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Abstract

Background: Suppressors of cytokine signalling (SOCS) protein family are key regulators of cellular responses to cytokines
and play an important role in the nervous system. The SOCS6 protein, a less extensively studied SOCS family member, has
been shown to induce insulin resistance in the retina and promote survival of the retinal neurons. But no reports are
available about the role of SOCS6 in neuritogenesis. In this study, we examined the role of SOCS6 in neurite outgrowth and
neuronal cell signalling.

Methodology/Principal Findings: The effect of SOCS6 in neural stem cells differentiation was studied in neural stem cells
and PC12 cell line. Highly elevated levels of SOCS6 were found upon neural cell differentiation both at the mRNA and
protein level. Furthermore, SOCS6 over-expression lead to increase in neurite outgrowth and degree of branching, whereas
SOCS6 knockdown with specific siRNAs, lead to a significant decrease in neurite initiation and extension. Insulin-like growth
factor-1 (IGF-1) stimulation which enhanced neurite outgrowth of neural cells resulted in further enhancement of SOCS6
expression. Jak/Stat (Janus Kinase/Signal Transducer And Activator Of Transcription) pathway was found to be involved in
the SOCS6 mediated neurite outgrowth. Bioinformatics study revealed presence of putative Stat binding sites in the SOCS6
promoter region. Transcription factors Stat5a and Stat5b were involved in SOCS6 gene upregulation leading to neuronal
differentiation. Following differentiation, SOCS6 was found to form a ternary complex with IGFR (Insulin Like Growth Factor-
1 Receptor) and JAK2 which acted in a negative feedback loop to inhibit pStat5 activation.

Conclusion/Significance: The current paradigm for the first time states that SOCS6, a SOCS family member, plays an
important role in the process of neuronal differentiation. These findings define a novel molecular mechanism for Jak2/Stat5
mediated SOCS6 signalling.
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Introduction

Nervous system function depends on the complex architecture

of neuronal networks and this complexity arises from the

morphological intricacy that neurons acquire during the course

of differentiation [1]. This process of differentiation is regulated by

a variety of signalling mechanisms, including growth factors,

cytokines, transcription factors and soluble as well as membrane-

bound receptors [2] Though several molecules involved in this

signalling are now known, how extracellular signals regulate

changes in the cytoskeletal arrangement are just beginning to be

elucidated. The ‘‘Suppressors of Cytokine Signalling’’ (SOCS)

proteins have been shown to be involved in this process of

neuronal differentiation [3,4].

The SOCS family consists of eight members, CIS (Cytokine

Inducible SH2-Containing Protein) and the SOCS 1–7 proteins

[5,6]. The SOCS members are localized in the cytoplasm, where

they interact with their target proteins [7,8]. It has been shown that

SOCS1, SOCS2 and SOCS3 are all expressed in the nervous system

throughout development [9]. SOCS1 regulates the interferon

gamma mediated sensory neuron survival [10]. SOCS2 is involved

in the neuronal differentiation by inhibiting the growth hormone

(GH) signalling and induces neurite-outgrowth by regulation of

epidermal growth factor receptor activation [3,11,12]. SOCS3 over-

expression inhibits astrogliogenesis and promotes maintenance of

neural stem cells (NSC) [13,14]. We have previously shown that

SOCS3 is activated by IGF-1 and is also involved in neuronal cell

survival and differentiation [15]. In vitro studies have implicated

insulin-like growth factor-1 (IGF-1) in neuronal differentiation [16].

Mice, carrying a null mutation in the IGF-1 gene display a decrease

in cortical thickness while the ventricular zone is enlarged, suggesting

that absence of IGF-1 leads to anomaly in the differentiation of stem

cells into neurons [17,18]. Likewise, transgenic mice overexpressing

IGF-1 show an enlarged cortex [19].
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The SOCS6 protein is a less extensively studied SOCS family

member. It has been shown to induce insulin resistance in the

retina and promote survival of the retinal neurons [20]. Though it

does not inhibit signalling via growth hormone, leukaemia

inhibitory factor, or prolactin, it is known to impair the Insulin

Receptor signalling and is involved in the proteasome mediated

degradation [21–28]. Out of all the SOCS family members,

SOCS6 has a unique addition of 300 amino acids to its N-terminal

region, but the role of this addition remains unclear. Thus the

SOCS6 protein might be expected to function differently than the

other SOCS members. In this study, we have described a novel

role of SOCS6 in neuronal differentiation. We have identified the

transcription factors that mediate SOCS6 upregulation in the

signalling pathway leading to neurite differentiation.

Materials and Methods

Ethics statement
Animal procedures were approved by the National Institute of

Immunology’s Institutional Animal Ethics Committee.

The Ethics Approval ID number is: IAEC 237/10.

Reagents and plasmids
IGF-1, IL-6 (Interleukin), TNF-a (Tumor Necrosis Factor-a),

mEGF (Murine Epidermal Growth Factor) and bFGF (Basic

Fibroblast Growth Factor) were purchased from PeprotechAsia/

Cytolab (New Jersey, USA) and PMSF, glutamine and penicillin-

streptomycin from Sigma-Aldrich (St. Louis, Missouri, USA).

Antibodies against Stat5, SOCS6, pY20 (phosphor-Tyrosine),

IGFR, Jak2 and GAPDH were from Santa Cruz Biotechnology

(Santa Cruz, California). Antibody against phospho-Stat5 was

from Cell Signalling technologies (Danver, MA). Anti-mouse-HRP

and anti-rabbit-HRP were from GE Healthcare (Buckingham-

shire, UK). Dulbecco’s modified Eagle’s medium (DMEM),

neurobasal media, trypsin-EDTA, B27 supplement, NGF, fetal

bovine serum, horse serum, Glutamax, antibiotics and antimycot-

ics agents were from Invitrogen (NY, USA). Protein G Separose

beads were procured from GE Healthcare (Buckinghamshire,

UK). Protease inhibitors were from Roche Molecular Systems

(Alameda, CA, USA). Inhibitors tyrphostin AG490 was from

Sigma-Aldrich (St. Louis, Missouri, USA). All other fine chemicals

were from Sigma-Aldrich (St. Louis, Missouri, USA). b-galacto-

sidase plasmid was generously provided by Dr S Sengupta, (NII,

India), and STAT5A-pRK5, STAT5B- pRK5 and their dominant

negatives aSTAT5A- pRK5 and aSTAT5B- pRK5 plasmids were

a gift from Dr. James Ihle (Howard Hughes Medical Institute,

Memphis, Tennessee).

Animals
Timed mated Sprague Dawley (Charles River, Sulzfeld,

Germany) rats were bred and culled as done previously [15].

Neocortical tissue was dissected from embryonic day 14–16 rat

brains and processed as before [15].

Cell cultures
The protocol for neurosphere culture followed was adapted

from a procedure described previously [29]. Neurospheres were

prepared from embryonic day 14–16 (E14–16) rat embryo cortex

and sub-ventricular zone (SVZ) of day 2 rat pups (P2). Cortices

were dissected in neural basal medium supplemented with B27,

glutamine, Glutamax, pen-strep and growth factors bFGF and

mEGF and the cells were seeded in T-25 flasks and were grown as

neurospheres at 37uC in a humidified atmosphere with 5% CO2

(Thermo Scientific) so as to obtain neurospheres.

For differentiation, neurospheres were mechanically dissociated

and plated on the poly-lysine coated plates without growth factors

and cultured for 4–8 days at 37uC in a humidified atmosphere

with 5% CO2. IGF-1 was used at 20 ng/ml for neurospheres

stimulation while preparing lysate.

