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Abstract

How animals make choices in a changing and often uncertain environment is a central theme in the behavioural sciences.
There is a substantial literature on how animals make choices in various experimental paradigms but less is known about
the way they assess a choice after it has been made in terms of the expected outcome. Here, we used a discrete trial
paradigm to characterise how the reward history shaped the behaviour on a trial by trial basis. Rats initiated each trial which
consisted of a choice between two drinking spouts that differed in their probability of delivering a sucrose solution.
Critically, sucrose was delivered after a delay from the first lick at the spouts – this allowed us to characterise the behavioural
profile during the window between the time of choice and its outcome. Rats’ behaviour converged to optimum choice,
both during the acquisition phase and after the reversal of contingencies. We monitored the post-choice behaviour at a
temporal precision of 1 millisecond; lick-response profiles revealed that rats spent more time at the spout with the higher
reward probability and exhibited a sparser lick pattern. This was the case when we exclusively examined the unrewarded
trials, where the outcome was identical. The differential licking profiles preceded the differential choice ratios and could
thus predict the changes in choice behaviour.
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Introduction

The way animals make decisions that have uncertain variable

outcomes can be investigated through various approaches.

Optimal foraging theory presents the question from the Darwinian

perspective – animals ought to optimise food yield, or maximum

energy gained per unit of time [1]. To achieve this consistently,

they must monitor the distribution of resources in their

environment, update this information as these resources change,

and adjust their selection of environmental locations appropriately

as well as the time allocated to each chosen location [2]. There is

behavioural evidence for optimal foraging [3,4], and of its

potential neuronal substrates [5]. Beyond foraging theory, other

experimental paradigms have manipulated reinforcement rates

and probabilities while studying the rules that govern choices

[6,7,8,9]. Example descriptions of choice between options with

variable outcomes include Herrnstein’s matching law [10], the

local matching law [8], and the actor-critic algorithm (see for

instance, [11]).

In spite of the substantial literature on how animals make

choices in various experimental paradigms, in terms of patch

selection or in terms of reinforcement rates, little is known about

the way animals assess a choice after it has been made in terms of

the possible outcome and its timing. Here we quantified aspects of

the behavioural response to variability both before a choice is

made and after. In particular, we identified an explicit represen-

tation of the animal’s confidence in the outcome, as manifested in

the post-choice behaviour. We used a discrete trial choice

paradigm where rats chose between two options on every trial.

Critically, the outcome of their choice was revealed after a variable

time window. This allowed us to characterise the behaviour of the

rats during that time window and search for behavioural correlates

of reward expectancy.

Results

Rats initiated a trial and received a go-signal which was then

followed by a free choice between two options – a right or left

drinking spout each of which could deliver a reward (a sucrose

solution). Figure 1 illustrates the sequence of behavioural events.

The initial reward contingencies were fixed across trials and

sessions with a probability of 0.7 or 0.3 (the side of high probability

reward counterbalanced across 4 rats). The rewards were

delivered after a delay from the first lick at the spouts. The delay

was the same for the high and low probability sides and was

selected from a uniform distribution between 100–600 msec. All

behavioural actions (i.e. nose-poke and contacts at the spout) and

events (i.e. the go-signal and running of the pumps) were recorded

at msec precision, across rewarded and unrewarded trials.

Figure 2A shows the spout choice proportions separately for

each of the four rats. Rats started with no systematic preference for

either side, but eventually converged on nearly exclusive choice of

the high probability option (the right spout for rats 1 and 2, and

the left spout for rats 3 and 4). The convergence occurred across 5
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sessions (a total of 800–1400 trials for different rats). After

performing at a stable level of choice (.95% of choice to the high

reward side across 100 trials), the contingencies were reversed. As

illustrated in the second column of Figure 2A, rats switched their

choices back to the optimum behaviour (.95% choice of the new

high probability reward) after 6 to 8 sessions (2800 to 3700 trials

for different rats). The convergence on exclusive choice of the high

probability reward, known as maximising, took longer, in all four

rats, for reversal compared to acquisition (on average 1076 trials

longer). At the outset of every session, the rats showed a tendency

to sample the low probability sides, which declined over the course

of a session (beginning of sessions are indicated with breaks in the

graphs of Figure 2A). This is most evident in the comparison of

choice ratios early versus late in a trial as illustrated in Figure 2B.

