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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to current chemotherapy regimens, in part due to alterations in
the p53 tumor suppressor pathway. p53 homolog p63 is a transcription factor essential for the development and
differentiation of epithelial surfaces. However its function in cancer is controversial and its role in PDAC is not known. We
discovered that DNp63a was the predominantly expressed p63 variant in pancreatic cancer cell lines. DNp63a protein and
mRNA levels were high in T3M4, BxPC3 and COLO-357 pancreatic cancer cells and low in ASPC-1 and PANC-1 cells.
Overexpression of DNp63a in PANC-1 cells and shRNA-mediated knockdown in T3M4 cells indicated that DNp63a promoted
anchorage-dependent and -independent growth, motility and invasion, and enhanced resistance to cisplatin-induced
apoptosis. Epidermal growth factor receptor (EGFR) signaling pathways contribute to the biological aggressiveness of PDAC,
and we found that the motogenic effects of DNp63a were augmented in presence of EGF. Ectopic expression of DNp63a
resulted in upregulation of EGFR and b1-integrin in PANC-1 cells. Conversely, DNp63a knockdown had an opposite effect in
T3M4 cells. DNp63a potentiated EGF-mediated activation of ERK, Akt and JNK signaling. Chromatin immunoprecipitation
and functional reporter assays demonstrated that DNp63a activated EGFR transcription. 14-3-3s transcription was also
positively regulated by DNp63a and we have previously shown that 14-3-3s contributes to chemoresistance in pancreatic
cancer cell lines. Conversely, shRNA-mediated knockdown of 14-3-3s led to abrogation of the DNp63a effects on cell
proliferation and invasion. Thus, p53 homolog DNp63a enhances the oncogenic potential of pancreatic cancer cells through
trans-activation of EGFR and 14-3-3s.
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Introduction

Studies in human disease demonstrate that most established

tumors carry more than one genetic defect. Pancreatic ductal

adenocarcinoma (PDAC) results from the successive accumulation

of gene mutations [1]. Activating mutations in K-Ras oncogene

and inactivation of tumor suppressors CDKN2A, p53 and SMAD4

are implicated in PDAC development and progression [2]. Gene-

tically engineered mouse models have supported the ‘‘double-hit’’

hypothesis where introduction of either mutant p53 allele or biallelic

deletion of ink4a/Arf in mice results in progression of pancreatic

intraepithelial neoplastic lesions with local invasion and metastases

[3,4]. p53 mutations are found in 60 to 70% of PDAC. By contrast,

p63, an ancestral member of p53 family, is rarely mutated in cancer.

Six variants of p63 are generated through transcription from two

distinct promoters and alternative splicing. Isoforms transcribed

from P1 contain a full-length trans-activation domain (TAp63a,

b and c). Transcription from P2 generates amino-terminally

truncated variants (DNp63a, b and c), whose exact role in

cancer is not clear. The DNp63 variant is overexpressed in a

variety of human cancers, including tumors of squamous cell

origin (head and neck, lung), breast and bladder [5]. In head and

neck squamous cell carcinoma and ‘‘triple-negative’’ breast

cancer cells, DNp63 suppresses p73-dependent apoptosis and

thus promotes tumor survival [6,7]. By contrast, downregulation

of DNp63a in urothelial carcinoma cell lines promotes cancer

invasiveness [8], suggesting that the DN variant may function in a

cell type-specific manner.

The role of p63 in PDAC is poorly understood. Here we

demonstrate that the DNp63a variant is expressed at variable

levels in PDAC cell lines, and provide evidence that DNp63a
promotes pancreatic cancer cell growth, migration, invasion and

chemoresistance. Via direct transcriptional activation, DNp63a
leads to the up-regulation of epidermal growth factor receptor

(EGFR) and 14-3-3s, sensitizing cancer cells to EGF and

enhancing their oncogenic potential.
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Methods

Cell lines
Human pancreatic cancer cell lines ASPC-1, BxPC3 and PANC-1;

HEK293 human embryonic kidney cells and H1299 human lung

carcinoma cells were purchased from American Type Culture

Collection (Manassas, VA). COLO-357 and T3M4 human pancre-

atic cancer cell lines were a gift from Dr.R.Metzgar (Duke University,

Durham, NC). Cell lines were grown in RPMI or DMEM (HEK293)

supplemented with 10% fetal bovine serum, 100 U/ml penicillin,

and 100 mg/ml streptomycin (complete medium).

Plasmid constructs
The human and mouse DNp63a expression plasmids and

(p53RE)5-tk-luciferase plasmid were reported previously [9].

TAp63a expression plasmid was purchased from Open Biosystems

(Huntsville, AL). pBV-14-3-3s promoter BDS 2 36 (p53 binding

site)-luc plasmid was obtained from Addgene (Cambridge, MA).

pGL3-EGFR promoter (p53 binding sites)-luc plasmid was a gift

from Dr. L. Pirisi [10]. Sequence modifications within a coding

of a DNA-binding domain of the human DNp63a expression

plasmid and within EGFR promoter p53 binding site 1 were

introduced using the Quick-Change Site Directed Mutagenesis Kit

(Stratagene, La Jolla, CA).

Immunoblotting
Cells were lysed in RIPA buffer (20 mM Tris, 150 mM NaCl,

1% NP-40, 1 mM NaF, 1 mM Sodium phosphate, 1 mM

NaVO3, 1 nM EDTA, 1 nM EGTA, supplemented with protease

inhibitor cocktail (Roche, Indianapolis, IN) and 1 mM PMSF).

Proteins were analyzed by immunoblotting as previously described

[11]. The following antibodies were used: p63 (4A4; Millipore,

Billerica, MA; 1:500); TAp63c (Li et al., 2006; 1:1,000), 14-3-3s
(Abcam, Cambridge, MA; 1:500), ERK-2 (C-14; Santa Cruz

Biotechnology, Santa Cruz, CA; 1:10,000), p53 (DO-1; Santa

Cruz Biotechnology; 0.4 mg/mL), EGFR (Calbiochem; 1:2,000),

cleaved poly(ADP-ribose) polymerase (PARP), cleaved caspase-3,

ERK-1/2, phospho-ERK1/2 [T202/Y204], Akt, phospho-Akt

[S473] (Cell Signaling Technology, Danvers, MA; 1:1,000), active

JNK (Promega, Madison, WI), horseradish peroxidase-conjugated

anti-mouse and anti-rabbit antibodies (BioRad; 1:5,000).

Reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was isolated using RNeasy Mini Kit (Qiagen,

Valencia, CA). cDNA was synthesized from 1 mg RNA by random

hexamer priming using the Superscript III RT Kit (Invitrogen,

Carlsbad, CA). Semi-quantitative RT-PCR was carried out using

forward and reverse primers specific for p63 isoforms as previously

published [12]. The following PCR cycling conditions were used:

94uC for 3 min, 35 cycles of 94uC for 40 sec, 55uC for 40 sec, and

72uC for 1.5 min; and 72uC for 4 min.

For the analysis of DNp63 and TAp63 transcript expression

quantitative real time PCR (Q-PCR) was performed in a 7300

Sequence Detector using Universal PCR Master Mix according to

manufacturer’s instructions (Applied Biosystems, Foster City, CA),

template cDNA and gene specific probes (Hs00978339_m1

[DNp63]; Hs00978349_m1 [TAp63]; Applied Biosystems). All

samples were analyzed in duplicates.

Transient transfections, adenoviral infection and
luciferase assays

PANC-1 and T3M4 cells were transiently transfected with

ExGen 500 in vitro Transfection Reagent (Fermentas Life Sciences,

Glen Burnie, MD), using equal amounts of experimental or

control plasmid. Cells were incubated for 48 hours and protein

expression was verified by immunoblotting. The control and

DNp63a-expressing adenovirus were used as described [13].

ASPC-1 and PANC-1 cells were infected with adenovirus at

MOI of ,5 in complete medium for 24 hours.

For luciferase assays, PANC-1 cells were co-transfected with

experimental plasmid or control and the luciferase reporter

construct (pBV-14-3-3s promoter BDS 2 36 (p53 binding site)-

luc; or pGL3-EGFR promoter-luc) along with pCMVb vector

(Clontech Laboratories, Mountain View, CA). The amount of

DNA per transfection was kept constant by using empty

pcDNA3.1 vector. Cells were harvested 48 hours post-transfection

and luciferase assays were performed using the Dual-Luciferase

Reporter Assay System (Promega). Relative light units were

determined using a luminometer (LMaxII384, Molecular Devices,

Sunnyvale, CA) for firefly luciferase. b-galactosidase activity was

determined using a colorimetric method to normalize transfection

efficiency [14].

Lentiviral shRNA mediated gene silencing
Lentivirus containing shRNA targeting a-specific, TAp63

specific, all p63 isoforms and sh control were described previously

[15]. Lentivirus-based 14-3-3s-targeting and control shRNA were

also described by us previously [11]. Lentiviral particles were

produced by four plasmid transfection system [11]. Knockdown of

p63 isoforms and 14-3-3s in T3M4 and PANC-1 cells was

confirmed by Western blotting and Q-PCR.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay

Cells were plated in 96-well plates (3000 cell per well, 6 wells per

sample) and cultured in the absence or presence of 10 mg/mL

cisplatin (Sigma-Aldrich, St. Louis, MO) for 48 hours. MTT

(Sigma-Aldrich) was added at a final concentration 0.55 mg/mL.

After additional 4 hours incubation, absorbance at 570 nm was

determined using an Emax precision microplate reader (Molecular

Devices). We have previously observed that in pancreatic cancer

cell lines the MTT assay correlates with cell growth as determined

in a doubling and [3H]thymidine incorporation assays [16].

Soft agar assays
Soft agar assays were set up in twelve-well plates, each well

containing a bottom layer of 0.5% Difco agar noble (BD

Biosciences), a middle layer of 0.3% agar including 1500 cells,

and a top layer of 0.3% agar. The plates were incubated for 14

days. Next, 150 mL of 5 mg/mL MTT solution were added to

each well. After incubation at 37uC for 4 hours plates were

photographed and colonies were counted.

Cell migration and invasion assays
Cell motility was assessed in in vitro wound healing and

Transwell migration assays. For wound healing assays, cells were

grown to confluency in 6-well tissue culture plates, and serum-

starved for 12 hours. The resulting cell monolayer was scratched

with a 10 mL pipette tip generating two parallel wounds and

incubated for 18 hours in serum-free medium (SF; 0.1% bovine

serum albumin) in the absence or presence 1 nM EGF (Millipore).

Photographs were taken of each well at four marked locations

under 406 magnification at zero and 18 hours after wounding.

The wound area of matched pictures was measured using the

ImageJ software (National Institutes of Health). For Transwell

migration assays, cell were suspended in 100 mL SF medium and
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placed onto the upper compartment of Transwell chambers (8 mm

pore size, Corning Incorporated, Corning, NY). For invasion

assays, cells were suspended in 500 mL SF medium and placed

onto upper compartment of Matrigel-coated Transwell chambers

(8 mm pore size, BioCoat Matrigel Invasion Chambers; BD

Biosciences; Franklin Lakes, NJ). In both Transwell assays, the

lower compartment was filled with 750 mL SF medium in the

absence or presence of 1 nM EGF. After 18–20 h, membranes

were fixed in methanol, stained with toluidine blue (Fisher

Scientific, Pittsburgh, PA) and counted using a light microscope.

Formaldehyde crosslinking, chromatin
immunoprecipitation (ChIP) and PCR amplification

For DNA-histone crosslinking, 26106 cells were incubated with

1% formaldehyde in complete medium for 10 minutes. Cells were

washed twice in ice-cold PBS and lysed in SDS Lysis Buffer

(Millipore) complete with protease inhibitor cocktail (Roche).

Protein lysates were sonicated to yield chromatin fragments of

,500 bp as assessed by agarose gel electrophoresis. After pre-

clearing, protein lysates were incubated at 4uC overnight with

2 mg p63a antibodies (H-129, Santa Cruz) or with rabbit IgG as

isotype-specific control antibodies (Santa Cruz). Immunocom-

plexes were washed and DNA was purified using the ChIP Assay

Kit (Millipore) and QiaQuick PCR Purification Kit (Qiagen)

according to the manufacturer’s instructions. PCR conditions

and primers for 14-3-3s consensus binding sites 1 and 2 were

previously reported [17]. The following PCR primers and con-

ditions were used for the EGFR promoter p53 binding site:

forward primer 59 GGCCGCTGGCCTTGGGTC 39; reverse

primer 59 GCCGTGCGCGGTGGTTG 39; 1 cycle of 94uC for

5 min, 43 cycles of 95uC for 30 sec, 55uC for 30 sec, 72uC for

50 sec, followed by 1 cycle of 72uC for 10 min. PCR was

performed using HotStarTaq polymerase Kit (Qiagen), with use of

Q-Solution in the EGFR PCR assay.

