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Abstract

Photosynthetic reaction centers from Blastochloris viridis possess Tyr-L162 located mid-way between the special pair
chlorophyll (P) and the heme (heme3). While mutation of the tyrosine does not affect the kinetics of electron transfer from
heme3 to P, recent time-resolved Laue diffraction studies reported displacement of Tyr-L162 in response to the formation of
the photo-oxidized P+N, implying a possible tyrosine deprotonation event. pKa values for Tyr-L162 were calculated using the
corresponding crystal structures. Movement of deprotonated Tyr-L162 toward Thr-M185 was observed in P+N formation. It
was associated with rearrangement of the H-bond network that proceeds to P via Thr-M185 and His-L168.
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Introduction

In biological systems, tyrosine residues often play an important

role in functioning as a redox active group and mediating electron

transfer. In photosystem II (PSII), electronic excitation of the

chlorophyll a P680 PD1/D2 pair leads to formation of positively

charged P680+N as a consequence of electron transfer to the

secondary quinone via the accessory chlorophyll a, a pheophytin a,

and the primary quinone. The resulting P680+N is reduced by D1-

Tyr161 (YZ) through electron transfer events from the Mn4CaO5

cluster [1]. The PSII reaction center that consists of D1 and D2

subunits has considerably large structural similarity with photo-

synthetic reaction centers from purple bacteria (bRC) [2]. In bRC

from Blastochloris viridis, the corresponding chlorophyll pair is the

bacteriochlorophyll b (BChlb) PL/M pair P960 (P). The photo-

oxidized P+N state that is generated as a consequence of electronic

excitation of P960 can be reduced by electron transfer from the

nearest heme group (heme3) in the adjacent tetraheme subunit.

The role of a highly conserved residue, Tyr-L162, has been long

discussed [3,4] due to its unique position halfway between heme3

and P (Figure 1). Nevertheless, in kinetic studies, the electron

transfer rate from heme3 to P was not altered significantly in the

Tyr-L162 mutations. Thus, it was concluded that neither tyrosine

nor aromaticity is required for fast electron transfer from heme3 to

P [5,6]. Hence, functionally dominant electron transfer pathways

may not proceed via Tyr-L162.

On the other hand, displacement of Tyr-L162 by 1.3 Å toward P+N

was very recently reported in the light-exposed crystal structure (light

structure) with respect to the dark-state structure (dark structure) in

time-resolved Laue diffraction analysis. Wöhri et al. interpreted that

negatively charged and deprotonated Tyr-L162 was attracted to the

P+N positive charge [7]. Furthermore, they proposed that Tyr-L162

deprotonation may be important for the mechanism of electron

transfer from heme3 to P via stabilization of heme3 in the oxidized

state. A simple free energy calculation on the basis of molecular

dynamics simulation is useful as an initial survey to roughly estimate

the energetics of the tyrosine deprotonation. However, the energy

profile is generally calculated in the fixed protonation pattern of the

protein titratable residues. In particular, bRC possesses a number of

titratable residues that can alter the protonation states in response to

changes in redox states or protonation states of the cofactors or

residues [8,9,10,11,12]. Apparently, the pKa value of Tyr-L162

(pKa(Tyr-L162)) is neither experimentally measured nor explicitly

calculated in Ref. [7], without considering the equilibrium in the

strongly coupled protonation states of titeatable residues in the bRC

protein environment.

Although there are crystal structures of bRC from Blastochloris

viridis at higher resolutions, so far only the crystal structure by

Wöhri et al. [7] was proposed to correspond to the photoactivated

form. Notably, in their original structural studies [7], they

discussed subtle differences in the orientation of the tyrosine side

chain between the photoactivated form (PDB; 2X5V) and the dark

form (PDB 2X5U), irrespective of the resolutions at ,3 Å. Thus, it

is a request from the community, at least once to evaluate i)

pKa(Tyr-L162) in the original protein geometry of the photoac-

tivated form and ii) what residues/groups contribute to downshift

pKa(Tyr-L162). As a driving force of the tyrosine deprotonation,

the P+N state formation is definitely a key factor. However, there

are also other titratable residues in the neighborhood of P. It is

unclear whether protonation state changes of other titratable

residues may occur in response to the P+N formation, or whether

deprotonation of other titratable residues compensate for the

influence of P+N on pKa(Tyr-L162).