To characterise the efficiency of the behavioural choice, we

estimated reward gained across trials relative to the performance

of an ideal observer who was given the probabilities at the onset of

every trial. The rats’ choices of spout determined the quantity of

reward they earned. By choosing only the high reward spout,

maximising their behaviour, the rats would expect to earn reward

for, on average, 70% of their choices (top horizontal line in

Figure 2C). Proportion of reward choices, at the beginning and

Figure 1. The behavioural sequence. Rats approach the aperture and break the sensor beam (nose-poke) which triggers the rest of the
sequence. There is an initial delay of between 100 and 600 ms, during which the rat must maintain the nose-poke. Then a ‘‘go’’ signal is given, by the
lighting up of two LEDs. The rat is then free to make a choice between the two spouts. The rats’ spout choice is detected as soon as they lick a spout.
The reward is then delivered with a probability determined by the reward rate (70% or 30%). The delivery of reward is delayed by a variable time
(uniformly selected from 100–600 msec) and is independent from trial to trial.
doi:10.1371/journal.pone.0026863.g001

Figure 2. Rats’ choice over all trials and sessions. A. Each row represents one rat. The left column represents the first 5 sessions (acquisition)
while the right column represents reversal (6–8 sessions across rats). Each data point represents the average of the last 50 trials, spaced by 10 trial
intervals. Breaks in the graphs indicate the start of a new session. Rats 1 and 2 (top rectangle) started with 70% reward left and 30% reward right. Rats
3 and 4 (bottom rectangle) had the inverse rewards. Only the first 1000 trials are plotted for acquisition. B. The proportion for which the high reward
side was chosen, as a function of session number, averaged across all rats. Each pair of connected points represents the data for the first 50 and last
50 trials in a session. Left column represents acquisition sessions, right column the reversal sessions. C. The proportion of trials for which the rats were
rewarded for their choice, as a function of session number, averaged across all rats. Each pair of connected points represents the data for the first 50
and last 50 trials in a session. Left column represents acquisition session, right column the reversal sessions.
doi:10.1371/journal.pone.0026863.g002
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end of each session, is illustrated in Figure 2C. The rats started

from an average 50% reward gain (i.e. reflecting approximately

equal choice of the two sides) and over the course of three sessions

arrived at a reward gain close to the optimum. At the outset of the

reversal the rats nearly exclusively sampled the low reward side

which resulted in a reward gain close to 30%. Subsequently they

switched their choice and reached near optimum performance

after 6 days.

The key behavioural manipulation in the current experiment

was the introduction of a variable time between the behavioural

choice (i.e. first contact at one of the two spouts) and the disclosure

of the outcome (i.e. presence or absence of reward). This allowed

us to measure the time spent at the spout as a behavioural

indication of the confidence in the outcome. For this analysis we

exclusively examined the unrewarded trials where the experience

of the outcome itself was identical. Figure 3A illustrates the

distribution of times spent at the two spouts for the unrewarded

trials across all sessions (top panel), the first acquisition session

(middle panel), and the first session after reversal (lower panel). In

every case, there was a lateral shift in the distribution of times

spent at the high reward probability spout as also illustrated for

individual rats in box and whisker plots of Figure 3B. This

indicates a systematic rise in the average time spent at the high

reward probability spout, with a mean increase of 173msec, across

Figure 3. The distribution of times spent at spouts on unrewarded trials. A. Time spent at spout is defined as the time duration between the
beginning of the first lick to the end of the last lick on each trial. Black vertical lines represent median times spent at high reward spout. Red vertical
lines represent median times spent at low reward spout. Distributions are normalised for total number of trials. Top panel: Data from all sessions.
Middle panel: Data from the first acquisition session only. Bottom Panel: Data from the first reversal session only. B. Box plot of data from all sessions,
plotted per rat. The whiskers indicate the extent of the data (the minimum and maximum after excluding outliers), box and middle line indicate lower
and upper quartiles and median, respectively. C. Quantile-quantile plots (Q-Q plots) per individual rat. Corresponding quantiles for high and low
rewards spouts are calculated at 5% steps and plotted against one another. All points lie above the diagonal line, indicating that rats wait longer at
the high than the low reward spout. However, there is no systematic deviation from linearity, suggesting no other systematic difference between the
distribution of waiting times.
doi:10.1371/journal.pone.0026863.g003
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all rats and sessions. Across both reward probabilities, the time

