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Abstract

To obtain candidates of interactions between proteins of the malaria parasite Plasmodium falciparum and the human host,
homologous and conserved interactions were inferred from various sources of interaction data. Such candidate interactions
were assessed by applying a machine learning approach and further filtered according to expression and molecular
characteristics, enabling involved proteins to indeed interact. The analysis of predicted interactions indicated that parasite
proteins predominantly target central proteins to take control of a human host cell. Furthermore, parasite proteins utilized
their protein repertoire in a combinatorial manner, providing a broad connection to host cellular processes. In particular,
several prominent pathways of signaling and regulation proteins were predicted to interact with parasite chaperones. Such
a result suggests an important role of remodeling proteins in the interaction interface between the human host and the
parasite. Identification of such molecular strategies that allow the parasite to take control of the host has the potential to
deepen our understanding of the parasite specific remodeling processes of the host cell and illuminate new avenues of
disease intervention.
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Introduction

Currently, little is known about large-scale protein interactions

between cells, although large-scale maps are an important

foundation for the understanding of the ways pathogens interact,

invade and seize control of their human hosts. Recently, Uetz et al.

released the first small map of computationally inferred physical

protein interactions between the human host, the Kaposi-Sarcoma

associated Herpesvirus and the Varicella-Zoster-Virus [1]. In

another approach, Calderwood et al. [2] experimentally con-

structed a map of physical protein interactions between the

Epstein-Barr-Virus and the human host. Similarly, de Chassey

et al. [3] generated a large-scale map of interactions between the

Hepatitis C virus and the human host. Furthermore, interaction

networks between the human immunodeficiency virus (HIV) and

the human host have been investigated [4,5], as well as co-factors

that enable HIV and the influenza virus to infect a host cell

[6,7,8]. In addition, Dyer et al. compared experimentally known

interactions of different viruses with the human host [9].

Recently, Vignali et al. released the first small map of

experimentally determined protein interactions between the human

host and the malaria parasite Plasmodium falciparum [10], a study that

was preceded by computational predictions of host-parasite

interactions [11,12]. In particular, Davis et al. [12] comparatively

inferred protein-protein interactions between human host cells and

several pathogens utilizing structural protein data.

Based on large-scale sets of species-specific protein interactions in

H. sapiens and the malaria parasite P. falciparum I inferred potentially

conserved host-parasite interactions by utilizing orthologous protein

groups. Furthermore, experimentally determined host-parasite

interactions were used to generate potential interaction candidates

by searching for organism-specific homologous proteins. To

mitigate the potential influence of false-positive interactions, I

applied a machine learning approach to assess the quality of the

predicted interactions. Subsequently, predicted interactions be-

tween the human host and the parasite were filtered, accounting for

parasite protein specific characteristics that are conducive to

potential host-parasite interactions. In addition, I demanded that

both parasite and human proteins were co-expressed in the

corresponding parasitic cell cycle stages and human tissues/cells.

The combination of predicted interactions with experimentally

determined and structurally inferred interactions allowed for a

large set of potential interactions between proteins of the malaria

parasite P. falciparum and the human host. In comparison, the

separate and combined sets of interactions shared similar

characteristics. In particular, the pathogen seemed to utilize its

protein repertoire in a combinatorial way by predominately

targeting hub proteins. Such a strategy probably allows the

parasite to take control of the human host cell, effectively reaching

into signaling and other cellular functions of the host cell. Several

prominent pathways of signaling and regulation proteins were

predicted to interact with parasite chaperones, suggesting an

important role of such proteins in the interaction interface

between the human host and the parasite.

Results

Exploring a sequence orthology/homology based approach to

determine protein-protein interactions between human host and

parasite proteins, a flowchart of the procedure is shown in Fig. 1.
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Inferring Interactions between H. sapiens and P.
falciparum

I assembled a network of 93,178 interactions between proteins

of H. sapiens using large-scale high-throughput screens [13,14,15]

and several interaction databases [16,17,18,19]. In addition, a web

of 2,743 experimentally determined interactions [20] in P.

falciparum was utilized as well. Compiling 2,664 orthologous pairs

of human and parasite proteins from the InParanoid database

[21], a candidate interaction was found in the web of human

interactions if a protein had a parasite ortholog. Analogously, a

potential interaction was detected if a parasite protein in the

parasite interaction network had a human ortholog. Similarly, I

utilized 444 experimentally determined interactions between

human and parasite proteins [10]. To identify candidate

interactions, a BLAST search was performed to find homologs

of interacting parasite and human proteins. Specifically, I

considered a pair of proteins homologous if their E-value was

,1026. Combining all sources, the final set was composed of

106,317 candidate interactions between 2,096 parasite and 8,650

human proteins.