Cisplatin-induced apoptosis
Pancreatic cancer cells were incubated for 24 h in complete

medium in the absence or presence of 5 or 10 mg/mL cisplatin for

the initial 2 h, 6 h or the entire 24 h. Both floating and adherent

cells were collected and subjected to immunoblotting.

Results

DNp63a expression in pancreatic cancer cell lines
We found that p63 was differentially expressed in pancreatic

cancer cell lines. p63 protein levels were highest in T3M4 and

BxPC3 cells, intermediate in COLO-357 and below the detec-

tion level in ASPC-1 and PANC-1 cells (Fig. 1A). Since the p63

antibody (clone 4A4) recognized all six known isoforms of p63, we

compared p63 mRNA transcript levels in the above cell lines. All

the cell lines expressed low levels of TAp63 mRNA (Fig. 1B). By

contrast, DNp63 mRNA transcripts were relatively elevated in

BxPC3, COLO-357, and T3M4 cells (Fig. 1B).

To further elucidate whether a particular splicing variant of p63

is expressed in pancreatic cancer cell lines, we employed semi-

quantitative RT-PCR with p63 splicing variant-specific primers

(Table S1). We confirmed that TAp63a mRNA transcripts were

expressed at relatively low and similar levels in all five cell lines. By

contrast, DNp63a mRNA transcripts were only expressed in

BxPC3, COLO-357, and T3M4 cells, whereas DNp63c mRNA

was barely detectable in BxPC3 and T3M4 cells (Fig. 1C).

Although p63a can be detected in a specific PCR assay, isolated

detection of p63b mRNA transcripts is unreliable since its C-

terminus is not unique (Fig. S1). In our experiments, expression of

DNp63b mRNA transcript correlated with DNp63a expression,

probably due to non-specific amplification of DNp63a. Since we

detected p63 protein migration at ,68 kDa, and DNp63b protein

migrates at ,52 kDa [18–20], we concluded that DNp63a was the

predominantly expressed p63 variant in pancreatic cancer cells.

Oncogenic effects of DNp63a in pancreatic cancer cells
To study the biologic effects of DNp63a in PDAC, we

manipulated its expression in PANC-1 and T3M4 cells, which

had low and high endogenous levels of DNp63a, respectively

(Fig. 1). PANC-1 cells were transiently transfected with a DNp63a-

expressing vector (PANC-1DN), a TAp63a-expressing vector

(PANC-1TA), or control plasmid. Lentiviral-mediated shRNA

was used to down-regulate p63 gene isoforms in T3M4 cells. Two

different shRNA sequences, one complementary to a sequence

within a p63 DNA-binding domain (sh DBD) and thus targeting

all isoforms of p63, and another complementary to a sequence

within sterile alpha motif domain (SAM) and thus targeting

TAp63a and DNp63a (sh p63a) were determined to reduce the

DNp63a protein and transcript levels in T3M4 cells (Fig. 2A).

While shRNA targeting trans-activation domain (sh TAp63)

resulted in reduced TAp63 transcript levels, this did not translate

into an appreciable change in the total p63 protein levels (Fig. 2A),

confirming our observation that DNp63a variant predominates in

pancreatic cancer cell lines.

Since anchorage-independent growth is a hallmark of malignant

cells, we studied whether DNp63a has an effect on anchorage-

independent growth and cell proliferation in PDAC. PANC-1DN,

but not PANC-1TA cells exhibited increased colony formation in

soft agar assays and increased cell proliferation in MTT assays

(Fig. 2B). Since T3M4 cells are incapable of forming colonies in

soft agar, proliferation was studied in a clonogenic assay. As

compared with control cells, proliferation of T3M4 cells was

reduced in response to shRNAs that target the DBD or the a-

specific C-terminus and unchanged in response to sh TAp63

(Fig. 2C). Transient overexpression of mouse DNp63a cDNA,

which carries a silent mutation in the region targeted by the a-

specific shRNA, resulted in a partial rescue of the proliferative

ability of sh p63a T3M4 cells, as compared with cells transfected

with control vector (Fig. 2C).

DNp63a is known to regulate the adhesion program in

mammary epithelial cells and keratinocytes [15]. Given the

importance of cell adhesion in tumor invasion and progression,

we studied the effects of DNp63a on the motility and invasive

capabilities of the pancreatic cancer cells. In wound-healing assays,

PANC-1DN cells demonstrated enhanced motility in SF condi-

tions, while overexpression of TAp63a had no effect (Fig. 2D).

Since activation of the EGFR pathway is associated with increased

tumor aggressiveness and decreased survival in PDAC [21], we

sought to determine the effect of EGF on motility. EGF

stimulation enhanced migration in PANC-1DN and control cells

(Fig. 2D). Similarly, T3M4 cells expressing sh p63a, but not sh

TAp63, exhibited reduced motility both at baseline and in

presence of EGF (Fig. 2E). Transient overexpression of mouse

DNp63a in T3M4 cells expressing sh p63a resulted in a partial

rescue of the motility phenotype (Fig. 2F). Manipulation of

DNp63a expression levels had no effect on the invasion of

pancreatic cancer cells in Matrigel chambers in SF conditions

(Fig. 2G, H). However, stimulation with EGF led to a dramatic

increase in the invasive capability of PANC1-DN cells (Fig. 2G).

Consistent with the above findings, shRNA-mediated suppression

of DNp63a, but not TAp63, significantly reduced the ability of

T3M4 cells to invade through Matrigel in response to EGF

stimulation (Fig. 2H).

p63 in Pancreatic Cancer
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Collectively, our results indicate that DNp63a enhances the

colony-forming, proliferative and invasive capacity of the pancre-

atic cancer cells.

DNp63a upregulates EGFR and sensitizes pancreatic
cancer cells to the effects of EGF

Compared with the normal pancreas, EGFR protein and

mRNA are expressed at high levels in pancreatic cancer [22].

