTA-

CGCTGCTGGT) and 18S (sense: CGCCGCTAGAGGTGA-

AATTC, antisense: CATTCTTGGCAAATGCTTTCG), and

their specificity was confirmed using the software BLASTn on-
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line and by melt curve analysis. For each sample, the level of 18S

RNA was measured and used for normalization of target genes

abundance. Relative mRNA levels were then calculated using the

comparative Ct method [34]. Data is expressed as a ratio of the

results obtained with each clone and the scramble control, from

three independent experiments. Statistical analysis was performed

using the Mann-Whitney test.

MTT proliferation assay
Cells were plated in triplicate in 96-well plates at 5,000 cells per

well and incubated at normal conditions for 96h for MKN45 cells.

At each time point, the medium was removed and cells incubated

with 20 ml of MTT solution (5mg/ml, Sigma) for 3 hours at

normal conditions. MTT was removed and 200 ml of DMSO were

added to each well to dissolve formazan. Finally, formazan optical

density was measured using a microplate reader at a wavelength of

540nm. The relative growth was defined as the following formula:

Relative Growth = (A540nm at Tn / A540nm at T024h). Data is

expressed as a ratio of the results obtained with each clone and the

scramble control, from three independent experiments. Statistical

analysis was performed using the Mann-Whitney test.

Terminal Transferase dUTP Nick End Labeling (TUNEL)
assay

Post-confluent cells at 96h in culture were harvested and fixed

with 4% paraformaldehyde in PBS for 15 minutes. Fixed cells

were seeded in 12-well slides (Cell Line) and air-dried overnight at

room temperature. Following washing with PBS, cells were

permeabilized with ice-cold freshly-made PBSTrCit solution

(PBS + 0.1%TritonX + 0.1% Sodium Citrate) for 2 minutes on

ice. Cells were washed again twice, and incubated with TUNEL

reaction mix (enzyme solution, label solution and dilution buffer,

Figure 1. MUC1 downregulation by shRNA. (A) MUC1 detection by immunofluorescence with HMFG-1 antibody in MKN45-C1 and MKN45-C2
and MKN45-SC control; (B) MUC1 protein detection by western-blot with MUC1-Ab5 antibody of total protein extracts from MKN45-C1 and MKN45-
C2 and MKN45-SC control; (C) Quantification of MUC1 RNA in MKN45-C1 and MKN45-C2 and MKN45-SC control by real-time PCR. MUC1 expression
was corrected to the house-keeping gene 18S and normalized to the data obtained with the scrambled control. *P,0.01.
doi:10.1371/journal.pone.0026970.g001
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1:9:10, In Situ Death Detection Kit, Fluorescein, Roche) for 1

hour at 37uC. Two additional washing steps were performed and

slides were mounted in Vectashield with DAPI (Vectorlabs).

Results were analyzed under a Leica DMIRE2 fluorescent

microscope and data is expressed as a ratio of the results obtained

with each clone and the scramble control, from three independent

experiments. Statistical analysis was performed using the Mann-

Whitney test.

Migration assay
MKN45 cells were cultured in 60-mm dishes for a full-

confluence at 96h in culture. The epithelial cells monolayer was

then washed with PBS and wounded with a 10 ml micropipette tip.

Non-adherent cells were removed by washing twice with PBS.

Images of cells at the edge of the wound were acquired

automatically at 20x magnification in a Leica DMIRE2

fluorescence microscope with a Leica DFC Twain camera for

144 frames at 10-minute intervals (corresponding to 24 hours)

controlled by Leica FW4000 software. Frames from 0, 6, 12, 18

and 24 hours were used to quantify the percentage of migration: a

grid of 50x30 squares was used to fulfill the wound space and the

percentage of migration was calculated by the number of squares

occupied by cells at each time point. Data is expressed as a ratio of

the results obtained with each clone and the scramble control,

from three independent experiments. Statistical analysis was

performed using the Mann-Whitney test.

