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Abstract

Among the Chalcidoids, hymenopteran parasitic wasps that have diversified lifestyles, a partial mitochondrial genome has
been reported only from Nasonia. This genome had many unusual features, especially a dramatic reorganization and a high
rate of evolution. Comparisons based on more mitochondrial genomic data from the same superfamily were required to
reveal weather these unusual features are peculiar to Nasonia or not. In the present study, we sequenced the nearly
complete mitochondrial genomes from the species Philotrypesis. pilosa and Philotrypesis sp., both of which were associated
with Ficus hispida. The acquired data included all of the protein-coding genes, rRNAs, and most of the tRNAs, and in P. pilosa
the control region. High levels of nucleotide divergence separated the two species. A comparison of all available
hymenopteran mitochondrial genomes (including a submitted partial genome from Ceratosolen solmsi) revealed that the
Chalcidoids had dramatic mitochondrial gene rearrangments, involved not only the tRNAs, but also several protein-coding
genes. The AT-rich control region was translocated and inverted in Philotrypesis. The mitochondrial genomes also exhibited
rapid rates of evolution involving elevated nonsynonymous mutations.
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Introduction

In most animals, the mitochondrial genome is maternally

inherited, generally nonrecombining with other mitochondrial

lineages, and comprised of 13 protein-coding genes, 2 rRNAs

and 22 tRNAs. The gene products work with nuclear-encoded

mitochondrial proteins in the process of oxidative phosphorylation

(OXPHOS) [1]. Due to its vital role in metabolism and relatively

small size, the evolution of animal mitochondrial genomes remains

intensively investigated. Complete mitochondrial genomes are

known from many species of insects, yet few are recorded from

the Hymenoptera. Although the mtDNA of the honeybee, Apis

mellifera, has been available since 1993 [2], today few other complete

hymenopteran genomes are known [3]. This situation may be due

to two characteristics: the mitochondrial genome is extremely AT-

rich rendering amplification and sequencing difficult and it has

unusually high rates of substitution and frequent gene arrangements

that confound primer design and amplification [4,5]. For the

Chalcidoidea, only a partial mitochondrial genome is known from

Nasonia, and it has an unusually high accelerated rate of evolution

and several unique gene rearrangements [6].

Mitochondrial genomes serve as good models for the study of

molecular evolution and population genetics [7,8,9,10]. Mito-

chondrial genome organization provides informative characters in

sufficient quantity and quality for inferring phylogeny [1,11,12].

The high rate of evolution and genome reorganization of Nasonia

may be typical of parasitic lifestyles in the Hymenoptera [5,13,14].

Parasitic chalcidoids have diversified lifestyles and mitochondrial

genomic data from fig wasps that live inside the compact syconium

of figs [15], might reveal features associated with their phyletic

positions and lifestyles.

This study is concerned with three species of fig wasp: Ceratosolen

solmsi and two species of Philotrypesis (P. pilosa and Philotrypesis sp.),

all of which live in the same fig tree, Ficus hispida. Among these

species, C. solmsi enjoys a mutualistic association with the fig;

pollination occurs as it feeds on floret tissue. In contrast, species of

Philotrypesis are parasitic on C. solmsi. Herein, sequences from the

mitochondrial genome of C. solmsi (submitted) are compared to

those of the parasites. The nearly complete mitochondrial

genomes of the two species of Philotrypesis are highly diverged.

Further, Philotrypesis also has unusual, dramatic gene rearrang-

ments, not only in tRNAs, but also in several protein-coding genes.
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Below we discuss the relationship of accelerated mtDNA evolution

and the unusual rearrangements with the evolution of fig wasps

and the parasitic lifestyles in the Chalcidoidea.

Materials and Methods

Ethics statement
No experiments involving vertebrate samples were performed in

this study. An ethics statement is not required for the experiments

which only involve insects. The collections of wasps were

permitted by the local park in Danzhou.