EGFR mRNA expression predicts decreased survival and poor

response to chemotherapy in patients with PDAC [23]. In our

work, DNp63a dramatically potentiated pancreatic cancer cell

motility and invasive abilities in the presence of EGF. To explain

this phenomenon, we studied the effect of DNp63a on EGFR

levels. We determined that engineered expression of DNp63a in

PANC-1 cells enhanced EGFR expression, while ectopic TAp63a
had no effect (Fig. 3A). Consistent with this observation, we found

that EGFR levels were decreased in T3M4 cells in response to

shRNA-mediated suppression of DNp63a (Fig. 3B), thus docu-

menting a direct correlation between DNp63a and EGFR

expression in pancreatic cancer cell lines. To study the effects of

DNp63a overexpression on EGFR signaling, we assessed activa-

tion of downstream kinases upon EGF stimulation. Treatment of

PANC1-DN cells with EGF resulted in enhanced phosphorylation

of ERK, Akt and JNK (Fig. 3C). In those cells, all three kinases

exhibited increased level of activation at as early as 10 minutes

after cell stimulation, and ERK activity persisted for 60 minutes.

Next, we employed a tyrosine kinase inhibitor to assert that the

effects of DNp63a were mediated through the EGFR pathway.

Erlotinib is a reversible inhibitor of the EGF signaling, which

associates with the ATP-binding site of the receptor. Incubation

of PANC-1 cells with 1 mM erlotinib attenuated the DNp63a-

mediated enhancement of colony formation, motility and invasion

(Fig. S2), thus excluding a possibility of a non-specific effect. By

contrast, p63 protein levels were not affected when cells were

incubated with either EGF or erlotinib (data not shown).

Previous reports suggested that DNp63a is able to regulate cell

adhesion proteins in mammary epithelial cells [15]. Since integrin-

mediated tumor cell interactions with the extracellular matrix play

Figure 1. Expression of 14-3-3s, p63 isoforms and p53 in pancreatic cancer cell lines. A, Protein levels of p63, 14-3-3s, TAp63c and p53 in
pancreatic cancer cell lines. B, mRNA expression of TAp63 and DNp63 isoforms of p63 in pancreatic cancer cell lines. Total RNA isolated from PDAC
cell lines was reverse-transcribed and subjected to real-time PCR with probes specific for DN and TA isoforms of p63. Results were normalized to 18S
levels, and expressed as mean of two independent experiments done in duplicates in which similar results were obtained. C, mRNA expression of p63
splicing variants in pancreatic cancer cell lines. Levels were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) values.
doi:10.1371/journal.pone.0026815.g001
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a critical role in determining the invasive phenotype in PDAC, we

investigated whether DNp63a had an effect on integrin expression

in pancreatic cancer cells. Ectopic expression of DNp63a in

PANC-1 cells increased expression of b1-integrin, whereas the

expression of a3- and a5-integrins was unchanged (Fig. 3A).

Conversely, shRNA-mediated suppression of DNp63a led to a

decrease in b1-integrin in T3M4 cells (Fig. 3B).

Thus, DNp63a contributes to the oncogenic potential of

pancreatic cancer cells, at least in part, through upregulation of

EGFR and b1-integrin.

DNp63a contributes to chemotherapy resistance in
pancreatic cancer cells

Since PDAC is notoriously resistant to chemotherapy agents, we

studied the role of DNp63a in chemotherapy resistance. It has

been previously shown that cisplatin induces degradation of

DNp63a via stimulation of IkB kinase [24]. Consistent with those

data, incubation of pancreatic cancer cell lines with 10 mg/ml of

cisplatin resulted in degradation of endogenous DNp63a. This

effect of cisplatin was evident after 6 hours of incubation and was

accompanied by increased apoptosis in all tested cell lines (Fig. 4A).

We then investigated whether ectopic expression of DNp63a
would contribute to resistance to cisplatin-induced apoptosis in

PDAC. PANC-1 cells were incubated for 24 hours in complete

medium supplemented with 5 mg/mL cisplatin for 2, 6, or 24

hours. PANC-1DN cells exhibited a mild attenuation of apoptosis

compared with control cells, as manifested by decreased PARP and

caspase cleavage (Fig. 4B). This decrease in cisplatin-induced

apoptosis correlated with an increase in viability of PANC-1DN cells

as determined in an MTT assay, while PANC-1TA cells exhibited a

slightly reduced survival (Fig. 4C). By contrast, T3M4 cells

expressing sh p63a were sensitized to cisplatin-induced apoptosis,

as demonstrated by an increased cleavage of PARP and caspase

(Fig. 4D). Thus, DNp63a attenuates the sensitivity of pancreatic

cancer cells to cisplatin.

DNp63a upregulates 14-3-3s in pancreatic cancer cell
lines

Next we studied the mechanisms of DNp63a-mediated che-

moresistance in PDAC. We have previously shown that 14-3-3s
dramatically enhances resistance to cisplatin-induced apoptosis in

pancreatic cancer cell lines [11]. Westfall et al. demonstrated that

DNp63a acts as a transcriptional repressor of the 14-3-3s promoter

in human epidermal keratinocytes [25]. By contrast, we observed

that expression of DNp63a correlated with 14-3-3s protein

expression in pancreatic cancer cells (Fig. 1A). Additionally,

silencing DNp63a was accompanied by reduction in 14-3-3s
protein level in T3M4 cells (Fig. 2A). 14-3-3s is a p53

transcriptional target, yet BxPC3, PANC-1 and T3M4 cells are

known to carry mutant p53 whose transcriptional activity is

defective [26], while COLO-357 cells express low p53 protein

levels (Fig. 1A). Hence, 14-3-3s expression is unlikely to be

dependent on p53 in PDAC.

To determine if DNp63a modulates 14-3-3s expression in

pancreatic cancer cells, we introduced DNp63a cDNA via

adenoviral infection in ASPC-1 and PANC-1 cells, which express

low levels of 14-3-3s and DNp63a. We observed an increase in

14-3-3s protein levels in the DNp63a overexpressing cells

compared to the control-infected cells (Fig. 5A). This DNp63a-

mediated increase in 14-3-3s was not associated with alterations

of protein levels of the other 14-3-3 isoforms (Fig. 5A). By contrast,

manipulation of 14-3-3s levels in PANC-1 and T3M4 cells did not

have an effect on DNp63a (Fig. 5B and 5C).

Next, we determined whether upregulation of 14-3-3s by

DNp63a is of biological significance in PDAC. Using a lentiviral

based approach we silenced endogenous 14-3-3s in PANC-1 cells.