To evaluate the energetics of Tyr-L162 deprotonation in the P+N

state formation, pKa(Tyr-L162) were calculated using the corre-

sponding protein crystal structures, by solving the linear Poisson-

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e26808



Boltzmann equation with consideration of the protonation states of

all titratable sites in the entire bRC protein. Using this approach,

one will be able to sufficiently consider the equilibrium in

protonation states of all titratable groups in bRC [9,11] and

clarify the factors (e.g., residues, cofactors, atomic charges, or

hydrophobicity of the protein environment) that shift pKa(Tyr-

L162) in the protein environment.

Results and Discussion

Movement of deprotonated tyrosine
To investigate the possible presence of deprotonated tyrosine,

Tyr-L162 was treated in its deprotonated form, and its geometry

was energetically optimized with CHARMM in the P+N state. As a

consequence, deprotonated Tyr-L162 moved further toward Thr-

M185 (Figure 2): the H-bond distance between Tyr-L162 and

Thr-M185 (OTyr-L162-OThr-M185) was 2.7 Å in the resulting

geometry with deprotonated Tyr-L162 (Ydeprot position), which

was 0.6 Å shorter than that in the light structure (Ylight position).

Although the resulting Ydeprot position was not exactly identical to

the Ylight position, this result implies that Tyr-L162 deprotonation

leads to tyrosine movement from the one in the dark structure

(Ydark position) to the Ylight position. Interestingly, the OTyr-L162-

OThr-M185 distance obtained with deprotonated Tyr-L162 is 2.7 Å

(in the Ydeprot structure).

Tyr-L162 deprotonation induces H-bond network
rearrangements

In addition to Tyr-L162 movement, a striking rearrangement in

the H-bond network containing P and Tyr-L162 was observed in

the transition from the initial uncharged P0 and protonated Tyr-

L162 state (P0 Y) to the photo-oxidized P+N and deprotonated Tyr-

L162 state (P+N Y2). In the P0 Ydark state (Figure 3, left), the

hydroxyl H atom of Tyr-L162 can be oriented toward the

hydroxyl O atom of Thr-M185 (OTyr-L162-OThr-M185 distan-

ce = 4.4 Å). The hydroxyl H atom of Thr-M185, in turn, is

oriented to the Nd site of His-L168 (OThr-M185–NHis-L168

distance = 4.3 Å), forming the O-HTyr-L162 NNN O-HThr-M185

NNN NHis-L168 network over Tyr-L162, Thr-M185, and His-L168.

In contrast to the P0 Ydark state, orientation of the H-bond

network is completely different in the P+N Ydeprot
2 state, since the

hydroxyl OH group of Thr-M185 is subject to forming an H-bond

with the deprotonated Tyr-L162 (OTyr-L162-OThr-M185 distan-

ce = 2.7 Å) to stabilize the negative charge (Figure 3, right). The

absence of the hydroxyl H atom near His-L168 promotes

protonation of the His-L168 Nd site (Table 1). In accordance

with reorientation of the Thr-M185 hydroxyl group, H atoms of a

water molecule at an H-bonding distance with Tyr-L162 were also

reoriented toward the deprotonated Tyr-L162. As a consequence,

the OH dipole orientations were altered, forming the OTyr-L162

NNN H-OThr-M185 NNN H-NHis-L168 network (Figure 3, right).

pKa (Tyr-L162) value shift from the P0 Ydark to the P+N

Ydeprot
2 state

pKa (Tyr-L162) was calculated to be 22 in the P0 Ydark state

(Table 1), indicating that this residue will never be deprotonated in

the dark structure. The significantly high pKa(Tyr-L162) value of

22, which is even higher than that in aqueous solution (,10), is

mainly due to the presence of acidic residues in the bRC that

upshift pKa(Tyr-L162), e.g., Asp-M182, Glu-C254, Asp-L155, and

Glu-M171 (Table 2). The presence of these negatively charged

acidic residues upshifts pKa (Tyr-L162) and thus does not

energetically allow deprotonated Tyr-L162 formation.