Specimens and DNA extraction
Specimens of P. pilosa and Philotrypesis sp. were collected in 2008

from Danzhou, Hainan province, China. Wasps were identified

and stored in 95% ethanol at 220uC. Images of the wasps used to

confirm identification were captured by using a Nikon AZ100

microscope system. Only one individual from each species was

chosen for DNA extraction by methods applicable for long PCR

[16].

Amplification and sequencing of mitochondrial genome
fragments

We used degenerate primers modified from previous studies

[17] to amplify the relatively conservative fragments co1–nad3,

nad5–cob, and nad1–12s. Subsequently, species-specific primers

were designed for the amplification of the regions between these

fragments. Primer sequences were summarized in table S1. We

used HiFi Taq (TransGen, Beijing, China) following the manufac-

turer’s suggestions for PCR and the amplicons were either purified

for direct sequencing or cloned for sequencing. The sequences

were deposited in GenBank under the accession numbers

JF808722 and JF808723.

Genome annotation
The protein-coding and rRNA genes were identified by Blast

searches in GenBank and aligned to the orthologous mitochon-

drial genes of Nasonia and Apis mellifera. Positional confirmation and

annotation of the tRNAs was accomplished by using the online

software of tRNAscan-SE 1.21 [18]. The detection of repeats used

Tandem repeats finder [19].

Genetic Divergence and Phylogeny
The combined sequences were aligned by using ClustalW and the

software package DnaSP 5.0 [20] was used to compute nucleotide

divergence, the ratio of Ka (the number of synonymous substation

per synonymous site) and Ks (the number of nonsynonymous

substation per nonsynonymous site). Based on genetic divergence,

Co1 and co2 were inferred to be the most conserved protein-coding

genes. They were employed for hypothesizing the phylogenetic

relationships of the hymenoptera by using MrBayes 3.12 [21].

Twenty-four mitochondrial genome sequences (accession numbers

for the downloaded genomes: EU746610-EU746612, NC_011923,

NC_010967, NC_004529, NC_014295, NC_001566, NC_014272,

NC_014278, NC_012708, NC_014677, NC_014669, NC_014672,

NC_015075, NC_011520, NC_013238, NC_008323, NC_012688,

NC_014485, NC_012689.) were used for phylogenetic inference

and gene rearrangement analyses. Orussus occidentalis was chosen as

the outgroup. We used The MrModeltest 2 to select the best-fit

model for Bayesian analysis. Bayesian calculations used 1 million

generations while sampling a tree every 100 generations. A 50%

majority rule consensus tree was calculated from the sampled

trees.

Results

Mitochondrial genomes of Philotrypesis
For P. pilosa, 15,122 bp fragment of the mitochondrial genome

was sequenced as follows: 13 protein-coding genes (co3 incom-

plete), 16 tRNAs, 2 rRNAs (12s incomplete), and 1670 bp non-

coding region between trnS2 and trnI. The overall AT bias was

84.14%. For Philotrpesis. sp., we obtained two fragments of

8,567 bp and 3,330 bp. An unsequenced region occurred between

cob and nad2. The sequenced fragments contained 13 protein-

coding genes (co3, cob, and nad2 incomplete), 14 tRNAs (missing

trnS2 and trnI compared to P. pilosa), and 2 rRNAs (12s incomplete)

(Figure 1 and Table 1). The overall AT bias was 81.7%, slightly

lower than in P. pilosa.