spent at the spout extended significantly beyond the expected

reward onset window (i.e. maximum of 600 msec post-first-

contact). In spite of this, the median value of each distribution

(vertical lines in Figure 3A) were significantly different across

sessions and rats (Wilcoxon signed-rank test p,0.001).

To further quantify the overlap between the sampling time

distributions, we employed a quantile analysis (see Methods).

Figure 3C illustrates the quantile-quantile plots (Q-Q plots) for

each individual rat, for trials pooled across all sessions. The profiles

indicate a consistent pattern of sampling whereby rats spent longer

times on the high reward probability spout (i.e. each specific

quantile is reached at a later time for the high probability spout).

Thus far the key finding, confirmed across multiple measures,

was that rats adapted both their choice ratios and the time spent at

spouts dynamically across trials. We next asked whether the two

behavioural measures were correlated across trials and whether

one of the two systematically preceded the other. In order to do

this, we defined two behavioural indices, Ic and It, to track the

local choice ratios as well as the relative sampling times

respectively. It captures the normalised difference in sampling

time between the two spouts while Ic captures the relative choice

employing a similar formula for direct comparison (see Methods).

Figure 4 shows the choice and sampling time indices during the

first two sessions of reversal when they both represent the fastest

rate of change and their comparison is thus most informative. At

the beginning of the first session, both choice ratios and sampling

times reflect the acquisition contingencies – the rats select the

newly low reward side on a bigger proportion of trials (average Ic is

negative) and they spend longer times on the low reward spout

(average It is negative). Interestingly, during session 1, the time

ratios cross zero indicating the rats have begun to spend more time

on the high reward spout. Note that the It is calculated based on

the unrewarded trials only. For all successive sessions, the time

index remained positive. In contrast, the choice index remained

negative throughout the first session and became positive in the

middle segment of the second session. These data indicate that

differential sampling or waiting time occurs in advance of a change

in the choice between the two locations. Across all sessions, the

choice and time indices showed a significant level of correlation

(Pearson Correlation Coefficient ranging from 0.57 to 0.67 across

rats).

The key finding was that sampling or waiting times on

unrewarded trials robustly indicated the relative reward probabil-

ities across days, and that this differential pattern developed before

any changes in the choice between the two locations. In light of

this observation, we examined other aspects of the licking profile to

search for further behavioural correlates of outcome probability.

Figure 5A shows an example raster plot of contact profiles for the

high probability trials in black and for the low probability trials in

red, aligned by the go signal. Inspection of the contact profiles

confirmed the previous finding of differential sampling duration

for high versus low probability sides. Moreover, the microstructure

of contacts revealed further differences: for the high reward

condition (i) individual contacts were shorter and (ii) the interval

between contacts was longer. The contact time histogram

averaged across all rats (Figure 5B) captures the key findings.