In contrast to the P0 Ydark state, P+N Y2 state formation leads to

a drastic decrease in pKa (Tyr-L162). In particular, the P+N Ydeprot
2

state possesses the deprotonated Tyr-L162 since pKa (Tyr-

L162) = 6.7 (Table 1. Two major factors contribute to decreased

pKa (Tyr-L162):

i. H-bond pattern change. The most crucial groups that

decrease pKa (Tyr-L162) are Thr-M185 and a water molecule.

They alter the H-bond pattern with respect to Tyr-L162 in

response to the P+N Ydeprot
2 state formation (Figure 3). As a

consequence, H-bond alternation in Thr-M185 and a water

molecule decrease pKa (Tyr-L162) by 8 and 4 in the P+N Ydeprot
2

state (relative to the P0 Ydark state), respectively (Table 3).

ii. Direct electrostatic influence of a positive charge in the

photo-oxidized P+N state. The positive charge on P+N

Figure 2. Variation of the Tyr-L162 side chain positions in the
1) Ydeprot, 2) Ylight, and 3) Ydark conformers. The OThr-M185–OTyr-L162

distances are 2.5 Å (Ydeprot), 3.3 Å (Ylight), and 4.4 Å (Ydark). Note that the
OSer-M188–OTyr-L162 distances are 5.3 Å (Ydeprot), 5.7 Å (Ylight), and 6.8 Å
(Ydark).
doi:10.1371/journal.pone.0026808.g002

Figure 1. Special pair chlorophylls P960 and P680 and the
electron donors heme3.
doi:10.1371/journal.pone.0026808.g001
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contributes to stabilization of the deprotonated Tyr-L162 form,

downshifting pKa (Tyr-L162) by 4.2 (2.7 from PA and 1.5 from PB)

in the P+N Ydeprot
2 state (Table 3). The influence of P+N on pKa(Tyr-

L162) did not essentially differ in the Ydark, Ylight, and Ydeprot

positions (Table 3).

Concluding Remarks
Deprotonation of Tyr-L162 resulted in the displacement of the

side chain, lowering the pKa value to 6.7. Movement of

deprotonated Tyr-L162 toward Thr-M185 was observed in P+N

formation. It was associated with rearrangement of the H-bond

network that proceeds to P via Thr-M185 and His-L168.

Materials and Methods

Atomic coordinates and charges
For performing computations of bRC from Blastochloris viridis,

crystal structures in the photoactivated form (protein data bank

(PDB); 2X5V) [7] were used. A crystal structure corresponding to

the dark state is available (PDB 2X5U), but this crystal structure

does not contain water molecules that can be seen in the

photoactivated crystal structure. Furthermore, the conformer

labeled with A in the photoactivated crystal structure is essentially

identical to the dark state crystal structure in terms of the Tyr-

L162 position while the conformer labeled with B in the

photoactivated crystal structure is considered to correspond to

the photoactivated state. Thus, in the present study, atomic

coordinates for the A and B conformers (PDB 2X5V) were used as

the dark and light structures, respectively.