In such cells, enforced expression of DNp63a failed to upregulate

14-3-3s (data not shown). Consistent with our previous observa-

tions, loss of 14-3-3s did not affect migration abilities of PANC-1

cells in the presence of EGF [[11], Fig. 5E]. Similarly, DNp63a-

mediated enhancement in cell motility was not influenced by the

lack of 14-3-3s (Fig. 5E). By contrast, 14-3-3s was required for

DNp63a-mediated anchorage-independent growth and invasion

in presence of EGF (Fig. 5D and 5F). Thus, DNp63a upregulates

14-3-3s in pancreatic cancer cells which then contributes to

DNp63a-mediated anchorage-independent growth and invasion.

DNp63a is a transcriptional activator of EGFR and
14-3-3s in pancreatic cancer
DNp63a is a regulator of the transcriptional activities of the p53

family member proteins. As such, DNp63a may inhibit transcrip-

tion via its dominant negative effect on p53 and TAp63c [27]. In

addition, the DN variant is able to trans-activate p53 target genes

via binding to p53 responsive elements within the corresponding

gene promoters. While TAp63c is a potent gene trans-activator

due to the absence of an auto-inhibitory domain [27], recent work

demonstrated that it has a very low ability to bind the p53

responsive element within the EGFR promoter, and in fact

represses promoter activity [28]. Since pancreatic cancer cell lines

expressed very low levels of the TAp63 isoform, and since we

found no correlation between DNp63a and TAp63c expression in

those cell lines (Fig. 1A), the dominant negative effect of DNp63a

Figure 2. Effect of DNp63a on anchorage-independent growth, motility, and invasion in pancreatic cancer cells. A, T3M4 cells were
infected with GFP-expressing virus, or p63-specific shRNA complementary to DBD, TA and a-specific domains of p63. Whole-cell protein lysates were
subjected to immunoblotting (top panel). Total RNA was isolated, reverse-transcribed and subjected to real-time PCR with probes specific for DN and
TA isoforms of p63. Results were normalized to 18S levels (bottom panel). Knockdown of p63 isoforms was routinely monitored during the
subsequent experiments. B, DNp63a stimulates anchorage-independent growth of PANC-1 cells in soft agar assay (left and bottom panels) and cell
proliferation in MTT assay (right panel). PANC-1 cells were transiently transfected with DNp63a-expressing vector, TAp63a or control vector. Cell were
plated in soft agar at a density of 1500/well of a 12-well plate, four wells per sample. Colonies were counted after 14 days of incubation. For MTT
assay cells were plated in 96-well plates, six wells per sample. MTT was added after incubation for 48 h. Data are the mean 6 SE of four independent
experiments. *, p,0.001 compared with control. C, Downregulation of DNp63a slows proliferation of T3M4 cells in a clonogenic assay. Reconstitution
of DNp63a partially restores the proliferative ability. Cells were plated on 6 well plates at a density of 500 cells/well. 14 days later, plates were fixed in
3:1 methanol:glacial acetic acid and stained with 2% crystal violet. Data are the mean 6 SE of three independent experiments done in triplicates.
*, p,0.01 compared with control (sh ctrl). D–F, Effect of p63 on cell motility measured in wound-healing assays in PANC-1 (D) and T3M4 cells (E, F).
Cells were incubated in serum-free (SF) conditions in the absence or presence of 1 nM EGF for 18 h after making a scratch. Quantitative analysis of
the images was performed. Ectopic expression of mouse DNp63a in sh p63a T3M4 cells resulted in a partial restoration of cell motility (F);
corresponding DNp63a protein levels shown below. Data are the m 6 SE of at least three independent experiments. Representative pictures shown
(magnification640). *, p,0.001 compared with control (sh ctrl). G and H, Effect of DNp63a on the invasion in Matrigel chambers. PANC-1 (G) or T3M4
(H) cells were plated in Matrigel chambers (56104/ml) and incubated in absence (SF) or presence of 1 nM EGF for 18 hours. Effect was normalized to
invasion of control in SF conditions. *, p,0.001 compared with control (sh ctrl).
doi:10.1371/journal.pone.0026815.g002
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was an unlikely explanation of the changes in EGFR and 14-3-3s
expression. Both EGFR and 14-3-3s promoters contain well-

conserved p53 binding sites, suggesting they are transcriptional

targets of DNp63a in PDAC. The 14-3-3s promoter is known to

be unmethylated in pancreatic cancer cell lines [29].

DNp63a requires an intact DNA-binding domain for its

transcriptional activity [18]. We generated a mutant vector

where we introduced a missense mutation into human DNp63a

cDNA sequence resulting in a single amino acid substitution at

position 202 (DNp63aDBDmut; Fig.S3). Enforced expression of

DNp63aDBDmut in PANC-1 cells resulted in a detectable DNp63a
protein, but failed to upregulate 14-3-3s (Fig. 6A) indicating that

the ability of DNp63a to upregulate 14-3-3s is dependent upon its

ability to bind to DNA.

We tested if DNp63a was able to activate EGFR promoter in an

in vitro luciferase assay. The details of the p53 binding sites within

Figure 3. DNp63a upregulates EGFR expression and signaling in pancreatic cancer cells. A, Ectopic expression of DNp63a results in
increased expression of EGFR and b1-integrin in PANC-1 cells. After cells were incubated for 48 hours, total protein lysates were subjected to
immunoblotting. A representative image of three independent experiments is shown. B, Downregulation of DNp63a in T3M4 cells results in
decreased expression of EGFR and b1-integrin. A representative image of three independent experiments is shown. C, PANC-1DN and PANC-1 control
cells were stimulated with EGF during indicated time periods. Protein lysates were subjected to immunoblotting. A representative image of three
independent experiments is shown.
doi:10.1371/journal.pone.0026815.g003
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Figure 4. DNp63a contributes to chemoresistance in pancreatic cancer cells. A, Effect of cisplatin on DNp63a in PDAC. Cells were incubated
with 10 mg/mL cisplatin for the initial 6 or full 24 hours. Apoptosis was assessed by monitoring PARP cleavage. B–D, Effect of DNp63a on cisplatin-
induced apoptosis in PANC-1 (B, C) and T3M4 cells (D). Cells were incubated with 5 mg/mL of cisplatin during indicated time periods. Cells were
pelleted after 24 h of incubation, proteins isolated and run on SDS-PAGE gel. Apoptosis was assessed by monitoring PARP and caspase-3 cleavage. A
representative image of at least three independent experiments is shown. PANC-1 cells were incubated with 10 mg/mL of cisplatin for the first
12 hours or full 48 hours. MTT assay was done as described in materials and methods. Data are the mean 6 SE of three independent experiments.
doi:10.1371/journal.pone.0026815.g004
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the EGFR promoter and the corresponding luciferase vector were