Table 1 compared the features of the mitochondrial genomes of

both species. The two genomes had the same gene orientations, with

10 protein-coding genes and most of the tRNAs and both rRNAs

located on the light strand. Only minor differences occurred. The

lengths of most protein-coding gene were identical, except for co1,

nad5 and nad6. The size of 16s rRNA genes also differed. Only three

tRNAs (trnL2, trnH, and trnP) of the 14 tRNAs had the same size. All

predicted initiation codons translated to either methionine or

isoleucine, as with most other bilateral animals [2]. Co2 was the only

gene to differ between the two species’ start codons: P. pilosa had

methionine (ATG) and Philotrypesis sp. isoleucine (ATT). Several

genes had incomplete stop codons, a single T, which is common in

animals. The products can be completed by posttranscriptional

polyadenylation [6,22]. As characteristic of mitochondrial genomes,

inter-gene spaces were usually very short, yet several exceptions of

up to 65–92 bp in length occurred in both genomes. The genome of

P. pilosa had a 1670 bp non-coding region between trnS2 and trnI.

The corresponding region remained unknown in Philotrypesis sp.; we

Figure 1. The mitochondrial genome of Philotrypesis pilosa and Philotrypesis sp. An unsequenced gap is located between cob and nad2 in
Philotrypesis sp.
doi:10.1371/journal.pone.0026645.g001
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were unsure whether the latter species also had similar sequences or

not. All of the predicted tRNAs had similar secondary structures

(Figure S1).

Accelerated rate of evolution
The mitochondrial sequences diverge dramatically in the two

species (Figure 2a and 2b). The average sequence divergence of

the two genomes is 0.140. Protein-coding genes were more

divergent than tRNAs; the highest divergence occurred in atp8

(0.267). In contrast, trnP was identical in the two genomes. The

large ribosomal RNA gene, 16s, had the second largest divergence

(0.226). This pattern indicated that the mitochondrial genomes of

Philotrypesis either evolved rapidly or that the species diverged long

ago. The former explanation seemed more likely because: 1) some

of the genes were similar or even identical between the two species;

2) previous phylogenetic results based on the combination of

mitochondrial (cob) and nuclear (ITS2) markers indicated that the

two species may be sister taxa [23]; 3) morphological comparisons

show that the two species were similar (Figure S2).

We compared the nucleotide and amino acid sequences of 10

protein-coding genes to further confirm that the mitochondrial

genome of Philotrypesis was evolving rapidly (Figure 2a). Except for

co1, co2 and nad1, divergences in the amino acid sequences were

greater than those of the nucleotide sequences. The greatest

divergence occurred in atp8. The nucleotide divergence was 0.267,

while the amino acid divergence was as high as 0.473. For genes

showing greater amino acid sequence divergences, a greater

number of nonsynonymous substitutions may have been accumu-

lated, which would have accelerated their evolution by either

positive or relaxed selection. In contrast, co1 had a lower level of

amino acid divergence (0.049) than nucleotide divergence (0.117),

which indicated purifying selection. Further intra-specific compar-

isons may help determine whether the mitochondrial genomes have

been evolving under neutral or positive selection.

Table 1. Gene annotation and features for both genomes.

Gene Strand Phipotrypesis pilosa Philotrypesis sp.

Length Start Stop Space Length Start Stop Space

co3 - incomplete ATA 0 incomplete ATA 12

atp6 - 675 ATG TAA -7 675 ATG TAA -7

atp8 - 165 ATT TAA 1 165 ATT TAA 0

D - 65 9 70 6

K + 69 4 70 4

co2 - 673 ATG T- 69 675 ATT TAA 68

L2 - 66 -4 66 92

co1 - 1545 ATG TAA 6 1539 ATG TAA 3

E + 69 -1 68 0

F - 66 0 65 0

nad5 - 1666 ATT T- 0 1675 ATT T- 0

H - 67 1 67 3

nad4 - 1341 ATG TAA -7 1341 ATG TAG -7

nad4l - 285 ATT TAA 1 285 ATT TAA 1

T + 68 0 63 0

P - 66 4 66 2

nad6 + 564 ATG TAA 2 561 ATG TAA 3

cob + 1140 ATG TAA -2 incomplete ATG

S2 + 66 -1

nc 1670 0

I - 67 62

nad2 + 969 ATA TAA 8 incomplete T- 0

W + 66 0 64 5

Y - 66 67 65 65

C - 65 1 64 0

nad3 - 334 ATT T- 0 334 ATT T- 0

Q - 70 0 71 0

nad1 - 919 ATA T- 0 919 ATA T- 0

L1 - 63 0 64 0

16s - 1309 0 1283 0

A - 65 0 69 0

12s - incomplete incomplete

doi:10.1371/journal.pone.0026645.t001
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A comparison of Ka/Ks ratios for 11 protein-coding genes was