The contact profile at the low reward probability side was initially

higher (red line) indicating denser contact patterns. At around

2000 msec after the go-signal, the profiles cross over with the high

reward probability side showing more contacts, indicating longer

sampling times at that spout. Across rats, individual contacts were

significantly longer for the low reward spout (p value,0.01) with

shorter inter-lick intervals (p value ,0.01). To visualise the lick

structure, Figure 5C gives the lick density, the log of the ratio of

individual lick duration to inter-lick interval. In accordance with

lick duration, there is a difference in lick patterns between high

and low reward probability spouts; rats’ licking was denser at the

low reward spouts, consistent with the lick pattern statistics

provided earlier. This difference was not significant for rat 2 where

the ratio appears to have reached a ceiling (with lick durations on

average 6.38 times higher than inter-lick interval for the high

reward spout and 6.59 times longer than inter-lick interval for the

low reward spout). Finally we examined the number of licks

Figure 4. Comparison of the choice and time indices. A. The choice index (Ic – green lines) and time index (It – blue lines) in the first two
sessions after reversal. The data points represent 50 successive and non-overlapping trials in a session. Data are averaged across all four rats. The time
index passes 0 before the choice index, indicating that time spent at the high reward spout exceeds time spent at the low reward spout, long before
the high reward spout is chosen more frequently.
doi:10.1371/journal.pone.0026863.g004
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generated on each trial. Figure 5D illustrates the number of licks

produced on each trial separately for the high and low reward

probability spouts. In agreement with the sampling duration data,

the average lick count was higher for the high reward probability

spout for each of the four rats.

Discussion

A behavioural correlate of reward expectation
We used a discrete trial choice paradigm, where two options

gave rewards at two distinct contingencies of 70% and 30%. Rats

started by selecting the two options equally and eventually

converged on nearly exclusive choice of the high probability

option. After performing at a stable level of choice, the

contingencies were reversed. All rats switched their choices back

to the optimum behaviour (i.e. nearly exclusive choice of the new

high probability reward) during 6 to 8 sessions. During every

session, an analysis of the time spent at the spout revealed a

systematic pattern whereby the rats spent more time at the high

reward probability spout. This was the case when we exclusively

examined the unrewarded trials, where the experience of the

outcome itself was identical. Critically, the differential sampling

times preceded the differential choice ratios. This was most

evident in the examination of choice and time indices during the

first session after reversal. This measure could thus be a predictor

of the changes in choice and a potential correlate of a neuronal

mechanism mediating the switch between the two options.

Besides the total time duration spent at either spout, the profile

of licking showed systematic differences across the high and low

probability reward spouts. There were more licks for the high

Figure 5. Licking profile and distribution. A. Sampled licking patterns are shown for rat 4. Every row indicates an individual trial. Licks were
recorded at 1 msec precision. B. Average contact profiles for unrewarded trials, separated into high probability (black) and low probability (red)
spouts. C. Box plots of log of lick density (natural logarithm); the ratio of individual lick duration to inter-lick interval, per rat, at the high probability
(black) and low probability (red) spouts. Zero values indicate equal length, negative values indicate longer inter-lick interval durations and positive
values indicate longer lick durations. D. Box plots of lick count per rat, at the high probability (black) and low probability (red) spouts. Box plots in C
and D follow the convention described in Figure 3.
doi:10.1371/journal.pone.0026863.g005
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reward spout but individual licks were denser for the low reward

spout.

One interpretation for the denser lick patterns at the low

reward spout can be based on a property of ratio schedules. Such

schedules make a reward contingent on the emission of either a

fixed or variable number of responses. These schedules thus

arrange a positive relation between the rate of responding and the

rate of reward. Here, the contingencies were such that lick

density also determined (by however small an amount) how

quickly the outcome was procured (the outcome was presented at

the first lick after the designated delay) and, hence, how quickly

the rat could detect the absence of the outcome and leave the

spout to initiate the next trial. The denser lick patterns exhibited

by the rats when they selected the spout with the lower reward

probability may have been reinforced more strongly compared to

the high reward as they provided quicker feedback about the

non-occurrence of the reward which occurred more frequently

(70% non reward versus 30% non reward). This would thereby

allow the rat to rapidly abandon the low probability spout and

initiate the next trial.

Matching versus maximising – statistical optimality and
ecological benefit

Typically, when given a choice among possible options, animals

exhibit two distinct modes of behaviour described as matching or

maximising [6,12,13,14]. In certain situations, animals distribute

their choices proportional to the relative outcomes, a behaviour

known as matching [8,15,16,17]. Alternatively, animals exclusively

choose one of the options – that with the higher probability of

outcome – thereby increasing the relative occurrence of the

outcome. This behaviour is termed maximising and is the

statistically optimal behaviour – it garners the greatest outcome

frequency. Both species [18,19,20] and experimental conditions

seem to play a role in determining whether an animal employs

matching or maximising [16]. Regardless of the evolutionary

underpinning and relative optimality of these tactics, both require

that animals represent the uncertainty and the probable outcome

associated with a choice.