Quality Assessment of Candidate Interactions
While sequence searches provided a large sample of candi-

dates, such interactions most certainly contained a considerable

amount of false positives. Assessing the quality of interactions I

used the random forest algorithm [22] to consider interacting

candidate pairs as a function of their sequence composition.

Grouping amino acids in 7 classes [23] the frequency of each

triple combination of classes over all amino acid triplets in each

protein was determined. An interaction between a protein pair

was represented by a 343-dimensional vector where each vector

unit held the frequency difference of a given class combination.

As a positive training set 1,112 structurally inferred host-parasite

interactions [12] were utilized. In the absence of a comprehensive

negative training set of non-interacting protein pairs a simple

heuristic was applied (Fig. 2A): As a negative, non-interacting

training set of equal size, protein pairs that did not appear in the

positive training set were randomly sampled. Using such sets the

random forest algorithm was applied, allowing cross-validation by

reporting the fraction of times protein pairs were correctly

classified. While wrongly classified pairs were discarded, the

counts of correctly classified pairs were updated. This process was

repeated until a negative set of roughly the same size of the

positive training set was obtained. In addition, each non-

interacting pair needed to be sampled at least 3 times, providing

1,136 non-interacting pairs (Fig. 2A). Both sets of interactions are

available in Tables S1 and S2.

Using these sets as positive and negative training sets the

random forest algorithm was applied to check the quality of

candidate interactions. In particular, the algorithm provided

the fraction of decision trees that reported a pair of proteins as

interacting. Assuming different fractions as classification

thresholds a ROC curve in Fig. 2B was constructed. Defining

an interaction when half of all decision trees voted that way the

approach allowed for a false positive rate FPR = 4.7% and a

true positive rate TPR = 78.9%. To assess the reliability of the

classification approach a test-retest analysis was performed by

training the random forest algorithm with Ord of randomly

picked training data. Subsequently, the corresponding true

positive and false positive rates of the classification results

were determined using the remaining Mrd of data. Repeating

such random trials 1,000 times dot clouds in Fig. 2B indicated

that the method was largely robust in the presence of random

noise.

Assessing the quality of candidate interactions with the random

forest approach 12,406 interactions between 1,007 parasite and

3,614 human proteins were finally obtained.

Figure 1. Procedure to determine interactions between human
host and parasite proteins. A candidate interaction was identified in
the web of human interactions if an interacting human protein had an
ortholog in P. falciparum. Analogously, a potential interaction occurred
if a protein in the parasite interaction network had a human ortholog. In
a set of experimentally determined host-parasite interactions a host-
parasite interaction was found, if the interacting proteins had homologs
in the corresponding organism. The combination of all sources
provided a total of 106,317 candidate interactions. The quality of the
predicted interactions was assessed using the random forest algorithm,
a machine learning method that classifies interactions as a function of
the corresponding protein’s sequences. Subsequently, 12,406 interac-
tions thus obtained were filtered if they involved parasite proteins that
were exported or carried molecular characteristics, enabling them to
interact with the human host. While this step provided 6,229
interactions only host-parasite interactions were accounted for that
occurred between proteins expressed in the parasitic merozoite stage
and human red blood cell as well as in the sporozoite stage and liver
cells. Accordingly, partially overlapping sets of 378 and 2,044
interactions were obtained, pooling a total of 2,244 predicted host-
parasite protein interactions. In the last step predicted interactions were
combined with external data such as structurally inferred and
experimentally obtained interactions, providing a set of 3,322
combined host-parasite interactions.
doi:10.1371/journal.pone.0026960.g001

Interactions between P. falciparum and H. sapiens
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Functional and Expression Filtering of Host-Parasite
Interactions

Putatively, only a subset of involved parasite proteins carried

molecular characteristics that allowed interactions with the human

host, prompting me to compile a list of 1,302 parasite proteins with

such molecular features (Table S3, for details please see Materials

and Methods). Filtering candidate interactions that involved such

parasite proteins provided 6,229 links between 322 parasite and

2,535 human proteins.