PC12 (rat pheochromocytoma) cells were cultured in DMEM

medium with 5% fetal bovine serum, 10% horse serum, antibiotic,

and antimycotic agents (complete growth medium). Cells were

differentiated by removal of serum and addition of 50 ng/ml

nerve growth factor (NGF; Invitrogen) for 48 hours. The cells

were grown in a humidified incubator at 37uC with 5% CO2. IGF-

1 was used at 50 ng/ml for cells stimulation while preparing lysate.

Construction of the cDNA for expression of rat SOCS6
Total RNA was isolated from PC12 cells. Total cDNA was

prepared using High-Capacity cDNA Archive Kit (Applied

Biosystems) as per the manufacturer’s instructions. Forward

SOCS6 Primer: 59 CGGAATTCATGAAGAAAATCAGTCT-

GAA 39; Reverse SOCS6 Primer: 59 CGGAATTCTCAG-

TAGTGCTTCTCCTGCA 39. The amplified products were

cloned into EGFP C1 vector from Clontech.

Semi-quantitative RT-PCR
Total RNA from neurospheres and differentiated cells were

isolated and equal amounts of RNA were reverse trasnscribed into

cDNA using High-Capacity cDNA Archive Kit (Applied Biosys-

tems) as per the manufacturer’s instructions. The following RT-

PCR conditions were employed: SOCS6: 98uC- 1 min, 54.4uC-

1 min 30 sec, and 72uC- 2 min; GAPDH: 94uC- 1 min, 62uC-

1 min, and 72uC- 1 min. Primers used for SOCS6 were the same

as those used for cloning rat SOCS6 cDNA. To ensure that the

PCR products fall within the linear range, cycle dependency was

carried out.

Transient transfections
PC12 cells were grown to 60% confluence on collagen l coated

dishes. DNA was transfected using Lipofectamine 2000 (Invitro-

gen, NY, USA) as per manufacturer’s instructions in OPTI-MEM

medium (Invitrogen, NY, USA). The cells were incubated for

6 hours and subsequently the medium was replaced with complete

growth medium. The cells were stimulated after 24 hours to

48 hours post transfection.

Amaxa Transfections
Neuropspheres were grown to in 60 mm dishes. Empty vector

EGFP C1, rat SOCS6- EGFP C1 were transfected into the cells

using Amaxa nucleofection kit 2000 (Amaxa Corp.) as per the

manufacturer’s instructions.

Immunoblot analysis
Cells were plated at a density of 16105 cells/mL in 60 mm

culture dishes and incubated for 24 hours. The cells were serum

starved for 12 to 14 hours prior to stimulation with IGF-1 in

serum free medium. The media was then aspirated and the cells

were washed with ice cold PBS. Subsequently the cells were lysed

in ice-cold RIPA buffer containing 100 mg/ml phenylmethylsul-

phonyl fluoride and 16 protease inhibitor cocktail (Roche, Basel,

Switzerland). 50 mg of protein samples were electrophoresed on

denaturing SDS-PAGE (Polyacrylamide Gel Electrophoresis) gels

and transferred to Immobilon-P membranes (Millipore Corp.,

Bedford, MA) and probed with antibodies. Immunoreactivity was

revealed with horseradish peroxidase-conjugated anti-rabbit or

anti-mouse secondary antibodies (GE Healthcare) and enhanced

chemiluminescence reagents (GE Healthcare) [15].
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Immunoprecipitation
Cells were plated and subsequently treated as described

previously and lysed in RIPA buffer. About 300 mg of lysate was

incubated with 1–2 mg of antibodies at 4uC overnight on an end-

to-end shaker. Subsequently, antigen-antibody complexes were

incubated with 50 ml of protein G-Sepharose beads (GE

healthcare) for 2 hours with end-to-end shaking. After washing

with lysis buffer 3 times, beads were finally resuspended in 50 ml of

sample buffer and blotted as described previously.

Small interfering RNA–mediated silencing
PC12 cells were cultured for 2–3 days to 60–70% confluency

and transfected with siRNA oligonucleotides pool (Dharmacon,

Lafayette, CO) using lipofectamine 2000 (Invitrogen Life technol-

ogies), according to manufacturer’s instructions. Cells were

maintained in medium for 4 days before stimulation with agonists.

As control, cells received an equal amount of labeled control

oligonucleotides (green, non-targeting oligonucleotides from

Dharmacon). The effect of antisense oligos was determined by

immunoblot analysis and morphological studies.

Evaluation of neuritogenesis
Number of neurites per cell was counted. Neurite length was

measured in randomly chosen cells, in at least n = 3 experiments,

essentially as previously described [11]. Cells were visualized and

images of all neurons in random fields were captured using a

Nikon TE2000 microscope fitted with a CCD camera and

appropriate excitation/emission filters. Adobe photoshop and

software was used for preparation of images. Neurite lengths were

measured by tracing individual neurites using Leica IM50 software

(Leica Microsystems Imaging Solutions, Cambridge, UK). Aver-

age number of neurite was measured by summing the total

number of neurites per differentiated neuron.

Luciferase assay
1500 bp upstream of ATG of SOCS6 gene was amplified and

cloned into pGL3 basic vector from Promega (USA). The

chimeric construct was then co-transfected along with pcDNA3.1

Stat1, pcDNA3.1-Stat3, pcDNA3.1- Stat5a, pcDNA3.1- Stat5b,

or pcDNA3.1- Stat6 into PC12 cells. As a control for luciferase

expression, pGL3 basic vector from Promega (USA) was used.

Total amount of DNA/well for all transfections was kept constant

at 1.8 mg by co-transfecting the pcDNA3.1 vector. Uniformity of

transfection efficiency was achieved by co-transfections with

equal quantities of b-Galactosidase vector. After 24 hours, cells

were collected and lysed in passive lysis buffer from Promega

(USA) followed by b-Galactosidase assay. The luciferase activity

in the lysate was measured using a luminometer (Packard

LumoCount) Luciferase activity was normalized against b-

galactosidase activity to normalize for the variation in transfec-

tion efficiency.

Nuclear and Cytoplasmic Protein Extraction
An extraction kit from Geno-technology (St. Louis, MO) was

used to extract proteins from the nucleus and cytoplasm as per the

manufacturer’s instructions. Briefly, the cells were spun down after

treatment, washed with PBS, and resuspended in cytoplasmic

extraction buffer. Subsequently, the cells were passed through the

narrow mouth tip and centrifuged. The supernatant contained

cytoplasmic protein. The pellet was washed several times in the

same buffer. Subsequently, nuclear extraction buffer was added

and incubated on ice. After centrifugation, the supernatant

contained nuclear extract.

Electrophoretic mobility shift assay (EMSA)
Nuclear and cytoplasmic proteins were isolated as described

previously using an extraction kit from Geno-technology (St.

Louis, Missouri, USA). To 0.5 mg labeled double stranded oligo-

DNA (26105 cpm),15 mg of nuclear extracts was added and

incubated in a 20 ml volume of binding reaction (200 mM

HEPES, 4 mM DTT, 50% glycerol, 0.5 mg poly dI:dC, for

30 min at room temperature). In competition experiments, prior

to the addition of radioactive probes, 100 fold excess amount of

unlabeled competitors were added to the binding reaction and

incubated with nuclear extract for 10 min on ice. The binding

reaction was then allowed to proceed for 30 minutes at room

temperature. All binding mixtures were separated, using 0.56
TBE buffer as the running buffer, at 150 V for 3.5 hours on 4–6%

gradient TBE gels. The gels were dried, and analyzed by

phosphoimager (Fuji FLA-5000).