given for species in the genera Drosophila, Nasonia and Philotrypesis in

Figure 2c and Table S2. Nasonia was reported to have dramatic

higher Ka/Ks ratios than Drosophila, yet the two species of

Philotrypesis had even higher ratios for most genes. This pattern

indicated elevated evolutionary rates in the two species of

Philotrypesis.

Gene rearrangements
For a comparison of the gene orders, we made a NCBI search

and downloaded all available hymenopteran mitochondrial

genomes, and then constructed a phylogeny based on co1 plus

co2 sequences. Orussus occidentalis was indicative of the ancestral

state and used as the outgroup for all other hymenoptera

mitochondrial genomes (Figure 3). The gene orders of five

genomes are listed in Figure 4 (Philotrypesis, Nasonia, Ceratosolen,

Apis, and Orusses), of which Ceratosolen was from the Agaonidae, and

Nasonia and Philotrypesis represented the Pteramalidae. The later

three genera were from the Chalcidoidea in the Proctotrupomor-

pha. Hymenopterans were reported to have many tRNA

rearrangement events in their mitochondrial genomes [3].

However, the organizations of most of the species across the

Apoidea, Ichneumnoidea, Vespoidea, Cephoidea, Evanioidea,

and Proctotrupoidea were similar to that of the outgroup,

Orussoidea, thus indicating little change. In comparison, chalci-

doids had a series of mitochondrial gene rearrangements, the most

striking being a large inversion in the region of at least five protein-

coding genes. Nasonia had positional changes in at least seven

protein-coding genes, and the large inversion affected six protein-

coding genes [6]. The inversion affected only five genes in

Ceratosolen and Philotrypesis.

Another dramatic change was located downstream of cob–trnS2.

Compared to the Pteramalidae, Ceratosolen has a relatively ancient

gene composition and order for cob–trnR–trnS2–nad1, with no

insertion between trnS2 and nad1. A large insertion occurred in

members of the Pteramalidae. In Nasonia, at least nad2, trnW, trnY,

and trnN were inserted before nad1. It was possible that additional

genes are inserted in the region but that they did not amplify [6].

In Philotrypesis, a large insertion occurred between trnS2 and nad1.

The insertion was comprised of two protein-coding genes, five

tRNAs and a non-coding region of 1670 bp.

Two additional apomorphic rearrangements occurred with

tRNAs in the Pteramalidae relative to Ceratosolen. First, trnK was

positioned in a ‘hot spot’ for rearrangements in the Hymenoptera

[11]. Subsequent to the large inversion of co1 and co3 (or nad3 in

Nasonia), the orientation of trnK reversed in Pteramalidae but did

not change in Ceratosolen. Second, among tRNAs occurring in the

middle of the two rRNAs, the position of trnV appeared to be

Figure 2. Genetic diversity of the two mitochondrial genomes of Philotrypesis. (a) Comparison of the protein-coding genes on both
nucleotide and translated amino acid sequences; (b) Genetic divergence patterns throughout the genome. Pairwise sequence divergences are
calculated with Bioedit and displayed as images suing Microsoft Excel. Genes on the x-axis are ordered according to their position in the genome
of Philotrypesis. Numbers on the y-axis indicate the gene sequence divergence between the two species; 0.1 = 10% divergence or 90% similarity.
(c) Ratio of Ka and Ks for 11 mitochondrial genes. Values of Ka and Ks are estimated with DnaSP v5 and corrected by the JC method.
doi:10.1371/journal.pone.0026645.g002
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plesiomorphic because it occurred here in other arthropods [1]. As

shown in Figure 3, the changes progressed from trnV in ancestral

hymenoptera, to trnQ-trnA in Ceratosolen, and then to trnA in the

Pteramalidae. When mapped onto the phylogeny of the

hymenopterans (Figure 3), the apomorphic rearrangements clearly

depicted the relationships of species in the Chalcidoidea.