In addition, host-parasite interactions also were more likely to

appear between human proteins that were expressed in liver tissue

[24] and parasite proteins appearing in the sporozoite stage of the

parasite’s cell cycle [25] when the parasite invades human liver

cells. Interactions were analogously filtered if they involved

proteins that were expressed in the erythrocyte and the merozoite

stage, respectively. While these constraints provided 2,066 and 378

interactions, respectively, a small set of 200 host-parasite

interactions were shared. Combining both sets, a total of 2,244

interactions involved 128 parasite and 1,389 human proteins.

In the last step, the set of predicted interactions was combined

with external data, such as experimentally determined and

structurally inferred interactions, providing a total of 3,322

interactions between 388 parasite and 1,886 human proteins

(Table S4).

Statistical Properties of Predicted Interactions
Utilizing predicted interactions between proteins of P. falciparum

and the human host the number of parasite proteins that targeted

a host protein was calculated. Fig. 3A indicates that a majority of

host proteins interacted with a low number of pathogen proteins

and vice versa, suggesting that many proteins were targeted by the

parasite in a combinatorial way. External data such as exper-

imentally determined and structurally inferred interactions and

their combination with predicted interactions confirmed our initial

observation.

Considering topological integrity, the bipartite network of

predicted interactions between parasite and host proteins was

composed of 18 disconnected subnetworks. Notably, the largest

subnetwork contained the vast majority of parasite and host

proteins. By comparison, a bipartite network of external

interactions was composed of 106 subnetworks, while a combined

network broke into 62 components. If the choice of targeted host

proteins were a random process a randomly assembled bipartite

network would break into many more disconnected parts. In a

null-model, parasite proteins were connected to the same number

of randomly picked human proteins that were expressed in the

erythrocyte and liver. Repeating these steps 10,000 times

randomized networks significantly broke into a larger number of

components than observed (P,1024). Such a result indicates that

the integrity of the predicted host-parasite interaction network was

the result of a significantly non-random process.

Since they are important proteins highly connected hubs may

be prime targets of parasite proteins. Utilizing a previously

described network of human interactions, human proteins were

Figure 2. Determination of a negative interactions set. (A) As a
positive training set I utilized 1,112 interactions between the human
host and the parasite P. falciparum that have been previously inferred
from protein structures. A non-interacting training set of equal size was
constructed by randomly sampling pairs of human and parasite
proteins that did not appear in the positive training set. Applying the
random forest algorithm pairs of proteins that were incorrectly
classified as interacting were discarded, and counts of correctly
classified pairs were updated. If the number of pairs in the negative
set that were sampled at least 3 times was roughly the size of the
positive training set, the procedure terminated. Otherwise, the negative
set of was filled with randomly sampled protein pairs until positive and
negative training sets had the same size again. Previously described

steps were repeated until the procedure finally terminated, providing a
negative set of 1,136 non-interacting pairs. (B) Applying the random
forest algorithm the training sets allowed for a true positive rate
TPR = 78.9% and a false positive rate FPR = 4.7% (dashed lines) in a
pronounced ROC curve. In a test-retest analysis, the classifier was
trained on Ord of randomly picked training data. Its performance was
tested on the remaining Mrd, indicating that the proposed method was
largely robust to noise.
doi:10.1371/journal.pone.0026960.g002

Interactions between P. falciparum and H. sapiens

PLoS ONE | www.plosone.org 3 November 2011 | Volume 6 | Issue 11 | e26960



assigned to groups that had at least a certain number of interaction

partners in the human interaction network. Specifically, the

fraction of human proteins that were targeted by parasite proteins

was calculated and compared to the corresponding fraction of

proteins that were randomly picked as parasite targets out of all

proteins in the human interaction network. If there existed no

correlation to the number of interactions in a human protein

interaction network, the ratio of these fractions was expected to be

1 in all groups. However, Fig. 3B showed that especially highly

connected proteins were more affected by the parasite, using

predicted interactions. While the sets of external and combined

host-parasite interactions recovered this result as well, they showed

weaker trends.

Functional and Statistical Implications of Targeted Host
Proteins and Signaling Pathways

Considering the combined set of host-parasite interactions,

overrepresented GO terms of biological processes in the pool of

interacting host proteins were determined. Utilizing GOStat [26]

many processes annotated as signaling and regulation processes

were observed as being enriched, indicating that the parasite uses

its protein repertoire to influence important signaling and

regulation processes (Table S5). Such results called for an

investigation of signaling pathways that potentially are another

level of systems information the parasite exploits to control the

host cell.