Immunocytochemistry
PC12 cells grown in multiwell Lab-Tek slides were allowed to

differentiate for 2 days with NGF (50 ng/ml). Cells were fixed in

3.7% paraformaldehyde, permeabilized in 0.1% Triton, blocked

and incubated overnight at 4uC with mouse anti-SOCS6 and

rabbit anti-IGFR antibodies. Cells were probed with Alexafluor

594 (Invitrogen) anti-mouse and Alexafluor 488 (Invitrogen) anti-

rabbit antibodies. Cells were visualized using Zeiss Axio Imager

fluorescence microscope, and images were processed using Adobe

Photoshop or Axiovision software.

Statistical analysis
Data were expressed as means 6 S.E. Results were analyzed for

statistical significance using t test or by ANOVA followed by a

Bonferroni Comparison Post Hoc test. All error bars were

expressed as SD, with *p,0.05was considered statistically

significant difference, **p,0.01 was considered statistically very

significant difference and ***p,0.001 was considered statistically

extremely significant difference. All the experiments were

independently repeated 3 times with similar results.

Results

IGF-1 enhances neurite-outgrowth
Previously, we have shown that cytokine TNF-a was inhibitory

to primary cortical neurons and cell lines, whereas IGF-1

enhanced growth and could rescue cells from TNF-a mediated

cell death [15]. In this study the action of exogenous IGF-1 on the

differentiation of cortex-derived rat foetal neural stem cells was

explored. All experiments were performed in the absence of B-27

as it contained insulin which has similar mechanism of action as

IGF-1. Neural stem cells (NSCs) were allowed to differentiate

without growth factors, in the presence of IGF-1 for 4 days.

Increased neurite-outgrowth was observed in IGF-1 treated cells as

compared to control (Figure 1A). IGF-1 treated cells had

significantly longer length of primary and secondary neurites as

well as more number of neurites per cell as compared to the

control cells (Figure 1B and 1C). Thus IGF-1 promoted neurite-

outgrowth as well as branching of foetal NSCs where increased

neurite-outgrowth is indicative of differentiation.

SOCS6 is triggered by differentiation and further
enhanced by IGF-1

In order to explore the effect of growth factor/cytokine

mediated signalling on SOCS family members, neurospheres

from cortex of embryonic day 14 (E14) rat embryos were cultured

SOCS6 Promotes Neuritic Outgrowth
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and stimulated with TNF-a, IL-6 and IGF-1. The cells were

stimulated for 3 hours and immunoblotting was performed using

various anti-SOCS antibodies (Figure S1). Among the various

SOCS tested, SOCS3 showed a modest increase with IGF-1 and

IL-6 whereas SOCS6 expression was found to be upregulated

maximally by IGF-1 (Figure S1 and Figure 2A). There was a

40% increase in SOCS6 levels following IGF-1 stimulation as

compared to about 10% with IL-6 (Figure 2A). In order to find out

whether SOCS6 expression was restricted only to embryonic

cortical stem cells, neurospheres of young pups at postnatal day 2

(P2) were cultured from the sub-ventricular zone; a region where

maximum number of NSCs are found in newborn pups. SOCS6

levels were higher at P2 compared to E14 and showed a higher

sensitivity to IGF-1 at P2, indicating an increasing requirement of

SOCS6 during development (Figure 2B).

Temporal upregulation of SOCS6 upon differentiation
Upregulation of SOCS6 at P2 stage was indicative of SOCS6

requirement during differentiation. To explore the role of SOCS6

in neural differentiation, neurospheres generated from the embry-

onic rat-cortex were differentiated following withdrawal of growth

factors for 4 and 8 days and then stimulated with IGF-1. The level of

SOCS6 in differentiated cells was compared with neurospheres in

the presence or absence of IGF-1 by immunoblotting. A 400 fold

increase in SOCS6 levels were observed following 4 days of

differentiation (Figure 3A). Expression pattern was temporal with

levels peaking on day 4 of differentiation and reducing thereby.

Thus for all subsequent experiments 4 days differentiated NSCs

were used. SOCS6 levels were further enhanced by about 45%

upon IGF-1 stimulation (Figure 3A). To understand the contribu-

tion of specific neural cell types towards increase in SOCS6, stem

cells were differentiated into various neural subtypes, stained with

lineage specific antibody markers and counted (Figure S2).

Neurons were about 40%, astrocytes about 50% and oligodendro-

cytes were about 9% after 4 days of differentiation and the

difference between neurons and astrocytes was statistically insignif-

icant. There was a marginal increase in the number of astrocytes

after 8 days of differentiation. These numbers were very similar to a

previous study [30]. Thus the decrease in SOCS6 after 4 days was

not due to decrease of any specific neural cell subtype.

To check if SOCS6 expression pattern was similar in non-stem

cells, PC12 cells were differentiated for 1, 2 and 3 days with NGF.

PC12 has been previously used as an instructive model for

studying the underlying mechanisms of neuronal differentiation in

response to NGF [31]. SOCS6 levels were elevated in NGF

differentiated PC12 cells and further enhanced by about 45%

upon IGF-1 stimulation, as compared to undifferentiated cells.

SOCS6 expression pattern was again temporally regulated with

maximum levels after 2 days of NGF treatment and reducing

thereafter (Figure 3B). Thus all further experiments were

performed using 2 days differentiated PC12 cells.

In order to see if the increase in SOCS6 expression occurred at

transcriptional level, neurospheres and neurospheres differentiated

for 4 days were stimulated with IGF-1 and the levels of SOCS6

mRNA was determined by reverse transcriptase PCR. An increase

in the mRNA levels of SOCS6 was observed in differentiated cells,

Figure 1. IGF-1 enhances neurite-outgrowth. (A) E14 neurospheres were allowed to differentiate in the presence or absence of IGF-1. (B, C)
Analysis of average of primary and secondary neurite length and average number of neurites per cell in NSCs differentiated in presence and absence
of IGF-1. Neurite length was measured in randomly chosen cells (at least 8–10 different fields and approx 5 cells per field) by tracing individual
neurites (as described in experimental procedures) and results are expressed as (B) average of total primary and secondary neurite lengths or (C)
average number of neurites per cell. Statistical significance of the difference was determined using ANOVA. The result shows the mean 6 S.E. of n = 3
combined experiments (***p,0.001, *p,0.05).
doi:10.1371/journal.pone.0026674.g001
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which was further enhanced by IGF-1 stimulation (Figure 3C).

These results indicated that increase in SOCS6 expression in

differentiated cells occurred at transcriptional level.

Figure 2. IGF-1 stimulation enhances SOCS6 levels. (A) Primary
neurospheres were generated from cortex of E14 rat embryos and
stimulated with TNF-a (100 pg/ml), IL-6 (20 ng/ml) or IGF-1 (20 ng/ml)
for three hours. The cell lysate was immunoblotted with anti-SOCS6
antibody. The same membrane was stripped and reprobed with anti-
GAPDH antibody for protein loading control. (B) Primary neurospheres
were generated from cortex of E14 and sub ventricular zone of pups at
postnatal day two (P2) and stimulated with/without IGF-1 for 3 hours.
The cell lysate was immunoblotted with anti-SOCS6 antibody. The same
membrane was stripped and reprobed with anti-GAPDH antibody for
protein loading control. The densitometry data shown was normalized
with the untreated control (taken as 100%). The result shows the mean
6 S.E. of n = 3 combined experiments (***p,0.001, **p,0.01).
doi:10.1371/journal.pone.0026674.g002

Figure 3. Temporal increase in SOCS6 levels following
differentiation. (A) Western-blot analysis of SOCS6 expression in
E14 neurospheres and neurospheres upon differentiation at day 4 and
day 8 with/without 3 hours of IGF-1 (20 ng/ml) stimulation. The same
membrane was stripped and reprobed with anti-GAPDH antibody for
protein loading control. (B). Western-blot analysis of SOCS6 expression
in undifferentiated PC12 cells and PC12 cells differentiated with NGF
(50 ng/ml) for 1, 2 or 3 days and stimulated with/without IGF-1 for
3 hours. The same membrane was stripped and reprobed with anti-
GAPDH antibody for protein loading control. (C) E14 neurospheres or
neurospheres upon 4 days of differentiation were stimulated with/
without IGF-1. Total RNA was isolated and RT-PCR was performed using
SOCS6 specific primers and GAPDH primers on the same sample.
(M = Marker; C = Control). The result shows the mean 6 S.E. of n = 3
combined experiments (***p,0.001, **p,0.01). The densitometry
shown below was normalized with the untreated control (taken as
100%).
doi:10.1371/journal.pone.0026674.g003

SOCS6 Promotes Neuritic Outgrowth
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SOCS6 enhances neurite-outgrowth
In order to find out the effect of SOCS6 on neurite-outgrowth

and branching, neurospheres were transiently transfected with

SOCS6-EGFP or EGFP vector and were allowed to differentiate.