In settings where outcome probabilities are fixed and indepen-

dent from sample to sample, maximising earns the highest reward.

However, it has been argued [21] that if the contingencies of

outcome change over time then sampling options with previously

lower reward frequency is important. Moreover, if the choices

from trial to trial are not independent (e.g. if the reward assigned

to one option remains available until it is sampled) then the

optimum behaviour approximates matching [22].

Suboptimal sampling duration
On average, only 9.6% of trials were concluded at or before

600 msec (the latest time at which reward could become

available) with the time spent at the spout being 700–1100msec

(interquartile range). The time spent at the spout was therefore

suboptimal and did not reflect learning of the precise onset of

the reward across trials. To further investigate this pattern of

behaviour, we studied the times spent at the spout during the

rewarded trials. The average distribution of times spent at the

spout for the rewarded trials was 2200–2900 msec (interquartile

range) with no systematic differences across the two sides. Median

time spent at the spout for rewarded trials was 2537 msec. The

longer duration is due to the running of the sucrose pump during

which the rat experiences the reward. When the conclusion time

of the unrewarded trials were compared with the median time

spent on the rewarded trials, 99% of the unrewarded trials were

abandoned by that time. It is therefore possible that the moment

by moment experience of reward during the rewarded trials, and

not the reward onset drives the suboptimal sampling durations for

unrewarded trials.

Quantifying certainty of sensory decisions
In the current paradigm we have demonstrated that higher

probabilities of reward cause the animals to sample the reward

spout for longer durations indicating higher expectation of reward

and confidence of an outcome. This phenomenon can be exploited

in paradigms where uncertainty is not only governed by

introducing an explicit probabilistic reward but affected by the

uncertainty innate in sensory systems. For instance, in a tactile task

involving rat whiskers [23] we found that the animals’ discrim-

ination performance at various vibrotactile intensities could be

explained in terms of the response function of cortical neurons.

Future experiments could apply the spout sampling measurement

employed here in such sensory discrimination tasks in order to

investigate whether time spent at the reward spout similarly

reflects confidence in the neuronal representation of a sensory

stimulus. Such an approach could be useful when other potential

measures of confidence such as reaction times to sensory stimuli do

not vary with task difficulty; for instance in the case of scent

discrimination in rats [24]. Other attempts to quantify confidence

in sensory discrimination tasks have involved introducing

alternative discrete choices. Kepecs and colleagues employed a

delayed reward version of an olfactory discrimination task [25].

Rats were given a short period of time after making a choice to

either continue a trial or to abandon that trial and restart the

subsequent one. Interestingly, the probability of reinitiating the

next trial changed systematically as a function of performance

reflecting the level of confidence in sensory integration. Similarly,

a previous study trained Macaques in a visual task involving

detecting the direction of moving random dots [26] and

successfully quantified decision confidence by giving the animal

a choice to opt out of the task for a small but certain reward. In

both of these paradigms, the animal was trained to make an

explicit alternative choice (i.e. either abandoning a trial within a

fixed time window in the rat experiment or selecting a third option

in the monkey experiment) when the confidence in the outcome

was low. Our findings indicate that sampling duration at the

choice spout, as well as the number and profile of licking could

provide a direct measure of confidence in a simple two-alternative

choice paradigm.

Methods

Ethics Statement
The experiments were conducted in accordance with the

Australian and the international guidelines for the treatment of

animals and were approved by the Animal Care and Ethics

Committee at the University of New South Wales (ACEC number

10/47B).

Subjects, behavioural apparatus and procedure
Subjects were four adult male 250–400 g Wistar rats. Rats were

maintained on a 12:12 hour light-dark cycle (with lights on at

7 am) in a climate-controlled colony room. Rats were maintained

on a mild food/water deprivation (12 g of rat chow, 3 hours of ad

lib access to water each day) and were rewarded with a 5% sucrose

solution during the experiment.