The analysis relied on the strength of 184 manually curated

signaling pathways from the Pathway Interaction Database PID

[27]. In a human protein interaction network highly connected

proteins appeared in an increasing number of signaling pathways

(inset, Figure 4A). Such an observation emphasized the role of

protein hubs being involved in numerous signaling pathways,

suggesting that the parasite has taken advantage of the host

network at the pathway level as well. In the previously described

human interaction network the number of different pathways was

determined that involved targeted proteins with a certain number

of interaction partners. In a null-model targeted proteins were

randomly picked out of all proteins in the human protein

interaction network. Determining the number of different

pathways involving such randomly targeted proteins, the fraction

of such sets of pathways was calculated. Separate and combined

sets of predicted and external host-parasite interactions indicated

that that highly connected, targeted proteins appeared in an

increasing number of pathways with higher degree (Fig. 4A).

As a further hypothesis, a parasite may effectively mediate the

infection while ensuring variety given the tendency to target

signaling pathway hubs. As a measure of diversity, the pathway

participation coefficient (PPC) was defined: if a given protein

predominantly interacted with partners that were members of the

same pathway, PPC tends toward 1, while the opposite holds if the

interaction partners of the considered protein were distributed

among many different pathways. Fig. 4B indicated that human

proteins largely reached a variety of pathways through its

interaction partners in a human protein interaction network.

However, predicted, external and combined interactions showed

significantly enforced maxima around low values of the pathway

participation coefficient in Fig. 4B (P,10210, Wilcoxon rank-sum

test). Such observations strongly indicated that targeted human

proteins effectively secured the parasite’s reach into a breadth of

signaling activities without inundating any particular one.

To obtain a detailed functional view of the parasite’s

intervention points a bipartite matrix between parasite proteins

and signaling pathways was constructed. Specifically, a parasite

protein was connected to a pathway, if the corresponding targeted

proteins were enriched in the given pathway using a Fisher’s exact

test (FDR,0.05 [28]). Utilizing the combined set of host-parasite

interactions 83 parasite proteins emerged that interacted with 117

pathways (Fig. 5A). Pathways were checked if their proteins were

expressed in liver and red blood cells. Demanding that more than

95% of proteins were expressed, I found no such pathways in the

red blood cell because of its small proteome. In turn, however, a

large fraction of pathways were expressed in liver. Out of 95

parasite chaperones [29] 7 significantly appeared in the set of 83

parasite proteins (hypergeometric test, P,10230). Ward clustering

of the matrix indicated a group of signaling pathways that were

linked to 4 parasitic chaperone proteins (box, Fig. 5A). Notably,

parasite chaperones PF08_0054 and PFI0875w seemed to play an

important role in interfering with signaling pathways since both

proteins reached a large number of different pathways. Host-

parasite interactions between the indicated 4 parasite chaperones

and host proteins that appeared in the corresponding, connected

signaling pathways were indeed dominated by PF08_0054 and

PFI0875w by co-interacting with many prominent regulation and

signaling proteins (Fig. 5B). Notably, both chaperones strongly

interacted with members of the TNF pathway [30]. Specifically,

the chaperones targeted members of the TNF receptor associated

factor (TRAF) protein family as well as of the receptor-interacting

protein (RIPK) family of serine/threonine protein kinases. In the

TNF pathway, TRAF proteins recruit protein kinase IKK that is

Figure 3. Characteristics of predicted and external interactions. (A) In the set of predicted interactions (PRE) a majority of host proteins
interacted with a low number of pathogen proteins and vice versa. Such a result was confirmed by the set of external interaction data (EXT) as well as
the combined set of host-parasite interactions (PRE+EXT). (B) Utilizing a network of human protein-protein interactions the enrichment of targeted
human host proteins as a function of their number of interaction partners was determined. Considering all three sets of host-pathogen interactions
separately highly connected host proteins appeared to be prime targets of the parasite.
doi:10.1371/journal.pone.0026960.g003

Interactions between P. falciparum and H. sapiens
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activated by RIPK proteins. IKK phosphorylates the inhibitory

IkBa (NFKBIA), leading to its degradation of IkBa and the release

of NF-kB, potentially triggering an inflammatory response. Both

NFKBIA and subunits of NF-kB (NFKB1, NFKB2) interacted

with both PFI0875w and PF08_0054. Targeted by the same

parasite chaperones, members of the Mitogen-activated protein

kinase kinase kinase, MAP3K8 and MAP3K14, are able to

alternatively induce the production of NF-kB [31,32]. The

observation that the parasite massively interacted with proteins

of the TNF- and NF-kB pathways may indicate the objective to

curb an inflammatory response that may ensue after invading a

cell. Notably, the parasite may achieve such a goal through the

usage of molecular remodeling function.