SOCS6 transfected cells showed substantially enhanced neurite-

outgrowth and branching, as compared to the vector alone cells

(Figure 4A, i and ii). SOCS6 transfected cells had significantly

longer primary, secondary and tertiary neurites as compared to the

vector alone cells (Figure 4B). Average number of neurites per cell

were also much higher in SOCS6 transfected cells as compared to

vector alone cells (Figure 4C). Results shown are from the counts of

EGFP expressing cells, regardless of their level of EGFP expression.

To confirm this novel role of SOCS6 in cell lines, SOCS6 and

EGFP expressing stable PC12 cell lines were constructed and

differentiated with NGF. SOCS6 transfected cells had augmented

neurite-outgrowth as shown by enhanced primary, secondary and

tertiary branching as well as higher number of neurites per cell, as

compared to the vector alone cells (Figure S3A and Figure
S3B,C). At any given time point the number of cells with neurites,

was similar in both EGFP and SOCS6 stable cells. Thus over-

expression of SOCS6 promoted neurite-outgrowth both in NSCs

and PC12 cell line.

Inhibition of neurite-outgrowth by SOCS6 specific siRNA
To further confirm the involvement of SOCS6 in promoting

neurite-outgrowth, small interfering RNA (siRNA)-mediated

silencing of SOCS6 expression was performed. siRNAs were

designed against rat SOCS6 gene and transfected into PC12 cells.

Standardization of efficient siRNA transfection (about 80%) into

PC12 cells was established using control siRNA (green non-

targeting) (Figure S4). 3 mg of targeting SOCS6-siRNA, knocked

out approximately 85% of endogenous SOCS6 protein without

noticeable effect on cell viability (Figure 5A). As maximum

knockdown of SOCS6 protein was observed on day 6, all

Figure 4. SOCS6 enhances neurite-outgrowth. (A) Following
withdrawal of growth factors, E14 neurospheres were transiently
transfected with control (EGFP vector alone) (i) or SOCS6 (SOCS6-EGFP)
(ii) and observed under fluorescent microscope. (B, C) Neurite length
was measured in randomly chosen cells (at least 6–8 different fields and
approx 5 cells per field) by tracing individual neurites (as described in
experimental procedures) and results are expressed as (B) average of
total primary, secondary and tertiary neurite lengths or (C) average
number of neurites per cell. Statistical significance of the difference was
determined using ANOVA. The result shows the mean 6 S.E. of n = 3
combined experiments (***p,0.001, **p,0.01).
doi:10.1371/journal.pone.0026674.g004

Figure 5. siRNA-mediated silencing of SOCS6 expression
inhibits neurite-outgrowth. (A) 3 mg of siRNA was transfected into
PC12 cells and after 6 days of transfection, the cells were screened for
SOCS6 knockdown by Western-blot analysis, using anti-SOCS6 anti-
body. Control-siRNA (green non-targeting) was used as a negative
control. The same membrane was stripped and reprobed with anti-
GAPDH antibody for protein loading control. (B) Morphology of SOCS6-
siRNA transfected PC12 cells as compared to the control transfected
cells after 6 days of transfection with NGF treatment under light
microscope. (C and D) Neurite length was measured in randomly
chosen cells (at least 8–10 different fields and approx 5 cells per field)
transfected with either control or SOCS6 siRNA with or without IGF-1.
Neurite lengths were measured by tracing individual neurites (as
described in experimental procedures) and results are expressed as (C)
average of total primary, secondary and tertiary neurite lengths or (D)
average number of neurites per cell. Statistical significance of the
difference was determined using ANOVA. The result shows the mean 6
S.E. of n = 3 combined experiments (***p,0.001, **p,0.01, *p,0.05).
doi:10.1371/journal.pone.0026674.g005

SOCS6 Promotes Neuritic Outgrowth
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experiments were performed after 6 days of transfection. Control

siRNA had no effect on SOCS6 levels confirming the specificity of

SOCS6 siRNA (Figure 5A).

In order to investigate the effect of SOCS6 knockdown on

neurite-outgrowth, SOCS6-siRNA or control siRNA transfected

PC12 cells were differentiated in the presence of NGF. The cells

transfected with control siRNA had usual branching pattern and

neurite length. In contrast, SOCS6-siRNA transfected cells had

fewer branches and smaller neurites (Figure 5B). The length of

primary neurites in SOCS6-siRNA transfected neurons was

reduced with very few secondary and tertiary neurite branching

as compared to the cells with control siRNA (Figure 5C). Average

number of neurites per cell was also much less in SOCS6-siRNA

transfected cells as compared to control (Figure 5D). IGF-1

stimulation lead to increase in neurite-outgrowth just like in NSC,

but its effect was attenuated in SOCS6 depleted cells, indicative of

involvement of SOCS6 in IGF-1 mediated differentiation. This

data confirms that SOCS6 was involved in neurite-outgrowth

which is indicative of differentiation.

Jak/Stat pathway is involved in SOCS6 upregulation
Since SOCS signalling has been shown to involve Jak/Stat

pathway, AG490, a pharmacologic inhibitor for the Jak/Stat

pathway [32], was used to ascertain its involvement in SOCS6

signalling. When NSCs as well as PC12 cells were treated with

50 mM of AG490, very little neurite-outgrowth and branching was

observed in the treated cells as compared to the control cells

(Figure 6A and Figure S5A,B). In both NSCs and PC12 cells,

the percentage of cells undergoing differentiation was reduced to

almost 20% as compared to the control cells (Figure 6B, Figure
S5A,B). The fewer cells seen in AG490 treated NSCs were due to

the fact that the undifferentiated cells did not spread out but

remain close to the neurospheres. The length of primary and

secondary neurites in the AG490 treated cells was reduced as

compared to the untreated control cells (Figure 6C and Figure
S5C,D).). Average number of neurites per cell was also much less

in cells cultured in presence of AG490 as compared to the control

cells (Figure 6D and Figure S5C,D). Since 50 mM of AG490

very mildly reduced cell survival (of PC12 cells) as measured by the

MTT assay (87.9%610.3 of controls) (Figure S5E), the AG490

inhibitory effect on neurite-outgrowth was unlikely to be a

consequence of non-specific cytotoxic effects of AG490. IGF-1

was unable to rescue the inhibitory effects of AG490, indicating

that IGF-1 actions were via the Jak/Stat pathway (Figure S5C
and S5C,D). In order to look for effects of Jak/Stat pathway on

SOCS6 expression, NSCs were treated with AG490 with or

without IGF-1 stimulation. SOCS6 expression was muted in the

presence of the inhibitor (Figure 6E), which indicated that

SOCS6 was downstream of Jak/Stat. IGF-1 enhanced SOCS6

expression marginally in the presence of the inhibitor, indicating

involvement of alternative pathways of SOCS6 stimulation by

IGF-1. In order to rule out non-specific action of AG490 on other

kinase pathways which could also have an impact on neural cell

differentiation, effect of AG490 was checked on erk and PI3 kinase

pathways. No non-specific effects were observed in neural stem

cells (data not shown). Elevated levels of pStat5 levels were

observed in undifferentiated cells as compared to the differentiated

cells (Figure 6F). IGF-1 was able to substantially enhance pStat5

levels in neuropsheres, but only marginally in differentiated cells,

indicating that Jak/Stat5 pathway was more active in neuro-

spheres with its involvement diminishing following differentiation

(Figure 6F). AG490 which has been previously shown to diminish

Stat3 activation also inhibited the activation of Stat5 in NSCs

(Figure 6G).