Matrigel invasion assay
Cell invasion was studied by using BD BiocoatTM MatrigelTM

invasion chambers with 8-mm size pores (BD Biosciences),

according to the manufacturer’s instructions. MKN45 cells at

96h in culture were harvested and seeded in duplicate at 250,000

cells per insert (sized for 24-well plates) in 1% FBS containing

medium, and 20% FBS containing medium was added to the

bottom of the growth well, as an attractant. Cells were allowed to

invade for 22 hours (37uC, 5% CO2 atmosphere). The non-

invading cells were then swabbed from the top of the inserts and

the invading cells on the lower surface were fixed with 100%

methanol and stained with DAPI for 15 minutes in the dark. The

membranes were removed and cells were counted under a Leica

DMIRE2 fluorescence microscope. Data are expressed as a ratio

of the results obtained with each clone and the scramble control,

from three independent experiments. Statistical analysis was

performed using the Mann-Whitney test.

Cell-cell Aggregation assay
MKN45 cells at 96h in culture were harvested and seeded in

duplicate at 250,000 cells per well in 24-well plates. Plates were

placed at 37uC with constant stirring (150rpm) for 1 and 2 hours.

Cells were fixed with 100 ml of 25% glutaraldehyde at time zero

and at the end of the incubation. Aggregates were photographed

under a light microscope and isolated cells were counted (cells in

duplicates were counted as isolated cells). The aggregation index

was defined as the following formula: Aggregation index = 1-

(number of isolated cells at Tn / number of isolated cells at T0).

Data are expressed as a ratio of the results obtained with each

clone and the scramble control, from three independent

experiments. Statistical analysis was performed using the Mann-

Whitney test.

Gene expression analysis
The expression of 12,135 genes in MUC1 downregulated clones

and the respective scramble control were evaluated following the

same protocol as before [35]. Briefly, following RNA extraction (as

described previously), cDNA was obtained by reverse transcrip-

tion, during which labeled nucleotides were incorporated:

MKN45-C1 and MKN45-C2 cDNAs were labeled with Cy3

(green emission) and MKN45-SC control with Cy5 (red emission).

After hybridization, the mixture was hybridized with the array

overnight and then the array was digitalized with the ScanAr-

ray4000 (Perkin-Elmer) system and fluorescence analyzed by the

QuantArray software package (Perkin-Elmer).

Normalization and background subtraction were performed

and ratios for downregulated clones /Scrambled Control and

Scrambled Control/downregulated clones were calculated using

Microsoft Excel software. Gene expression with a ratio higher than

2 was considered statistically significant.

All data is MIAME compliant and that the raw from the

microarray experiments were uploaded onto the Gene Expression

Omnibus Database http://www.ncbi.nlm.nih.gov/geo (Geo ac-

cession numbers: GSM717858 and GSM717859).

In Vivo tumor growth Assays
Six-week-old female N:NIH(s)II:nu/nu nude mice were ob-

tained previously from the Medical School, University of Cape

Town in 1991 and maintained and housed at IPATIMUP Animal

House at the Medical Faculty of the University of Porto, in a

pathogen-free environment under controlled conditions of light

Figure 2. Quantification of cell proliferation by MTT assay.
Quantification of metabolically active cells by MTT assay in MKN45-C1
and MKN45-C2 clones and MKN45-SC control at 96h in culture. Data
from 24 hours was used to set time zero and results were normalized to
the data obtained with the scrambled control.*P,0.01.
doi:10.1371/journal.pone.0026970.g002

Figure 3. Quantification of apoptotic cells by TUNEL assay.
Apoptosis of MKN45-C1 and MKN45-C2 and scramble control (SC) were
evaluated at 96h in culture by the TUNEL assay. Results were
normalized to the data obtained with the scrambled control. *P,0.01.
doi:10.1371/journal.pone.0026970.g003
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and humidity. Males and females, aged 6–8 weeks, were used for in

vivo experiments. Animal experiments were carried out in

accordance with the Guidelines for the Care and Use of

Laboratory Animals, directive 86/609/EEC. Mice were subcuta-

neously injected in the dorsal flanks using a 25-gauge needle with

1x105 of MKN45-SC (2 male and 2 female mice) or MKN45-C2

cells (3 male and 3 female mice). Mice were weighed, and tumor

width and length were measured with calipers every week. Mice

were euthanized 21 days after cell injection, at the time when the

first tumor reached maximum allowable volume. For statistical

analysis, the Mann Whitney test-StatView Software version 5.0

(SAS Institute, Cary, NC) was used. A P value of less than 0.05 was

considered as statistically significant.