Discussion

Significant challenges currently impair experiments to develop

large-scale empirical maps of interactions between the human host

and the malaria parasite P. falciparum, prompting the implemen-

tation of a sequence homology approach to suggest putative host-

parasite protein interactions. Although sequence homology is a

powerful technique, large inserts obscure homology signals in

gene/protein sequences of P. falciparum that might hamper the

detection of orthologs in different organisms. To widely mitigate

these effects, predictions were checked using a machine learning

method that was trained on structurally inferred interactions

between human and parasite protein interactions.

To ensure utmost biological relevance, predicted interactions

were further filtered that involved parasite proteins with parasite

specific characteristics, making the underlying parasite protein

conducive to interact with the human host. Accounting for

expression characteristics interactions were further filtered when

their host and parasite proteins were expressed in the correspond-

ing human tissues and parasite specific cell cycle stages.

Sets of predicted and external interactions such as experimen-

tally obtained [10] and structurally inferred interactions [12]

showed a low overlap while experimental and structurally

obtained interactions had no interactions in common. Despite

these differences, topological observations indicated shared

characteristics. Specifically, degree distributions of all sets of

host-parasite interactions highlighted a small number of human

proteins that interacted with many parasite proteins. Such result

suggested that the parasite utilizes its proteomic repertoire in a

combinatorial way, an observation that is known from other

pathogens [33] as well. The subtle structure of the human

interactome reveals sites that are not only topologically important

on their own, but also represent significant pathogen targets.

Previously, network analyses indicated that hubs are important for

maintaining the integrity of a network [34]. While random attacks

hardly hit such highly connected nodes, networks break easily into

disconnected parts when hubs are attacked. Proteomic equivalents

potentially allow the parasite to reach into functional pathways,

probably facilitating a diverse, but focused interaction. Functional

and topological promiscuity of hub proteins in pathways might

enable the host to maintain a complex system with relatively few

proteins. Tapping this feature in an economic yet effective way the

malaria parasite uses combinations of pathogen proteins to

interact with a variety of different pathways, allowing its survival

and control of the human host cell.

Untangling the intricate web of intertwined pathways is essential

to thoroughly understand the pathogenesis of the parasite. In the

light of these observations, targeted proteins that are shared by a

large number of relevant pathways may be key players in subtle

molecular strategies to seize control of a host cell. In addition, the

analysis of targeted host proteins that appear in many signaling

pathways may point to molecular sites that could be exploited to

limit a parasite in a systematic way.

A potential role in the parasite specific interference in signaling

pathways was indicated by the involvement of parasite chaperone

proteins. In particular, chaperones were significantly present

interacting with human proteins that play important roles in cell

signaling. While the fundamentally important role of chaperones

for the inner workings of the parasite cell has been recently

indicated [35,36], an involvement of chaperones in host-parasite

interactions has been suggested as well [37]. Since they mediate

the (un-)folding and (dis-)assembly of other macromolecular

structures, the parasite chaperones might remodel protein

structures in the host cell in ways that have considerable

downstream effects, helping the parasite to take control of the

cell. Such results can serve as testable hypotheses especially

relating to P. falciparum biology for which focused experimentation

might not only increase our understanding of patterns of host-

Figure 4. Pathway specific characteristics of predicted and external interactions. (A) In a network of human protein interactions the mean
number of pathways a given human protein is involved in increased with the number of interaction partners (inset). The enrichment of such targeted
pathways was determined as a function of their number of interaction partners. Utilizing predicted (PRE), external (EXT) and both sets (PRE+EXT) of
host-parasite interactions, highly connected, targeted proteins appeared to be increasingly involved in such pathways. (B) A low value of the
pathway participation coefficient indicated that the interaction partners of a protein in a human protein interaction network reached many different
pathways and vice versa. Considering all human proteins that were involved in pathways, the majority of proteins have low pathway participation
coefficients. Considering targeted proteins in all sets of host-parasite interactions the initially observed trend was significantly reinforced in all cases
(Wilcoxon rank-sum test, P,10210).
doi:10.1371/journal.pone.0026960.g004
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parasite interactions. Such webs of well-defined host-parasite

interactions can also serve as maps of parasitic interference that

suggest avenues guiding future efforts to eradicate malaria, a

disease that despite large efforts still plagues human kind.