Non-coding sequences in Philotrypesis pilosa
A 1670 bp fragment of non-coding sequences was resolved in

the genome of P. pilosa. This fragment had an AT composition of

81.88%, a little less than the average AT bias in the entire genome.

The fragment was located between trnS2 and trnI and it was

comprised of 12 duplicates plus a partial one for a total of 112 bp.

Each of the 12 full duplicates had from one to five site mutations.

The partial duplicate contained only 32 bp of the 59 duplicate

(Text S1). An AT-rich region followed the duplicates and it

had an AT composition of 95.1%. This AT-rich region had five

characteristic elements of the mitochondrial AT-rich control

region believed to be involved in the regulation of transcription

and control of DNA replication as follows: (1) a polyT stretch at

the 59end of the AT-rich region; (2) a [TA(A)]n-like stretch

following the polyT stretch; (3) a stem-loop structure; (4) a TATA

motif; and (5) a G(A)nT motif [24] (Figure 5). This control region

was reversed and located on the light strand, a common

characteristic of the Hymenoptera [25]. This inversion may have

been associated with the inversion of large fragments of protein-

coding genes, along with an inversion of the initiation of

transcription sites.

Discussion

In this study, we report the successful sequencing of the almost

complete mitochondrial genomes from two species of Philotrypesis

that shelter in the same figs. The major results are: (1) a high level

of genetic divergence occurs between the two species; (2) like other

mitochondrial genomes from the Chalcidoidea, Philotrypesis has

dramatic gene rearrangments, not only in tRNAs, but also in

several protein-coding genes; and (3) the AT-rich control region is

translocated and inverted in Philotrypesis.

Rapid genetic evolution in the Chalcidoidea and
adaptation for endoparasitoids

Two species of Philotrypesis live sympatrically inside figs on the

same tree, and they are phylogenetically and ecologically tightly

associated with one another. They have an average mtDNA

nucleotide divergence of 0.140. Most of the protein-coding genes

Figure 3. Bayesian estimation of phylogenetic relationships with mapped genome rearrangements for all hymenopterans having
whole or partial mitochondrial genomic data. The major mitochondrial genome rearrangement events are compared and mapped out for
Ceratosolen, Nasonia and Philotrypesis.
doi:10.1371/journal.pone.0026645.g003
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have higher divergences in amino acid sequences than their

corresponding nucleotide sequences. Both of these characteristics

indicate that their mitochondrial genomes evolve rapidly. Oliveira

et al. show that the mitochondrial genomes of closely related

species of Nasonia are also very divergent and evolving very quickly

[6]. Similarly, species of Ceratosolen have very divergent co1

nucleotide sequences, and this is the most conserved gene in the

group’s mtDNA genome (unpublished data).

Figure 4. Mitochondrial genome organization in five genera. Red blocks indicate the large inversion specific to the Chalcidoidea, and the
green blocks show the different and dramatically changed regions in the Chalcidoidea.
doi:10.1371/journal.pone.0026645.g004

Figure 5. Structural elements of the AT-rich region in Philotrypesis pilosa shown as reverse and its complement. All the five elements
characterized for the control region are indicated.
doi:10.1371/journal.pone.0026645.g005
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Insects in the Chalcidoidea have diverse parasitic lifestyles and

perhaps their lifestyles are associated with the rapid rate of

evolution of their mitochondrial genomes. This is suggested for

parasitic hymenopterans [5,13,14]. Accelerated evolution of the

mitochondrial genome may be associated with either the increased

rate of speciation in parasitic Hymenoptera, adaptive radiations,

or specific aspects of the endoparasitoid biology of the wasps [13].