To confirm the involvement of Stat5, PC12 cells were

transiently transfected with Stat5a, Stat5b, dominant-negative

Stat5a (dnStat5a) and dominant-negative Stat5b (dnStat5b)

constructs and were allowed to differentiate in the presence of

NGF. Stat5a and Stat5b transfected cells showed enhanced

neurite-outgrowth and branching, as compared to the vector

alone cells (Figure S6). In contrast, the cells transfected with

dnStat5a and dnStat5b had branching pattern and neurite length

comparable to that of control, indicating that Stat5 activated

SOCS6 which in turn promoted neurite outgrowth (Figure 6H).

Together, these data suggest that (a) Jak/Stat was a major pathway

for SOCS6 mediated neurite-outgrowth, and (b) differentiation

cues inhibit Stat5 activation.

Stat5 acts as a transcription factor for SOCS6 promoter
To identify the specific Stat(s) involved in SOCS6 upregula-

tion, we selected the 1500 bp TATA less promoter region

immediately upstream of SOCS6 start codon and identified

various putative Stat binding sites using the Genomatix bioinfor-

matics tool (Figure 7A). The 1500 bp upstream region was

cloned into pGL3-Basic luciferase expression vector and trans-

fected into PC12 cells either alone or along with various

pcDNA3.1- Stat constructs. b-galactosidase plasmid was co-

transfected in all cases to normalize the transfection efficiency.

Although this 1500 bp genomic region of SOCS6 showed high

levels of baseline promoter activity indicating the presence of

other factors that could be binding to this region, it was

significantly enhanced by Stat5a and Stat5b but not by Stat1,

Stat3 or Stat6 (Figure 7B). Thus, Stat5 was a likely

transactivating factor for SOCS6 gene activation.

To confirm the role of Stat5 in SOCS6 upregulation, PC12 cells

were transfected with Stat1, Stat3, Stat5a, Stat5b and Stat6 and

SOCS6 expression was checked 24 hours post-transfection.

SOCS6 expression levels were highest in Stat5a and Stat5b

transfected PC12 cells (Figure 7C). To confirm this, dnStat5a and

dnStat5b were transfected into PC12 cells. Western-blot analysis

showed enhanced levels of SOCS6 in Stat5a and Stat5b

transfected PC12 cells whereas dominant negative mutants of

Stat5a and Stat5b significantly blocked this activation to almost

basal control levels (Figure 7D).

Stat5 has been shown to translocate to the nucleus upon

stimulation, a response that is inhibited by AG490 [33]. In order

to demonstrate the nuclear translocation of activated Stat5 in

response to IGF-1 stimulation, PC12 cells were stimulated with

or without IGF-1. The nuclear and cytoplasmic fractions were

extracted and analyzed for levels of pStat5. pStat5 presence was

much more pronounced in both cytoplasmic and nuclear

fraction of IGF-1 stimulated PC12 cells with higher levels in

the nucleus (Figure 7E). This indicated that upon IGF-1

stimulation, there was activation and translocation of pStat5 into

the nucleus.

In order to confirm the actual Stat5 binding sequence in the

SOCS6 regulatory sequence, EMSA was performed using

oligonucleotides Oligo 1 and Oligo 2 (sequence shown in

Figure 7A) representing both the putative STAT binding sites

(Figure 8A). Nuclear extracts prepared from IGF-1 stimulated

PC12 cells transfected with Stat5a-EGFP and Stat5b-EGFP, were

used for binding studies. Extracts from both Stat5a and Stat5b

showed mobility shift with Oligo 1 and no binding was observed

with Oligo 2, demonstrating the specificity of binding to Oligo 1

STAT binding sequence (Figure 8A). Cold competition experi-

ments using 100 fold excess of cold oligomer was able to

specifically compete out both Stat5a and Stat5b transfected
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Figure 6. Jak/Stat pathway is involved in neural stem cell differentiation. (A) E14 Neurospheres were allowed to differentiate in the absence
or presence of 50 mM AG490 (Jak2/Stat3 inhibitor) for 4 days and the cells were observed under light microscope. (B) Number of cells with neurites
per field was counted. An average of 13 fields was taken. The untreated control was taken as 100%. (C and D) Neurite length was measured in
randomly chosen cells by tracing individual neurites (as described in experimental procedures) and results are expressed as (C) average of total
primary and secondary neurite lengths. The untreated control was taken as 100%. (D) Average number of neurites per cell. (E) Untreated or AG490
treated neurospheres were stimulated with/without IGF-1. The cell lysate was immunoblotted with anti-SOCS6 antibody. The membrane was then
stripped and reprobed with anti-GAPDH antibody. (F) E14 Neurospheres and neurospheres upon differentiation were stimulated with/without IGF-1
for 10 minutes. Stat5 was immunoprecipitated from 300 mg protein extract and Western-blotted using anti-phosphotyrosine antibody (pY20). The
membrane was then stripped and reprobed with anti-Stat5 antibody. (G) Untreated or AG490 treated neurospheres were stimulated with/without
IGF-1 for 10 minutes. Stat5 was immunoprecipitated from 300 mg protein extract and Western-blotted using anti-phosphotyrosine antibody (pY20).
The membrane was then stripped and reprobed with anti-Stat5 antibody. (H) PC12 cells, transfected with Stat5a- pcDNA3.1, Stat5b- pcDNA3.1,
dominant negative Stat5a- pcDNA3.1 and dominant negative Stat5b- pcDNA3.1 were allowed to differentiate in the presence of NGF and the cells
were observed under light microscope. Neurite length was measured in randomly chosen cells by tracing individual neurites (as described in
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extracts, indicating the specificity of the DNA-protein interaction

(Figure 8B). Increasing protein concentrations (10 mg, 15 mg,

20 mg and 30 mg) resulted in corresponding increase in intensity of

the protein-DNA complexes further confirming the specificity of

the binding (Figure 8C). These results provide for the first time

insights into the regulation of the SOCS6 gene by Stat5 in the

nervous system.