Materials and Methods

Parasite Interacting Proteins
An initial list of 1,015 proteins in P. falciparum with molecular

characteristics that facilitated a likely interaction with human host

proteins was compiled. In particular, parasite proteins with a host

cell-targeting signal, allowing proteins to cross into the human host

cell by passing several membranes [38,39,40] were selected as well

as proteins that had trans-membrane domains, signaling peptides

and/or were located in the red blood cell membrane [25]. This set

was augmented with 287 proteins that were implicated in host-

pathogen interactions, pathogenesis, defense response, placed in

the host cell as suggested by their corresponding GO annotation or

PlasmoDraft prediction [41,42,43] as well as were known to

interact experimentally [10].

Host-Parasite Interactions
As a source of experimental protein interactions between the

human host and the malaria parasite P. falciparum 444 experimen-

tally determined interactions were utilized [10], where human

proteins were represented by their gene symbols. Furthermore,

1,012 structurally inferred host-parasite interactions were used

[12] where human proteins were indicated by their ENSEMBL

protein symbols [44]. Using gene symbols, this set broke down to

691 interactions.

Human Protein Interactions and Molecular Pathways
Human protein-protein interaction data were collected from

large-scale high-throughput screens [13,14,15] and several

interaction databases [16,17,18,19], totaling 93,178 interactions

among 11,691 proteins annotated by their gene symbols.

Human signaling pathway information was retrieved from the

NCI/NIH/Nature Pathway Interaction Database (PID) [45]

providing information about 184 different human signaling

pathways.

Figure 5. Involvement of host-parasite interactions in signaling pathways. (A) In a bipartite matrix a parasite protein was linked to a
pathway if the corresponding targeted proteins were enriched in the given pathway (FDR,0.05, Fisher’s exact test). Utilizing the combined set of
host-parasite interactions the matrix was composed of 83 parasite proteins that interacted with proteins in 117 pathways. In addition, a large fraction
of pathways had .95% of their proteins being expressed in liver. Specifically, a cluster of prominent signaling pathways emerged that were largely
under the control of parasite specific chaperone proteins. In (B) all interactions between parasite chaperones and host proteins that appeared in the
cluster of pathways were mapped. Significantly, such a network revolves around parasite proteins PF08_0054 and PFI0875w that garnered most of
the host-parasite interactions and largely interfered with proteins of the TNF pathway.
doi:10.1371/journal.pone.0026960.g005

Interactions between P. falciparum and H. sapiens
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Expression Data
From a mass-spectroscopic proteome analysis of the human

red blood cell [46] 1,578 human proteins were selected. In

addition, a set of 19,031 human proteins that were expressed

in human liver tissue was utilized [24]. Determined with mass-

spectroscopic methods, 838 proteins predominantly expressed

in the parasitic merozoit stage were selected while 1,038

parasite proteins detected in the sporozoit stage [25] were

used.

Orthologous Proteins
Utilizing all-versus-all BLASTP searches determined by the

InParanoid script [21] in protein sets of two species, sequence pairs

with mutually best scores were selected as central orthologous

pairs. In order to enhance the quality, only BLAST matches with a

score .40 bits and $50% coverage of the longer sequence were

accounted for. Proteins of both species that showed such an

elevated degree of homology were clustered around these central

pairs, a procedure that formed orthologous groups. The quality of

the clustering was further assessed by a standard bootstrap

procedure. Accounting for pairs with 100% probability, InPar-

anoid provided a set of 2,664 orthologous protein pairs in P.

falciparum and H. sapiens.

Mapping Host-Parasite Protein Interactions as Vectors of
Amino Acid Triplets

Here, two proteins were determined to interact as a function

of the sequence composition of the protein pair. Grouping

amino acids in 7 classes [23] the frequency of all 76767 = 343

combinations of such classes in a protein was calculated.