The atomic coordinates were obtained using the same

procedures used in previous studies (e.g., Refs. [11,13,14]). The

positions of H atoms were energetically optimized with

CHARMM [15] by using the CHARMM22 force field. While

carrying out this procedure, the positions of all non-H atoms were

fixed, and the standard charge states of all the titratable groups

were maintained, i.e., basic and acidic groups were considered to

be protonated and deprotonated, respectively. All of the other

atoms whose coordinates were available in the crystal structure

were not geometrically optimized. To investigate a possible

movement of deprotonated Tyr-L162 (i.e., to yield the Ydeprot

position, see the later part), atomic coordinates for the minimum

set of relevant residues, i.e., Tyr-L162, Thr-M185, and a water

molecule (HOH M 2001 in PDB: 2X5V) were released and

geometrically optimized (Table S1 for atomic coordinates). As a

general and uniform strategy, other crystal waters are removed in

our computations [16] because of the lack of experimental

information for hydrogen atom positions. Cavities resulting after

removal of crystal water are uniformly filled with solvent dielectric

of e = 80.

Figure 3. Hydrogen bonding pattern in the dark P0 YdarkH state (left) and the photooxidized P+N Ydeprot
2 state (right). pKa values are

indicated in the bracket. Key hydrogen bonds are shown as dotted lines. For clarity, only one of the pair chlorophyll, PA is shown in the figure.
doi:10.1371/journal.pone.0026808.g003

Table 1. Calculated pKa (Tyr-L162, His-L168, and Glu-C254)
and redox potential (Tyr-L162) values in mV and pKa units,
respectively.

P0 YdarkH P+N Ydark
2 P+N Ylight

2 P+N Ydeprot
2

Tyr-L162 pKa(YH/Y2) 22.2 13.7 10.8 6.7

His-L168 pKa(Ne) 9.7 6.2 6.3 7.5

pKa(Nd) 4.3 7.7 7.7 7.8

doi:10.1371/journal.pone.0026808.t001

Table 2. Main residues that contribute to increase of pKa(Tyr-
L162) in pKa units (i.e., residues that stabilize the Tyr-L162
protonation state).

P0 YdarkH P+N Ydeprot
2

side.a b.b.b total side.a b.b.b total

Asp-M182 2.8 0.4 3.2 4.0 0.5 4.5

Glu-C254 2.3 20.2 2.1 1.9 20.1 1.8

Asp-L155 2.0 0.2 2.1 1.5 0.2 1.7

Asn-L158 1.3 0.4 1.7 1.1 0.5 1.6

Glu-M171 1.1 0.1 1.2 1.0 0.1 1.1

aSide chain.
bBackbone.
doi:10.1371/journal.pone.0026808.t002
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Atomic partial charges of the amino acids were adopted from

the all-atom CHARMM22 [15] parameter set. The charges of

protonated acidic oxygen atoms in Asp and Glu were both

increased symmetrically by +0.5 unit charges to account implicitly

for the presence of a proton. Similarly, instead of removing a

proton in the deprotonated state, the charges of all protons of the

basic groups of Arg and Lys were diminished symmetrically by a

total unit charge. For residues whose protonation states are not

available in the CHARMM22 parameter set, appropriate charges

were computed [17]. The atomic charges for the redox-active

tyrosine (Tyr-L162) were adopted from the previous applications

[16,18] (deprotonated with negative charge (Y2), and protonated

with neutral charge (YH)). The atomic charges of BChlb and

bacteriopheophytin b (BPheob) were determined from the

electronic wave functions obtained with the density functional

(DFT) module (B3LYP) in Gaussian03 [19] with 6-31G** basis set

by fitting the resulting electrostatic potential in the neighborhood

of these molecules by the RESP procedure [20] (Tables S2 and

S3). To represent the charge states of the light-induced oxidized

special pair P+N, a unit positive charge was distributed with a ratio

of PA
+N/PB

+N = 2/1 derived from ENDOR studies [21] as done in

the previous application [22].

pKa and protonation pattern
The present computation is based on the electrostatic

continuum model by solving the linear Poisson-Boltzmann (LPB)

equation with the MEAD program [23]. To facilitate a direct

comparison with previous computational results, identical com-

putational conditions and parameters were used (e.g., Refs.

[11,13,14]) such as atomic partial charges and dielectric constants.

The redox states of all other cofactors (i.e. accessory BChlb,

BPheob, and quinones) were kept in their neutral charge state.

Hemes in the cytochrome c subunit were kept in the reduced state.