Interaction of SOCS6 and IGFR occurs in the nucleus
Previously we have shown that SOCS3 associated with IGF

receptor (IGFR) upon IGF-1 stimulation [15]. Also insulin

receptor has been shown to associate with SOCS6 upon insulin

stimulation [26], but so far no association has been shown for

SOCS6 and IGFR. In order to find out if SOCS6 interacted with

IGFR, undifferentiated and 2 days differentiated PC12 cells were

experimental procedures) and results are expressed as average of total primary and secondary neurite lengths. Statistical significance of the
difference was determined using ANOVA. The result shows the mean 6 S.E. of n = 3 combined experiments (***p,0.001, **p,0.01).
doi:10.1371/journal.pone.0026674.g006

Figure 7. Stat5a and Stat5b upregulate SOCS6 expression. (A) Top panel is a diagrammatic representation of the 1500 bp upstream region of
rat SOCS6 promoter showing the 2 putative unknown STAT binding sites, one Stat3 and one Stat6 binding sites. Oligo 1 and Oligo 2 are the two
oligomers used for the EMSA binding assays. The lower panel displays the sequence of the two oligos based on the Genomatix software predicting
the putative STAT binding sites. (B) PC12 cells were co-transfected with 1500 bp-pGL3 SOCS6, b-galactosidase plasmid and specific Stat-pcDNA3.1
constructs (Stat1, Stat3, Stat5a, Stat5b, and Stat6). Subsequently a luciferase assay was performed as described in experimental procedures. Each
assay was performed in triplicate. (C) PC12 cells were transfected with pcDNA3.1-Stat1, pcDNA3.1-Stat3, pcDNA3.1-Stat5a, pcDNA3.1-Stat5b and
pcDNA3.1-Stat6. After 2 days, lysates were prepared and the cell lysate was immunoblotted with anti-SOCS6 antibody. The membrane was
subsequently stripped and reprobed with anti-GAPDH antibody for protein loading control. (D) PC12 cells were transfected with pcDNA3.1-Stat5a,
pcDNA3.1-Stat5b, dominant negative pcDNA3.1-Stat5a and dominant negative pcDNA3.1-Stat5b. After 2 days, lysates were prepared and the cell
lysate was immunoblotted with anti-SOCS6 antibody and subsequently stripped and reprobed with anti-GAPDH antibody for protein loading control.
(E) PC12 cells were stimulated with/without IGF-1 and nuclear and cytoplasmic protein was extracted (as described in experimental procedures).
Immunoprecipitation was performed with anti-Stat5 antibody and Western-blotted with phosphotyrosine (pY20) antibody. The membrane was
stripped and reprobed with anti-Stat5 antibody for loading control. (Cy = Cytoplasmic; Nu = Nuclear). The densitometry shown below was normalized
with the untreated control (taken as 100%). The result shows the mean 6 S.E. of n = 3 combined experiments (***p,0.001).
doi:10.1371/journal.pone.0026674.g007
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stimulated with IGF-1 for 1, 2 and 3 hours. IGFR was

immunoprecipitated, blotted and probed with anti-SOCS6 anti-

body. A temporal increase in the association of SOCS6 and IGFR

was seen, peaking at 1 hour post IGF-1 stimulation and declining

thereafter (Figure 9A). This peak coincided with the maximal

SOCS6 expression observed on 2 days differentiated cells.

To understand the kinetics of this association, immunoprecip-

itation studies were performed with PC12 cell lines stably

transfected with SOCS6, following varying lengths of IGF-1

stimulation. Association of SOCS6 with IGFR occurred as early

as 15 minutes post IGF-1 stimulation (Figure 9B). In order to

physically locate the association, nuclear and cytoplasmic extracts

of IGF-1 stimulated SOCS6 stable-PC12 cells were immunopre-

cipitated with anti-SOCS6 and blotted with anti-IGFR antibod-

ies. An association between IGFR and SOCS6 was observed

within 15 minutes of stimulation as seen before, mostly in the

nucleus (Figure 9C). To confirm this observation, co-localization

studies of IGFR and SOCS6 was performed in PC12 cells

differentiated for 2 days. The cells were stimulated with IGF-1 for

30 minutes and immunofluorescence was done using anti-SOCS6

and anti-IGFR antibodies. Secondary antibodies were fluores-

cently labelled with green (IGFR) and red (SOCS6) dyes and

observed under fluorescent microscope. IGFR appeared to be

mostly in the cytoplasm but also uniformly distributed within the

nucleus but SOCS6 was primarily in the nucleus (Figure 9D).

Interestingly the association of IGFR and SOCS6 mostly

occurred within the nucleus. Control immunofluorescence

experiments in the absence of IGF-1 did not show the co-

localization of IGFR and SOCS6 in the nucleus (Figure S7),

indicating that differentiation cues (IGF-1 in this case) are

required for IGFR and SOCS6 to interact.

Feedback inhibition of Jak2/Stat5 pathway occurs via
formation of a Jak2-IGFR-SOCS6 complex

Previously SOCS has been shown to inhibit Jak kinases [34]. In

our studies SOCS6 was not found to be associated with Jak1 (data

not shown). But co-immunopreciptation of Jak2 and SOCS6 in

SOCS6-stable-PC12 cells within 15 minutes of IGF-1 stimulation,

demonstrated an association of SOCS6 with Jak2 in response to

IGF-1 (Figure 10A). The timing of association was similar to

SOCS6 with IGFR, indicating the formation of a Jak2-IGFR-

SOCS6 complex. In order to reconfirm this association, co-

immunopreciptation of Jak2, SOCS6 and IGFR was done in

SOCS6-siRNA transfected PC12 cells following 15 minutes of IGF-

1 stimulation using anti-Jak2 antibody. As expected SOCS6 and

IGFR co-immunoprecipitated with anti-Jak2 antibody, with

expression levels of both IGFR and SOCS6 less in SOCS6 siRNA

transfected samples as compared to control (Figure 10B). In order

to find out if the Jak2-IGFR-SOCS6 complex could inhibit

subsequent activation of Stat5, EGFP and SOCS6-stable-PC12

cells were stimulated with IGF-1 for 10 minutes. pStat5 levels were

lower in SOCS6-stable-cells, thereby indicating that SOCS6 over-

expression led to feed-back inhibition of pStat5 (Figure 10C). Next

the expression of pStat5 was checked in SOCS6 siRNA transfected

samples and as expected, inhibiting the expression of SOCS6

resulted in the activation of the pStat5 expression levels

(Figure 10D). These results confirmed the hypothesis that SOCS6

regulates the Jak2/Stat5 pathway by feed-back mechanism.

Discussion

Signalling mechanism controlling neuronal differentiation

processes has not been well studied and is likely to be a complex

Figure 8. Stat5a and Stat5b are the transcription factors for SOCS6 promoter. (A) EMSA with Oligo 1 and Oligo 2 was performed using
nuclear extracts from untransfected and PC12 cells transfected with Stat3-EGFP, Stat5a-EGFP and Stat5b-EGFP and stimulated with IGF-1 for 1 hour.
Oligo 1 was used in lanes 1–6 and Oligo 2 in lanes 7–12. Lane 1, without cell extracts (free probe); lane 2, negative control (untransfected and without
IGF-1 stimulation); lane 3, control (untransfected and with IGF-1 stimulation); lane 4, Stat3-EGFP; lane 5, Stat5a-EGFP; lane 6, Stat5b-EGFP; lane 7,
without cell extracts (free probe); lane 8, negative control (untransfected and without IGF-1 stimulation); lane 9, control (untransfected and with IGF-1
stimulation); lane 10, Stat3-EGFP; lane 11, Stat5a-EGFP; lane 12, Stat5b-EGFP. (B) EMSA with Oligo1 with cold competition assay. Specificity of binding
was checked using excess of cold oligomer as a competitor. Lane 1, without cell extracts; lane 2, negative control (untransfected and without IGF-1
stimulation); lane 3, control (untransfected and with IGF-1 stimulation); lane 4, Stat5a-EGFP; lane 5, Stat5b-EGFP; lanes (6–8), competition assay with
excess of cold Oligo 1; lane 6, control (untransfected and with IGF-1 stimulation); lane 7, Stat5a-EGFP; lane 8, Stat5b-EGFP. (C) EMSA with Olig 1.
Specificity of binding was further checked by using a protein gradient. Lanes 1–5 were Stat5a transfected and lanes 7–11 were Stat5b transfected and
IGF-1 stimulated cell extracts. Lane 1, 10 mg protein; lane 2, 15 mg protein; lane 3, 30 mg protein; lane 4, competition assay with cold probe (20 mg
protein); lane 5, 20 mg protein; lane 6, without cell extracts; lane 7, 10 mg protein; lane 8, 15 mg protein; lane 9, 30 mg protein; lane 10, competition
assay with cold probe (20 mg protein); lane 11, 20 mg protein. The positions of free probe and specific complex are indicated. All the experiments
were independently repeated 3 times with similar results. Free probe = FP, untransfected = UT.
doi:10.1371/journal.pone.0026674.g008
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process, requiring interplay of many signalling events. We have