published previously [10]. Ectopic expression of DNp63a resulted

in a dramatic increase of the activity of EGFR reporter plasmid in

PANC-1 cells (Fig. 6B). The effect of DNp63a significantly

exceeded that of wild-type p53 and TAp63a. Next, we introduced

a single nucleotide mutation within the p53 BS 1 of the EGFR

promoter. Specifically, cytosine was replaced with thymidine at

position 2241 (EGFRC(2241)T). As a further confirmation of our

findings, co-transfection of a mutant EGFR reporter plasmid with

wild-type DNp63a, or wild-type EGFR reporter plasmid and

mutant DNp63aDBDmut resulted in attenuated luciferase activity

(Fig. 6B). Consistent with this observation, ectopic expression of

Figure 5. DNp63a upregulates 14-3-3s in pancreatic cancer cells. A, ASPC-1 and PANC-1 cells were infected with adenovirus containing either
empty vector or full length DNp63a, and whole cell protein lysate was prepared 48 hours after infection and probed with anti-DNp63a and 14-3-3s
and other 14-3-3 isoforms. B, Overexpression of 14-3-3s had no effect on DNp63a levels. PANC-1 cells were transfected with an empty vector (Sham)
or with the full-length human 14-3-3s cDNA that was tagged with HA. C, Silencing 14-3-3s does not affect DNp63a. T3M4 cells were infected with
lentivirus containing control or 14-3-3s specific shRNAs (sh 14-3-3s 1 and 2), whole cell lysates were prepared 72 hrs post infection and probed for
DNp63a and 14-3-3s. D–F. 14-3-3s is required for the oncogenic effects of DNp63a in PDAC. PANC-1 cells were infected with control sh RNA or sh 14-
3-3s 2. Subsequent to that, cells were transiently transfected with DNp63a-expressing vector or vector control. D, Anchorage-independent growth.
Cells were incubated in soft agar as described in the methods. Data are the mean 6 SE of three independent experiments. E, Cells (56104/well) were
subjected to a migration assay in Transwell chambers in the presence of EGF (1 nmol/L) for 18 hours in duplicates. Data are the mean 6 SE of three
independent experiments. F, Cells were subjected to invasion in Matrigel chambers in the presence of EGF (1 nmol/L) for 20 h in duplicates. Data are
the mean 6 SE of three independent experiments.
doi:10.1371/journal.pone.0026815.g005
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Figure 6. DNp63a is a transcriptional activator of EGFR and 14-3-3s in pancreatic cancer cells. A, DNp63aDBDmut does not upregulate 14-
3-3s. B and C, DNp63a upregulates EGFR and 14-3-3s promoter in a luciferase assay. PANC-1 cells were transfected with wildtype EGFR, mutant EGFR
or 14-3-3s promoter luciferase construct as indicated, along with pCMVb plasmid, with or without wildtype p53, DNp63a, DNp63aDBDmut, or TAp63a.
At 48–72 h after transfection, the luciferase activity was determined. The transfection efficiency was standardized against b-galactosidase activity.
Results are indicative of four independent experiments. *, p,0.0001. D, p63 binds EGFR and 14-3-3s promoters in T3M4 cells. Binding is decreased
upon serum-starvation. T3M4 cells were grown in medium containing 10% FBS (rapidly growing cells) or in serum-free medium (predominantly
resting cells). Cells were pelleted and ChIP was performed as described in materials and methods. Uncrosslinked protein lysate, protein lysate
immunoprecipitated with an irrelevant antibody, and a protein lysate immunoprecipitated with p63 antibody, but where irrelevant DNA sequences
located ,3000 bp downstream of the 14-3-3s or EGFR promoter regions were amplified served as negative controls (the latter not shown).
doi:10.1371/journal.pone.0026815.g006
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DNp63a resulted in a significant increase of the 14-3-3s reporter

plasmid activity in PANC-1 cells, which was attenuated when a

DNp63aDBDmut expression vector was co-transfected in place of

wild type DNp63a (Fig. 6C).

Next, we tested whether DNp63a is capable of binding EGFR

and 14-3-3s promoters at their corresponding p53 binding sites.

Our ChIP experiments revealed that DNp63a exhibited significant

binding to p53 binding sites in the endogenous EGFR and 14-3-

3s promoters in T3M4 cells (Fig. 6D). Chromatin binding

depended on the growth phase of T3M4 cells as serum starva-

tion resulted in a significant decrease in promoter occupancy

by DNp63a (Fig. 6D), while DNp63a protein expression was

unchanged (data not shown).

We next sought to determine whether the ability of DNp63a to

trans-activate EGFR and 14-3-3s promoters was unique to

pancreatic cancer. We studied HEK293 cells, a transformed non-

malignant cell line, and H1299 cells, a non-small cell lung cancer

cell line [30]. Similar to our pancreatic cancer cells, H1299 cells

carry a mutant p53. While DNp63a is known to be expressed in

non-small cell lung cancer [31], H1299 cells predominantly

express the TAp63 variant [30].

Both HEK293 and H1299 cells expressed lower levels of p63

and 14-3-3s compared to T3M4 pancreatic cancer cells (Fig. 7A).

Engineered expression of DNp63a in these cells did not lead to an

increase in either EGFR or 14-3-3s protein levels (Fig. 7A).

Similarly, DNp63a did not activate the EGFR promoter in either

cell line in an in vitro luciferase reporter assay (Fig. 7B, left panels).

By contrast, DNp63a transactivated the 14-3-3s promoter in

H1299 cells, albeit to a lesser degree than in pancreatic cancer

cells (Fig. 7B, top right panel). In HEK293 cells, DNp63a
repressed the 14-3-3s promoter, similar to what was previously

reported in human keratinocytes [25], whereas in H1299 cells

enforced expression of DNp63a led to an increase in 14-3-3s
mRNA transcript levels (Fig. 7C).

DNp63 has been shown to enhance proliferative capacity in

normal and malignant cells of epithelial origin [32–34]. While

DNp63a stimulated anchorage-independent growth, invasion and

migration of pancreatic cancer cells and sensitized them to EGF,

such effects were not observed in H1299 cells (Fig. 7D).

Collectively, these data indicate that DNp63a binds and trans-

activates the EGFR and 14-3-3s promoters in pancreatic cancer

cells and that these actions of DNp63a do not necessarily occur in

other cell types.