The experiment was performed in a Plexiglas chamber (30 cm

in length620 cm in width650 cm in height) with a flooring of

metal bars spaced at 1 cm. An aperture (40 mm640 mm) was

located in the front wall of the chamber. Nose-pokes into the
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aperture were detected by an infra-red optical sensor. Two light

emitting diodes (LEDs) at the back wall of the nose-poke chamber

were lit after a variable delay (100–600 ms uniform distribution) to

indicate the go-signal. The reward was delivered through two

drinking spouts located at either side of the aperture in the front

wall (Figure 1). The behaviour of the rat (nose-poke or the

response at either reward spout) was continuously registered into a

data acquisition card (National Instruments, Inc., Austin, TX)

using a custom-built circuit that measured contact at the spouts

through closure of an electrical circuit or nose-poke through an

optical sensor. A MATLAB script controlled the presentation of

the go-signal, registered the behaviour of the rats along with the

corresponding time stamp of each behavioural action, and

controlled the delivery of rewards through two separate water

pumps. The behaviour was additionally monitored during the

experiment using an infrared camera positioned on the front wall

of the aperture.

Figure 1 illustrates the basic experimental design and sequence

of events in the task. The go-signal started with a variable delay

after the nose-poke initiation, provided that the rat maintained the

nose-poke throughout this delay. The rat then responded by

choosing one of the two reward spouts which provided either

0.06 ml of sucrose water or nothing according to predetermined

probabilities (0.7 or 0.3). The delivery of reward is independent

from one trial to the next. The reward probabilities at the two

spouts were statistically independent, such that sucrose could be

available at both spouts (at a probability of 0.7*0.3 equal to 0.21)

or at neither spout (at a probability of 0.3*0.7 equal to 0.21). The

first lick at either drinking spout was considered as the behavioural

choice and its time instance was recorded as the response time. If

available on a spout, the reward was allocated at a delay from first

spout contact (uniform distribution from 100 to 600 msec) and was

delivered at the first lick after the designated time. The timing of

the reward was independent of the predetermined probability.

After the familiarisation to the set up and the initial shaping of

the behaviour, an acquisition period was conducted over 5 days.

During the acquisition the contingencies were fixed for each rat

(70% rewarded on one side and 30% on the other) and were fully

counterbalanced across rats. Rats performed an average of 275

trials (218.5–329.5 inter-quartile range) during each session.

In the second phase (the reversal), the reward probabilities were

reversed for each rat (a spout that was rewarded at a probability of

0.7 during acquisition, had a probability of 0.3 after reversal and

vice versa for the other spout).

We defined two behavioural indices, the time index (It) and the

choice index (Ic) to track the relative sampling times and the local

choice ratios respectively.

It~ Thigh{Tlow

� �
= ThighzTlow

� �

It reflects the normalised difference in sampling time (i.e. time

duration from the beginning of the first contact to the end of the

last contact) between the high and the low reward spouts. Thigh is

the median sampling duration at the high reward spout and Tlow is

the median sampling duration at the low reward spout during the

window of interest after excluding the rewarded trials. A 50 trial

window is chosen for the analysis reported in Figure 4. Similar

results were found for a range of window sizes (20, 30, and 40; data

not shown).

Ic~ Chigh{Clow

� �
= ChighzClow

� �

Similarly, Ic reflects the normalised choice difference between the

two spouts across the same window of trials. Chigh is number of

times the high reward spout was chosen and Clow is number of

times low reward spout was chosen during the window of interest.

As before, the first lick at either drinking spout was considered as

the behavioural choice.

Quantile-Quantile analysis
To quantify the overlap between the sampling time distributions

(Figure 3A), we found the quantile points of each distribution at

5% steps. Corresponding quantile values for each distribution

were then plotted against each other to generate a Q-Q plot [27].

When the two distributions being compared are identical, the dots

on a Q-Q plot fall on the diagonal line. If one distribution is simply

shifted laterally compared to the other, then the dots will fall on a

parallel line above or below the diagonal. Any change in the angle

of the line relative to the diagonal or deviation from linearity

would indicate other differences between the two distributions

(differences in distribution width, skewness, or shape).
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