previously shown that IGF-1 upregulated the expression of

SOCS3, which further promoted neurite-outgrowth in primary

cortical neurons [15]. In this study, our focus was to identify if any

other members of the SOCS family responsive to IGF-1, were

involved in neural stem cell differentiation. Our initial studies

demonstrated that IGF-1 enhanced the neurite-outgrowth and

differentiation of foetal NSCs as shown previously in other cell

types [35–37]. In neurospheres, SOCS6 levels increased by 30%

following IGF-1 stimulation. Interestingly SOCS6 jumped 400

fold following differentiation cues, both at the transcriptional as

well as translational levels. IGF-1 further enhanced SOCS6 levels

by about 30–40%. Though SOCS6 has been previously shown to

be involved in regulation of glucose metabolism, previous studies

on SOCS6 knockouts [24] and SOCS6 transgenics [25] have not

explored its role in neuronal differentiation or brain development.

This is the first time the involvement of SOCS6 in neuronal

differentiation has been demonstrated.

NGF treated PC12 cells which have previously been shown to

cease proliferation, extend neurites and acquire a number of

properties characteristic of sympathetic neurons [38], showed a

temporal increase of SOCS6 levels following differentiation cues.

Previously only SOCS2 has been shown to regulate NSC

differentiation following growth hormone stimulation [39]. NSCs

transiently transfected with SOCS6-EGFP plasmids as well as

PC12 cell line stably expressing SOCS6 under differentiating

conditions, showed increased numbers of neurites, enhanced

neurite-outgrowth and longer neurites, all of which are known

indicators of differentiation [40]. Unlike an earlier study, no

apoptotic effects were seen in SOCS6 overexpressing NSCs and

PC12 cells [41]. Further, SOCS6 silencing inhibited neurite

initiation and branching, confirming the role of SOCS6 in

differentiation.

Since we had previously seen the involvement of Jak/Stat

pathway in SOCS3 mediated signalling [15], attempts were made

to find out if SOCS6 signalling was also mediated via the Jak/Stat

pathway. AG490 a potent inhibitor of Jak/Stat [32], dampened

the SOCS6 expression in both NSCs and PC12 cells. Jak/Stat

pathway was found to be involved in enhancing the neurite length,

number of neurites and branching per cell. This is consistent with

the earlier reports where Jak/Stat pathway has been shown to be

involved in regulating differentiation of multipotent NSCs into

astrocytes and SOCS mediated signalling [42–45]. Further, IGF-1

which enhanced SOCS6 expression was unable to rescue the

inhibitory effects of AG490, indicating the involvement of Jak/Stat

pathway in IGF-1 mediated signalling. Silencing SOCS6 rendered

IGF-1 incapable of exerting its effects, which confirmed that IGF-

1 action is mediated via SOCS6. Once SOCS6 was activated

following differentiation cues, IGF-1 was not required for SOCS6

mediated neurite-outgrowth.

Since the role of Stats as transcription activators of SOCS gene

has been reported previously [46–48] search for Stat binding sites

in the SOCS6 gene promoter revealed various putative Stat

binding sites. Increased SOCS6 expression following overexpres-

sion of Stat5a and Stat5b, which was inhibited in the presence of

dominant–negative Stat5a and Stat5b, was indicative of the role of

Figure 9. SOCS6 associates with IGFR upon IGF-1 stimulation.
(A) Undifferentiated or NGF differentiated PC12 cells were stimulated
with/without IGF-1 for 1, 2 or 3 hours. Using 300 mg of cell lysate, IGFR
was pulled down and Western-blotted with anti-SOCS6 antibody. The
membrane was stripped and reprobed with anti-IGFR antibody for
loading control. (B) SOCS6 stable PC12 cells were stimulated with/
without IGF-1 for 5, 15, and 30 minutes. IGFR was immunoprecipitated
and Western-blotted with anti-SOCS6 antibody. The membrane was
stripped and reprobed with anti-IGFR antibody for loading control. (C)
PC12 cells were differentiated for 2 days with NGF and then stimulated
with/without IGF-1 for 15, 30 m or 1 hr (m = minutes and hr = hours)
and nuclear and cytoplasmic protein was extracted (as described in
experimental procedures). Using 300 mg of cell lysate, SOCS6 was pulled
down and Western-blotted with anti-IGFR antibody. The membrane
was stripped and reprobed with anti-SOCS6 antibody for loading
control. (D) PC12 cells were allowed to differentiate for 2 days with NGF

and stimulated with IGF-1 for 30 minutes. The cells were then fixed and
permeabilized. After primary antibody treatment (anti-SOCS6, anti-IGFR
and anti-SOCS6+anti-IGFR), SOCS6 was stained with Alexafluor 594 (red)
and IGFR was stained with Alexafluor 488 (green). The cells were
visualized under fluorescent microscope. DAPI staining shows the
location of the nucleus.
doi:10.1371/journal.pone.0026674.g009
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Stat5 as a transcription factor for SOCS6 gene expression. Stat5

binding site on the SOCS6 promoter region was further confirmed

by mobility shift experiments. Though GH has been shown to

signal via the Jak2/Stat5b to enhance expression of CIS and

SOCS1-3, to our knowledge, this is the first report that

demonstrates that Stat5 acts as a transcription factor for SOCS6

expression.

Activation of Stat5 following IGF-1 stimulation in neuronal cells

and enhanced neurite outgrowth following Stat5 over-expression

provided the in vivo evidence of the role of Stat5 in neuritogenesis

and neuronal differentiation. Interestingly once the differentiation

had occurred there was inhibition of pStat5, an indication of

negative feedback. Previous studies have established that Stat5 was

important for forebrain and spinal cord development and was

inhibited on SOCS2 mediated differentiation [49,4]. Stat5 has also

been shown to be involved in Th2 and hematopoietic cell

differentiation [50–52]. Stat5 mutants have confirmed its and its

role in developing CNS, neuroprotection and neurosignalling

[49,53,54]. Though it has been shown that IGF-1 activated Stat3

[55,15], there have been no reports of Stat5 activation by IGF-1.

Thus Stat5 was a key mediator for SOCS6 expression and SOCS6

mediated neurite-outgrowth.

IGF-1 stimulation of SOCS6 expression, implicated the

involvement of IGF receptor (IGFR) in IGF-1 mediated SOCS6

signalling. Association of SOCS molecules with the cytoplasmic

domain of the IGFR has been demonstrated previously [56].

SOCS1 and SOCS2 were found to interact with the IGFR

following stimulation with IGF-1 [57], whereas SOCS3 was found

constitutively bound to the IGFR [58]. In this study SOCS6 was

found to rapidly associate with IGFR upon IGF-1 stimulation, in

SOCS6 overexpressing cells. This association was predominantly

localized in the nucleus. This was consistent with previous studies

showing that receptor tyrosine kinases translocated into nucleus to

promote transcription [59]. Moreover IGFR specifically has been

shown to translocate into nucleus of neurons, oligodendrocytes

and glia [60]. To our knowledge this is the first report that

demonstrates the association of SOCS6 with IGFR in the brain.