Discussion

Genetic defects which result in inactivation of tumor suppres-

sion genes and accumulation of oncogenic alleles promote

development and progression of PDAC. p53 is a prototypic tumor

suppressor that is vital in cell growth control. However, normal

p53 function is commonly lost in PDAC. p53 homolog p63

possesses an N-terminal trans-activation domain (TA), a DNA-

binding domain (DBD) and a C-terminal oligomerization domain

(OD). Studies in knockout mice demonstrated that despite

structural similarity with p53, p63 has distinct functional pro-

perties [35]. Moreover, variability of expression of six known p63

isoforms among normal and malignant tissues suggests that the

functional role of p63 is dependent on the cellular context. TAp63

isoforms may carry an anti-oncogenic potential as they mediate

Ras-induced cellular senescence, antagonize tumorigenesis in vivo

and suppress development of metastases through regulation of

microRNA network [36,37]. The role of DNp63 in cancer is less

clear. Recent studies have indicated that DNp63a is necessary and

sufficient to by-pass oncogene-induced senescence suggesting that

it plays a critical role in the very early steps of cancer initiation

[38]. Overexpression of DNp63 is found in cancers of epithelial

origin (lung, head and neck), where it promotes tumor survival [7].

DNp63 has been shown to enhance the proliferative capacity of

both epithelial stem cells and cancer cells, and loss of p63 reduced

the proliferative rate of MCF-7 breast cancer cells [32,33].

However, the role of p63 in PDAC is not known. Here we report

that DNp63a is the predominantly expressed p63 isoform in

pancreatic cancer cell lines. We demonstrate that ectopic

expression of DNp63a in PANC-1 cells, which have low p63

mRNA transcript and protein levels, resulted in enhancement of

anchorage-independent growth, cell motility and invasion. Con-

versely, shRNA-mediated suppression of DNp63a in T3M4 cells

resulted in the opposite effect, i.e. decreased proliferation, pro-

migratory and pro-invasive responses. In earlier reports, down-

regulation of endogenous p63 led to enhanced apoptosis in head

and neck squamous cell cancer cell lines irrespective of the p53

gene status [7]. By contrast, exogenous DNp63a induced cell cycle

arrest and apoptosis in p53-null non-small cell lung cancer cells

[39]. In our studies, neither engineered expression of DNp63a, nor

downregulation of endogenous DNp63a induced apoptosis in p53-

mutant pancreatic cancer cells (data not shown). While migration

and invasion are both paramount to embryonic development and

wound healing in normal tissues, in cancer those processes are

involved in local tumor invasion and metastasis. Hence, these data

underscore the importance of DNp63a in tumor progression in

PDAC.

Tyrosine kinase and serine/threonine kinase pathways regulate

multiple cellular processes and are major effectors in PDAC

development [40]. EGFR is a 170 kDa transmembrane glycopro-

tein of the ErbB family of tyrosine kinase growth factor receptors.

EGFR activates Ras/Raf/MAPK-ERK and PI-3 kinase/Akt

pathways leading to increased cell proliferation, reduced apoptosis,

increased angiogenesis, enhanced motility, invasion and metas-

tasis [41]. EGFR signaling blockade via a dominant negative

mechanism leads to reduction in mitogenic activity in pancreatic

cancer cells through decreased activation of MAPK pathway [42].

In our experiments, DNp63a enhanced EGF-mediated motogenic

effects and potentiated EGFR signaling as evidenced by enhanced

phosphorylation of ERK and Akt and increased activation of JNK

in PANC-1DN cells. We and others previously reported that EGF

is capable of promoting cancer cell growth through JNK activation

[42,43]. Suppression of DNp63a in T3M4 cells resulted in a

remarkable attenuation of EGF-mediated invasion. Collectively,

these observations suggest that PDAC requires DNp63a to fulfill

its pro-invasive potential in response to EGF stimulation.

Clinical trials of EGFR-targeting agents reported modest effects

on patient survival in PDAC [44,45]. The therapeutic efficacy of

these agents could be improved if regulation of EGFR signaling

was better understood. Here we provide evidence of a functional

interplay between DNp63a and EGFR in pancreatic cancer.

Ectopic expression of DNp63a, but not TAp63a, resulted in

increased EGFR protein levels in PANC-1 cells. Conversely,

downregulation of DNp63a in T3M4 cells led to a decreased

expression of EGFR. It was initially felt that whereas TAp63 is a

strong gene trans-activator, DNp63 functions as a dominant

negative isoform [27]. However, recent findings point out that

DNp63 is able to trans-activate p53 target genes as well as distinct

targets [46,47]. TAp63c has been reported to repress EGFR

promoter activity in H1299 lung cancer cells [28]. However, we

determined that DNp63a is a transcriptional activator of EGFR in

pancreatic cancer cells, but not in HEK293 or H1299 cells.

Moreover, compared to p53, DNp63a was a strong trans-activator

of EGFR in a functional reporter assay, and ChIP experiments
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Figure 7. A distinct role of DNp63a in HEK293 and H1299 cells. A, DNp63a does not affect EGFR or 14-3-3s protein levels in HEK293 or H1299
cells. Representative blot of three independent experiments is shown. B, DNp63a fails to upregulate EGFR promoter but modulates 14-3-3s promoter
in a luciferase reporter assay. Cells were transfected with wildtype EGFR or 14-3-3s promoter luciferase construct as indicated, along with pCMVb
plasmid, with or without wildtype p53, DNp63a, DNp63aDBDmut, or TAp63a. At 48–72 h after transfection, the luciferase activity was determined. The
transfection efficiency was standardized against b-galactosidase activity. Results are indicative of three independent experiments performed in
duplicates. C, DNp63a increases 14-3-3s mRNA transcript levels in H1299 cells. H1299 cells were transfected with DNp63a, DNp63aDBDmut or vector
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confirmed that DNp63a binds the EGFR promoter at the p53-

binding site. By contrast, TAp63a was a weak transcriptional

activator of EGFR in a functional reporter assay. However,

downregulation of TAp63 isoforms also decreased EGFR

expression in T3M4 cells, suggesting that in those cells TAp63

isoforms could still be contributing to EGFR expression.