The ensemble of the protonation patterns was sampled by the

Monte Carlo method with Karlsberg [24] (Rabenstein, B. Karlsberg

online manual, http://agknapp.chemie.fu-berlin.de/karlsberg/).

The dielectric constants were set to ep = 4 inside the protein and

ew = 80 for water. All computations were performed at 300 K,

pH 7.0, and an ionic strength of 100 mM. The LPB equation was

solved using a 3-step grid-focusing procedure at the resolutions

2.5 Å, 1.0 Å, and 0.3 Å. The Monte Carlo sampling for a redox

active group yielded the probabilities [Aox] and [Ared] of the two

redox states of the molecule A.

To obtain absolute pKa values of a target site (e.g. pKa(Tyr-

L162)), the electrostatic energy difference was calculated between

the two protonation states, protonated and deprotonated, in a

reference model system using a known experimentally measured

pKa value. The difference in the pKa value of the protein relative

to the reference system was added to the known reference

pKa value. Experimentally measured pKa values employed as

references are 12.0 for Arg, 4.0 for Asp, 9.5 for Cys, 4.4 for Glu,

10.4 for Lys, 9.6 for Tyr [25], and 7.0 and 6.6 for deprotonation/

protonation at Ne and Nd atoms of His, respectively [26,27,28].

All of the other titratable sites were fully equilibrated to the

protonation state of the target site during the titration. The

Monte Carlo sampling for a titratable residue yielded the

probabilities [protonated] and [deprotonated] of the two

protonation states of the molecule. The pKa value was evaluated

using the Henderson-Hasselbalch equation. A bias potential was

applied to obtain an equal amount of both protonation states

([protonated] = [deprotonated]), yielding the pKa value as the

resulting bias potential.

Error estimation
The procedures to compute pKa of titratable residues are

equivalent to those of the redox potential for redox-active groups,

although in the latter case, the Nernst equation is applied instead

of the Henderson-Hasselbalch equation [29]. Therefore, the

accuracy of the present pKa computations is directly comparable

to that obtained for recent computations [16]. From the analogy,

the numerical error of the pKa computation can be estimated to

be about 0.2 pH units. Systematic errors typically relate to

specific conformations that may differ from the given crystal

structures.

Supporting Information

Table S1 Energetically minimized atomic coordinates of Tyr-

L162 (Ydeprot), Thr-M185, and a water molecule.

(DOC)

Table S2 Atomic partial charge of BChlb.

(DOC)

Table 3. Main residues that contribute to decrease of pKa(Tyr-L162) in the P+N Y2 state formation in pKa units (i.e., residues that
promote the Tyr-L162 deprotonation).

P0 YdarkH P+N Ydark
2 P+N Ylight

2 P+N Ydeprot
2

side.a b.b.b total side.a b.b.b total side.a b.b.b total side.a b.b.b total

Thr-M185 0.9 0.0 0.9 21.8 0.0 21.8 23.5 20.4 23.9 26.4 20.6 27.1

His-L168 0.0 20.4 20.4 20.3 20.4 20.7 21.6 20.5 22.1 23.9 20.7 24.6

Water-M2001 0.2 21.5 23.1 23.8

PA 20.1 22.2 22.5 22.7

PB 0.1 21.4 21.6 21.5

Arg-C264 21.5 0.0 21.6 21.5 0.0 21.6 2.3 20.1 20.1 21.1 0.0 21.1

Ser-M188 20.9 20.6 21.4 20.9 20.6 21.5 20.8 20.6 21.6 20.6 20.5 21.1

Arg-L135 20.9 0.0 21.0 20.9 0.0 21.0 21.0 0.0 21.0 21.0 0.0 21.0

Arg-M190 21.0 20.2 21.2 21.0 20.2 21.2 20.9 20.2 21.1 20.8 20.2 21.0

aSide chain.
bBackbone.
doi:10.1371/journal.pone.0026808.t003
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Table S3 Atomic partial charge of BPheob.

(DOC)
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