SOCS is known to function in a classical feedback loop by

attenuating the signal of its specific activating Stat [61]. Both Jak2

and IGFR was found to be associated with SOCS6 following IGF-

1 stimulation in SOCS6 overexpressing PC12 cells. This complex

could lead to inhibition of IGF-1 stimulated pStat5 activation,

which fits the classical feedback model. Over-expressed SOCS

family members like CIS and SOCS1-3, have been shown to

interfere with the Jak2/Stat5b pathway [8]. IGF-1 stimulated

activation of Stat5 leading to SOCS6 over-expression, followed by

negative feedback via Jak2-IGFR-SOCS6 complex, seems to

follow a pattern similar to GH signalling [4]. The feedback

inhibition could play an important role in restoring cellular

responsiveness to subsequent IGF-1 stimulation. Thus, SOCS6 is

not only capable of self-tuning its own response but also limit the

actions of other SOCS protein family members [62]. This cross-

inhibitory function of SOCS6 could be helpful in negating the

counter-differentiating properties of other SOCS molecules, just

like SOCS2 which is known to bind to SOCS1 and SOCS3 and

push it towards proteasome-degradation [62]. The entire signal-

ling mechanism of SOCS6 action following IGF-1/differentiation

is depicted diagrammatically in Figure 11.

In conclusion, differentiation cues lead to upregulation of

SOCS6 which in turn lead to increased neurite-outgrowth. The

differentiation process was further enhanced by IGF-1 which was

capable of regulating and being regulated by SOCS6. IGF-1

stimulated Stat5a and Stat5b activation, leading to SOCS6

upregulation. Interaction between SOCS6 and IGFR occurred

mostly in the nucleus. In a classical negative feedback mechanism

SOCS6 was bound to IGFR as well as Jak2, leading to inhibition

of Stat5 mediated signalling. Our studies represent the first step

towards understanding the role of SOCS6 in neural cell

differentiation. While further studies are required to understand

the molecular mechanisms of SOCS6 enhanced neural differen-

tiation, these studies show that due to its integral role in the

regulation of neural differentiation, SOCS6 could be an important

therapeutic target for both the repair of neuronal injuries and

treatment of neurological diseases.

Figure 10. Feedback inhibition of Jak2/Stat5 pathway occurs via formation of a Jak2-IGFR-SOCS6 complex. (A) PC12 cells stably
transfected with SOCS6-EGFP or EGFP vector alone were stimulated with IGF-1 for 0 m, 5 m and 15 m (m = minute). Jak2 was immunoprecipitated
and Western-blotted with anti-SOCS6 (top panel) or anti-Jak2 (bottom panel) antibodies. (B) PC12 cells transiently transfected with control or SOCS6-
siRNA was stimulated with IGF-1 for 15 minutes. Jak2 was immunoprecipitated and Western-blot was performed using anti-IGFR antibody. The
membrane was subsequently stripped and reprobed with anti-SOCS6 and anti-Jak2 antibodies. (C) PC12 cells stably transfected with SOCS6-EGFP or
EGFP vector alone were stimulated with IGF-1 for 10 minutes. Stat5 was immunoprecipitated and Western-blot was performed using pY20 antibody.
The membrane was subsequently stripped and reprobed with anti-Stat5 antibody. (D) PC12 cells transiently transfected with control or SOCS6-siRNA
was stimulated with IGF-1 for 10 minutes. Stat5 was immunoprecipitated and Western-blot was performed using pY20 antibody. The membrane was
subsequently stripped and reprobed with anti-Stat5 antibody. All the experiments were independently repeated 3 times with similar results.
doi:10.1371/journal.pone.0026674.g010
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Supporting Information

Figure S1 Expression pattern of various SOCS proteins
following stimulation with TNF-a, IGF-1 and IL-6.
Neurospheres were treated with/without TNF-a, IGF-1 or IL-6

for 3-hours. The cell lysate was immunoblotted with different anti-

SOCS antibodies. Subsequently the membrane was stripped and

reprobed with anti-GAPDH antibody.

(JPG)

Figure S2 Neural cell lineages following neural stem
cell differentiation. Neural stem cells were differentiated after

the withdrawal of growth factors up to 4 days, immnunofluores-

cence was done using b-III Tubulin, GFAP and CNPase

antibodies for neurons, astrocytes and oligodendrocytes respec-

tively. DAPI was used for nuclear staining. Graph was prepared

based on the percentage of different cells types counted. The result

shows the mean 6SE of n = 3 combined experiments

(***p,0.001, **p,0.01).

(JPG)

Figure S3 Effect of SOCS6 on neuritic outgrowth of
PC12 cells. (A) PC12 cells stable transfected with EGFP or

SOCS6 EGFP were allowed to differentiate in the presence of

NGF and observed under fluorescent microscope. (B, C) PC12

cells stably transfected with EGFP or with SOCS6-EGFP were

differentiated with NGF in the presence and absence of IGF-1.

Average length of primary, secondary and tertiary branches in

EGFP and SOCS6 stably transfected PC12 cells and average

number of neurites per cell. Neurite length was measured in

randomly chosen cells. Statistical significance of the difference was

determined using ANOVA. The result shows the mean 6SE of

n = 3 combined experiments (**p,0.01, *p,0.05).Neurite lengths

were measured by tracing individual neurites (as described in

experimental procedures) and results are expressed as (B) average

of total primary, secondary and tertiary neurite lengths or (C)

average number of neurites per cell. Scale bar 5 mM.

(PPT)

Figure S4 Efficiency of siRNA transfections. Optimization

of efficient siRNA transfection in the PC12 cells using control

siRNA (green non-targeting siRNA). This figure shows the merge

image of siRNA transfected cells and all the cells present in the well.

(JPG)

Figure S5 Effect of AG490 on neuritic outgrowth of PC12
cells. PC12 cells were allowed to differentiate in the presence of

50 mMAG490 (Jak2/Stat3 inhibitor) for 4 days. (A) The cells were

seen under light microscope. (B) Number of cells with neurites per

field was counted. An average of 13 fields was taken. The untreated

control was taken as 100%. (C and D) Neurite length was measured

in randomly chosen cells. Statistical significance of the difference

was determined using ANOVA. The result shows the mean 6SE of

n = 3 combined experiments (**p,0.01, *p,0.05). Neurite lengths

were measured by tracing individual neurites (as described in

experimental procedures) and results are expressed as (C) average of

total primary and secondary neurite lengths or (D) average number

of neurites per cell. Scale bar, 5 mM. (E) PC12 cells were allowed to

grow in the presence of increasing the concentration of AG490

(0 mM-100 mM) and MTT assay was performed.

(PPT)

Figure S6 Effect of Stat5 and dominant-negative Stat5 on
neuritic outgrowth of PC12 cells. PC12 cells transfected with

pcDNA3.1, pcDNA3.1-Stat5a, pcDNA3.1-Stat5b, pcDNA3.1-

dnStat5a or pcDNA3.1-dnStat5bwere allowed to differentiate in

the presence of NGF and observed under microscope.

(JPG)

Figure 11. Schematic representation of SOCS6 mediated neural differentiation. Upon IGF-1 stimulation of neural cells, Jak2 is activated
which then activates Stat5. Phosphorylated Stat5 dimerizes, translocates to the nucleus and acts as a transcription factor for SOCS6 which in turn
promotes differentiation. SOCS6 then binds to IGFR and forms a trio complex with Jak2 leading to the inhibition of further Jak2-Stat5 signalling.
doi:10.1371/journal.pone.0026674.g011
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Figure S7 Background immuno-staining of PC12 cells in
the absence of IGF-1 stimulation. PC12 cells were allowed to

differentiate for 2 days with NGF. The cells were then fixed and

permeabilized. After primary antibody treatment (anti-SOCS6,

anti-IGFR and anti-SOCS6+anti-IGFR), SOCS6 was stained with

Alexafluor594 (red) and IGFR was stained withAlexafluor488

(green). The cells were visualized under fluorescent microscope.

DAPI staining shows the location of the nucleus.

(JPG)
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