PDAC is notoriously resistant to conventional chemotherapy

agents. This is partly explained by frequent inactivation of p53 in

pancreatic tumors and thus unresponsiveness to genotoxic

stress. Here we demonstrate that DNp63a further contributes to

chemotherapy resistance in PDAC. While overexpression of

DNp63a in PANC-1 cells resulted in a marginal increase in

apoptotic death upon exposure to cisplatin, its downregulation in

T3M4 cells led to a markedly increased sensitivity of those cells

to cisplatin-induced apoptosis. Similar to our observations in

pancreatic cancer cells, cisplatin induces proteosomal degradation

of DNp63a in other cell types [24]. Additional mechanisms that

contribute to cisplatin resistance in pancreatic cancer include

overexpression of cyclin D1 [48] and multidrug resistance-

associated proteins [49]. Moreover, DNp63a itself may promote

chemoresistance through several mechanisms. For example, it can

have a dominant negative effect on the proapoptotic partners

within the p53 family, as suggested by earlier experiments

performed in head and neck and breast cancer [6]. Although

DNp63a contributed to chemoresistance through regulation of

Akt1 expression in ovarian and head and neck cancer [50], we did

not observe such effect in pancreatic cancer cells (Fig. 3A).

However, we highlight a new potential mechanism of DNp63a-

mediated chemoresistance in PDAC. In our earlier experiments,

14-3-3s dramatically increased chemoresistance and enhanced

the pro-invasive potential of pancreatic cancer cells [11]. Here we

demonstrate that expression of 14-3-3s protein correlates with

DNp63a levels in those cells. While others have identified 14-3-3s
as a DNp63 repression target in human embryonic keratinocytes

[25], we established that DNp63a activates the 14-3-3s promoter

and upregulates 14-3-3s protein expression in pancreatic cancer

cells (and in H1299 lung cancer cells), thus decreasing sensitivity of

pancreatic cancer cells to cisplatin-induced apoptosis. This

discrepancy provides additional evidence that DNp63a actions

are tissue-specific, and its function in cancer is distinct from its role

in embryonic cells. We also found that 14-3-3s promoter binding

by DNp63 was more pronounced in rapidly cycling as compared

with resting T3M4 cells. This suggests that at least some DNp63a
target sites may be poorly accessible in quiescent cells and

require chromatin remodeling to occur prior to binding, further

implicating cellular context in modulation of p63 function.

In our immunoprecipitation experiments we found no interac-

tion between p63 and 14-3-3s proteins (data not shown), however

14-3-3s contributed to the mitogenic and motogenic effects of

DNp63a in PDAC. Lentiviral knockdown of 14-3-3s resulted in a

dramatic attenuation of the effects of DNp63a on anchorage-

independent growth and EGF-stimulated invasion of PANC-1

cells. Silencing of 14-3-3s had no consequences on the effects of

DNp63a on cell motility, leading to the conclusion that DNp63a
affects migration through potentiation of the other signaling

pathways, i.e. EGFR and integrins.

p63 controls the adhesion program in MCF-10A mammary

epithelial tissues through transcriptional regulation of integrins

[15]. A number of integrin subunits have been shown to be

upregulated in PDAC [51]. We demonstrate that DNp63a modulates

expression of b1-integrins, which are involved in regulation of cell

adhesion and migration of tumor on stroma proteins, thus further

implicating DNp63a in pancreatic carcinogenesis. Importantly,

integrin and EGFR pathways are closely intertwined and orchestrate

cancer growth and invasion. Integrin-mediated adhesion of cells to

extracellular matrix induces EGFR activation in a ligand-indepen-

dent manner, while EGFR regulates integrin signaling and is

necessary for adhesion-induced activation of ERK and other

signaling molecules [52]. Cross-talk between integrins and EGFR

family members affects multiple aspects of tumor progression,

including proliferation, migration and invasion [53]. For example,

blockade of integrin avb5 reverses the EGF-stimulated invasion and

metastasis in pancreatic cancer cells [54]. On the other hand,

overexpression of b1-integrin has been shown to correlate with

acquired resistance to EGFR inhibitors in lung cancer [55]. The

unique ability of DNp63a to regulate both EGFR and b1-integrin in

PDAC renders it a particularly promising therapeutic target.

In conclusion, DNp63a is the predominantly expressed p63

variant in PDAC cell lines with oncogenic properties. In PANC-1

and T3M4 cells DNp63a enhanced anchorage independent

growth, cell proliferation, and basal and EGF-stimulated motility

and invasion and conferred chemoresistance. The oncogenic

effects of DNp63a were mediated via transcriptional activation of

EGFR and 14-3-3s. Our observations indicate that targeting

DNp63a and 14-3-3s may present a strategy to potentiate the

efficacy of EGFR-targeting therapies in PDAC.

Supporting Information

Table S1 p63 primer sequence and expected size of
PCR products.

(DOC)

Figure S1 Genomic structure of human p63 and location
of primers and sh RNA complementary sites. Genomic

structure of human p63 on chromosome 3 and schematic

representation of the six variants of p63. TA – trans-activation

domain, DBD – DNA-binding domain, OD – oligomerization

domain, SAM – sterile alpha motif, TID – transactivational

inhibitory domain.

(TIF)

Figure S2 Erlotinib attenuates DNp63a-mediated en-
hancement of migration, invasion and anchorage-inde-
pendent growth in PANC-1 cells. A, Erlotinib attenuates

DNp63a-mediated anchorage-independent growth of PANC-1

cells in soft agar assay. Soft agar assay was performed as described

previously in presence of 1 mM erlotinib or vehicle control. B,

PANC-1 cells (56104/well) were subjected to a migration assay in

Transwell chambers in presence of EGF (1 nmol/L) as described

above, with or without 1 mM erlotinib. C, PANC-1 cells (16104/

well) were subjected to invasion assay in Matrigel chambers in

presence of EGF (1 nmol/L) as described above, with or without

1 mM erlotinib. *, p,0.05 compared with control.

(TIF)

Figure S3 DNp63aDBDmut cDNA-expressing vector. Par-
tial sequence of the DNp63a cDNA shown (nucleotides

control. At 36 hours total RNA was isolated, reverse-transcribed and subjected to real-time PCR with probe specific for 14-3-3s. Results were
normalized to 18S levels. Data are the mean of two independent experiments done in duplicates in which similar results were obtained. D, DNp63a
does not enhance anchorage-independent growth, migration or invasion in H1299 cells. H1299 cells were transfected with DNp63a or vector control.
Soft agar, transwell migration and invasion assays were performed as described above. *, p,0.05 compared with control.
doi:10.1371/journal.pone.0026815.g007
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601 to 612, within DBD). Substituted nucleotide is shown in

capital.

(TIF)
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