Results

MUC1 downregulation by shRNA
We established two independent MUC1 downregulated clones,

MKN45-C1 and MKN45-C2 and one scramble control, MKN45-

SC. MUC1 downregulation was verified by immunofluorescence

(Figure 1A), Western Blot (Figure 1B) and Real-Time PCR

(Figure 1C).

There was a significant downregulation of MUC1 expression in

MKN45-C1 and MKN45-C2 clones as compared to the MKN45-

SC control. The expression of MUC1 at the protein level was

detected with two different antibodies, one that binds the VNTR

extracellular domain (HMFG-1, Figure 1A) and other that

recognizes a 14–28 KDa sequence in MUC1 cytoplasmic domain

(MUC1-Ab5, Figure 1B). Both showed a significant reduction in

the amount of MUC1 protein in MKN45-C1 and MKN45-C2

clones when compared to the scramble control. Real-Time PCR

results indicate that the MUC1 downregulation was 48%

(MKN45-C1) and 38% (MKN45-C2) (Figure 1C). MUC1 RNA

levels were evaluated at 48, 72 and 96h of cell culture and the

highest downregulation occurred at 96h (results not shown).

Effects of MUC1 downregulation on MKN45 cells
Cell proliferation. MKN45-C1 and MKN45-C2 cells

showed significantly increased proliferation rates (P,0.01) when

Figure 4. Quantification of cell-cell aggregation. (A)Quantification of the cell-cell aggregation index in MKN45-C1 and MKN45-C2 and MKN45-
SC control. The cell-cell aggregation index was assessed by the observed decrease in the number of isolated cells over time, and normalized to the
data obtained with the scrambled control. *P,0.01; (B) Images of the aggregates formed after 1 and 2 hours of constant stirring. First column shows
isolated cells at time 0h (20x magnification) and second and third columns show aggregates formed after 1h and 2h of incubation (40x
magnification), in MKN45-C1 and MKN45-C2 and MKN45-SC control.
doi:10.1371/journal.pone.0026970.g004
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compared to the MKN45-SC control (2.29 and 2.48 vs 1), when

evaluated by MTT assay (Figure 2).

Cell apoptosis. MKN45-C1 and MKN45-C2 cells showed

significantly increased levels of apoptosis (P,0.01) when compared

to the MKN45-SC control (3.32 and 2.41 vs 1), when evaluated by

a TUNEL assay (Figure 3).

Cell-cell aggregation. MKN45-C1 and MKN45-C2 cells

showed significantly decreased cell-cell aggregation levels

(P,0.01), when compared to the MKN45-SC control (0.34 and

0.49 vs 1 at 1h; 0.52 and 0.64 vs 1 at 2h), when evaluated by a cell

aggregation assay (Figures 4A and 4B).

Cell migration and invasion. There were no significant

differences in cell migration and invasion of MKN45-C1 and

MKN45-C2 cells when compared to the MKN45-SC control,

when evaluated by motility and invasion assays (results not shown).

Effects of MUC1 downregulation in MKN45 cells gene
expression

The observed phenotypic modifications associated were likely

due in part to alterations in signal transduction pathways mediated

by MUC1-CD, since overexpression of MUC1 has been shown to

modulate gene expression through reprograming transcription of

multiple genes [36,37]. We evaluated the net effects of

downregulating MUC1 in the MKN45 gastric carcinoma cell

line by performing a global analysis of gene expression by

oligonucleotide microarrays (Table 1). The results revealed that a

number of genes that influence proliferation, migration, invasion

and motility were differentially expressed in MKN45-C1 and

MKN45-C2 and the MKN45-SC control. The most significant

differences were found for TCN1, KLK6 and ADAM29 (.10 fold

upregulated between the MKN45-C1 and MKN45-C2 clones and

the MKN45-SC control) and LGALS4, TSPAN8 and SHPS-1

(.3.5 fold downregulated between the MKN45-C1 and MKN45-

C2 clones and the MKN45-SC control).