Specifically, the frequency of a combination k over all 343 class

combinations in a protein i of a given interaction was defined

as, fik~
nikP343
l~1 nil

, where nik was the occurrence of combination

k in protein i, scanning over all consecutive amino-acid triplets.

An interaction between a parasite protein i and a host protein j

was represented by a 343-dimensional vector where each vector

unit held the frequency difference of a combination k,.

Dijk~fik{fjk

Random Forest Classification
Random Forests is an ensemble learning method [22] where

each decision tree is constructed using a different bootstrap sample

of the data (‘bagging’). In addition, random forests change how

decision trees are constructed by splitting each node, using the best

among a subset of predictors randomly chosen at that node

(‘boosting’). Compared to many other classifiers, this strategy

turned out to perform very well and was robust against over-

fitting. In more detail, classification performed by random forests

is based on three steps: (i) N bootstrap samples are drawn from the

underlying data. For each of the bootstrap samples, an un-pruned

decision tree is constructed where at each node M predictors are

randomly sampled, (ii) the best split from those variables is finally

picked, and (iii) new data is predicted by aggregating the

predictions of N trees.

For each of 1,000 decision trees M~
ffiffiffiffiffi
N
p

variables out of all

N = 343 triplet combinations and Ord of all protein pairs were

sampled. Since each interaction therefore ends up in the

remaining Mrd several times (i.e. out-of-bag examples), the random

forest algorithm reports the fraction of times the pair of proteins

was classified as interacting. Specifically, an interaction was found

if more than half of the decision trees voted that way (i.e. fraction

f.0.5).

ROC Curve
Using out-of-bag examples as a cross-validation set a ROC

curve was constructed by defining true positive (TP), true negative

(TN), false positive (FP) and false negative hits (FN). Further-

more, true positive and false negative rates were defined as

TPR~
TP

TPzFN
and, FPR~

FP

FPzTN
, respectively.

Enrichment of Targeted Proteins and Pathways
Proteins were grouped according to their number of interactions

in a given human protein interactions network. Each group was

represented by N§k proteins that had at least a certain number of

interaction partners, k. In each group the number of proteins that

were targeted by the parasite, Nt,§k , was calculated. Randomly

picking targeted protein out of all proteins in the given human

protein interaction network, Et,§k~
Nt,§k

Nr
t,§k

was defined as the

enrichment of targeted proteins where Nr
t,§k was the random

number of targeted proteins among all N§k proteins.

In the same groups of human proteins, N§k the set of different

pathways that involved targeted proteins, , Pt,§k, was determined.

Randomly picking targeted proteins out of the set of all proteins

that appeared in considered pathways, Et,§k~
Pt,§k

Pr
t,§k

was defined

as the enrichment of pathways, where Pr
t,§k was the set of

pathways randomly targeted proteins were involved in.

After averaging E over 10,000 randomizations E.1 pointed to

an enrichment and vice versa [47], while E = 1 indicated a random

process.

Pathway Participation Coefficient
For each protein i that was involved in pathways and a human

protein interaction network, the corresponding pathway partici-

pation coefficient PPC in the total set of pathways P was defined as

PPCi~
P

p[P
C(i)[pj j

.P
p[P C(i)[pj j

� �2

, where C(i)[p was the set

of interaction partners of i that appeared in the same pathway p.

The definition of the pathway participation coefficient resembled

the Simpson diversity, a measure to quantify biodiversity in a

habitat [48]. Specifically, Simpson diversity was defined as

D~
P

i~1

s

p2
i , where pi was the fraction of all organisms that

belonged to species i. Equivalently, PPC can range from 0 to 1, and

PPC tend to 1 if a protein predominantly interacted with partners

that were members of the same pathway. In turn, PPC tend to 0 if

interaction partners of a given protein were distributed among

many different pathways [33].

Supporting Information

Table S1 Positive training set including 1,112 interac-
tions.

(XLS)

Table S2 Negative training set including 1,136 interac-
tions.

(XLS)

Table S3 1,302 annotated parasite proteins that carry
molecular characteristics, allowing them to interact
with the human host.

(XLS)

Table S4 Combined set of 3,322 interactions including
predicted (PRE) and external (EXT) interaction data.

(XLS)
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Table S5 100 most enriched GO biological processes of
host proteins that interact with parasite proteins in the
combined set of host-parasite interactions.
(XLS)
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