Dramatic gene rearrangements
Mitochondrial gene rearrangement, especially for tRNAs, is

common in invertebrates [11]. However, changes in the relative

positions of protein-coding genes are rare. Nasonia is the first

species discovered to have a large inversion spanning at least six

protein-coding genes [6].

The mitochondrial genomes of C. solmsi (submitted) and two

species of Philotrypesis are now known. Similar to Nasonia, these

species also have dramatic mitochondrial gene rearrangements

and the extent of rearrangement is greatest in Nasonia and

Philotrypesis. Members of the Pteramalidae have a translocation of

the protein-coding gene nad2, the relative inversion of trnK. They

also have a change of the tRNA between two rRNAs. These

rearrangements are consistent with the observation that mito-

chondrial gene rearrangments can be used in phylogenetic

reconstructions, just like genome ‘morphology’ [12], because C.

solmsi is in the Agaonidae and Nasonia and Philotrypesis are in the

Pteramalidae (Figures 3 and 4).

A comparison of gene order among Orussus, Apis, Ceratosolen, and

the Pteramalidae reveals that Ceratosolen has more plesiomorphic

character states than species in the Pteramalidae (Figure 4). The

most striking gene reorganization occurs downstream of cob, where

Ceratosolen has an insertion of only trnR while the Pteramalidae has

a large inserted fragment comprising several tRNAs plus one or

two protein-coding genes. Further, whereas the orientation of trnK

is not changed in Ceratosolen, it is reversed in the Pteramalidae and

subsequent to the large inversion event of co1 to co3 (or to nad3 in

Nasonia) in the Chalcidoidea. A third shift involves the tRNAs

between the two rRNAs. The trnV in the outgroup taxa Orussus and

Apis shifts to trnQ-trnA in Ceratosolen, and then to trnA in the

Pteramalidae. Phylogenetic studies indicate that fig wasps do not

share a common ancestor: Different lineages of chalcids are

involved in many independent colonization events and the family

Agaonidae may be older than all other families of fig wasps

[26,27]. Our data on mitochondrial gene rearrangement supports

an older age for the Agaonidae relative to Philotrypesis. The latter

appears to have colonized figs after the origin of the fig-wasp

association (Figure 3).

The pattern of accelerated gene rearrangement may be

correlated with parasitic lifestyles, though this is still debated

[3,28]. The rate of gene rearrangements is correlated with

mitochondrial genetic diversity [29,30] and our data show that

chalcids have a rapid rate of genetic evolution. We emphasize that

among the three genera we examined from the Chalcidoidea,

Ceratosolen has the least amount of rearrangements, and Nasonia has

fewer rearrangements than Philotrypesis. For example, nad3 is not

translocated in Nasonia but it changes in Philotrypesis. With respect

to lifestyles, Ceratosolen is a galler that feeds on the floret tissues of

the fig and acts as one partner in the mutualism system of fig and

wasp. In contrast, Nasonia and Philotrypesis are both endoparasites

that feed on other insects. Indeed, Philotrypesis is parasitic to

Ceratosolen in the floret inside the syconium, a compact and dark

world, and it lives in a distinctly different oxygen environment

from Nasonia.

In conclusion, our study presents two new mitochondrial

genomes from chalcidoids including the two species of Philotrypesis.

It evaluates these genomes with respect to those of other insects in

the Chalcidoidea. This comparison leads to the discovery of rapid

rates of evolution involving elevated nonsynonymous mutations

and unusual, dramatic gene rearrangements. These changes may

be correlated with parasitic lifestyles including the evolution of fig

wasps in the peculiar syconia environment.
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