In vivo tumor growth assays
In vivo tumorigenicity assays showed that mice injected with

MUC1-downregulated cells (MKN45-C2) developed smaller and

slower-growing tumors, when compared to mice injected with the

MKN45-SC control cells (Figure 5).

Discussion

In the work presented here, we evaluated the effects of MUC1

downregulation on cancer-related properties of MKN45 gastric

carcinoma cells. Stable downregulation of MUC1 expression was

achieved in MKN45 gastric carcinoma cell line by RNA

interference. MUC1 contributes to tumor progression of adenocar-

cinomas and therefore its downregulation was predicted to affect the

malignant properties of cancer cells, including proliferation,

apoptosis, migration, invasion and cell-cell aggregation.

We found that proliferation was significantly increased in MUC1

downregulated clones MKN45-C1 and MKN45-C2 when compared

to the control MKN45-SC. Similar studies with breast and pancreatic

carcinoma cell lines have shown similar [38] and opposite [35,38,39]

results. In different tumor models, MUC1 was shown to regulate cell

proliferation by interacting with several proteins such as ER-a, b-

catenin and EGFR [25,40,41]. However, for gastric carcinoma cells,

such interactions have not been investigated. Results obtained by an

oligonucleotide microarray analysis showed that expression of

molecules affecting cell proliferation such as KLK6 and LGAL-4

[42,43,44] were significantly altered in MKN45-C1 and MKN45-C2

clones when compared to the MKN45-SC control. KLK6 expression

was increased in MKN45-C1 and MKN45-C2 clones, whereas

LGAL4 expression was decreased and these differences may explain

the observed differences in proliferation. The mechanisms by which

KLK6 and LGAL4 expression is altered in MKN45-C1 and MKN45-

C2 when compared to MKN45-SC control remains to be elucidated.

Another important observation was that apoptosis was signif-

icantly increased in MKN45-C1 and MKN45-C2 clones when

compared to the MKN45-SC control. MUC1 was previously

shown to mediate a pro-apoptotic response in hamster ovary cells

[45] and it was also attributed with anti-apoptotic functions in

Table 1. Oligonucleotide microarray results by comparison
between MKN45-C1/MKN45-C2 and MKN45-SC control cells,
by order of magnitude.

Genes upregulated .2 fold in MUC1 downregulated clones

Transcobalamin 1 (TCN1)

Kallikrein-related peptidase 6 (KLK6)

Desintegrin and metalloproteinase 29 (ADAM29)

Keratoepithelin (TGFBI)

MRP family of ATP transport member 2 (ABCC2)

Amyloid beta precursor-like protein 2 (APLP2)

Mitochondrial ATP synthase (ATP5I)

Sulfide dehydrogenase like protein (SQRDL)

Sarcoglycan, epsilon (SGCE)

Hypothetical protein (FLJ20323)

Galectin 1 (LGALS1)

Proline-histidine rich protein (PHLDA1)

Trypsin 2 (PRSS2)

Mesotrypsin (PRSS3)

SP2 transcription factor (SP2)

Ubiquitin-conjugating enzyme (UBE2L6)

Vitellogenic-like carboxypeptidase (CPVL)

Genes downregulated .2 fold in MUC1 downregulated clones

Galectin 4 (LGALS4)

Tetraspanin 8 (TSPAN8)

Tyrosine phosphatase SHP substrate (SHPS-1)

Polymerase (DNA-directed), delta 4 (POLD4)

H2B histone family, member J (HIST1H2BH)

H2B histone family, member T (HIST1H2Bk)

Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5)

Annexin IV (ANXA4)

Intercellular adhesion molecule 4 (ICAM4)

DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 (DDX39)

Apolypoprotein B (APOBEC2)

Clusterin (CLU)

GDP-mannose 4,6-dehydratase (GMDS)

Serine/threonine kinase 38 like (STK38L)

CD55 (CD55)

Apolipoprotein B-catalytic polypeptide-like 3C (APOBEC3C)

Cell adhesion related-molecule (CDON)

Villin-1 (VIL1)

MKN45-C1 and MKN45-C2 and the MKN45-SC control were analysed by
oligonucleotide microarrays. Listed are genes with expression increased or
decreased more than 2 fold in both MUC1 downregulated clones when
compared to the control.
doi:10.1371/journal.pone.0026970.t001
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myeloma, breast and colorectal carcinoma cell lines [46,47,48].

However, little is known about the influence of MUC1 on cell

apoptosis in gastric carcinoma cells.

No significant differences were found between MUC1-C1 and

C2 clones and MKN45-SC control with respect to cell migration

and invasion. This is in contrast to previous findings in which

MUC1 was shown to influence cell migration in breast, cervical,

renal and pancreatic carcinoma cell lines [18,49,50,51] and cell

invasion in breast, lung, gastrointestinal, hepatic and pancreatic

carcinoma cell lines [3,52,53].

Cell-cell aggregation was decreased in MKN45-C1 and

MKN45-C2 clones when compared to the MKN45-SC control.

Previous studies have shown that overexpression of different forms

of MUC1 can lead to an increase or a decrease in cell-cell

aggregation in a pancreatic carcinoma cell line [54], whereas

others have shown that MUC1 downregulation induces an

increase of cell-cell aggregation in an oral carcinoma cell line

[41]. MUC1 interactions with other adhesion molecules have been

shown to contribute to both adhesive [55,56] and anti-adhesive

[57,58,59] properties of cells. Our results showed that MUC1

plays a relevant role in MKN45 cell-cell aggregation, contributing

to gastric cells adhesive properties.

Another possibility is that signaling through the MUC1-CD

influences gene expression, which in turn affects the phenotypic

properties of the MKN45 cell line. By oligonucleotide microarray

analysis we found alterations in the transcriptional profile of cells

following MUC1 downregulation when compared to control cells.

These alterations are likely due to MUC1 downregulation, since

MUC1 has been shown to directly conduct signals that alter the

transcriptional program of tumor cells [36,37,60]. MUC1 cytoplas-

mic domain can be phosphorylated in several sites, modulating its

interaction with cell signalling partners and transcription factors [21].

The phosphorylation of MUC1-CD will be dependent on the

amount and availability of its signaling partners and therefore on the

cell type in question. We found significant alterations in the

expression levels of several genes, mainly TCN1, KLK6, ADAM29,

LGALS4, TSPAN8 and SHPS-1. Some of these molecules have

functions not yet fully clarified yet others are known to be associated

with cell proliferation and migration, including KLK6, LGAL4 and

SHPS-1 [42,43,59,61,62], invasion, including KLK6 [59] and

motility, including LGAL4 [43]. MUC1 may be facilitating the

transcription of these genes and therefore be contributing to the

observed phenotypic alterations observed.

In vivo assays confirmed that cells with decreased levels of

MUC1 form smaller and slower-growing tumors than the control

cells. This result emphasizes that MUC1 contributes to gastric

tumor progression in the context of the multicellular environment

of tumor growth in vivo.

MUC1 overexpression has been associated with the neoplastic

progression of several tumors, including the acquisition of invasive

and metastatic properties. Phenotypic studies in cell models other

than gastric cancer have suggested that MUC1 influences events

such as proliferation, apoptosis, migration, invasion, adhesion and

cell-cell aggregation. Previous studies of MUC1 in breast

carcinogenesis models show mixed results for different breast

cancer cell lines [38], which reinforces the relevance of the

molecular context on the MUC1-mediated cancer progression.

The effects of MUC1 in gastric carcinogenesis will thus be

dependent on MUC1 and the molecules interacting with MUC1,

which will significantly differ between cell lines. Evaluation of

different gastric cell lines will complement the data regarding the

impact of MUC1 gastric carcinogenesis.

The work presented here shows for the first time that MUC1

expression influences proliferation, apoptosis and cell-cell aggre-

gation of MKN45 gastric carcinoma cells. The results are

consistent with the view that MUC1 modulates different signaling

pathways in a manner that is dependent on the expression and

activity of other regulatory mechanisms and molecules, which are

influenced by the cellular and biological context of the cell type

that is overexpressing MUC1.
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