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Abstract

Background: The widespread popularity of genomic applications is threatened by the ‘‘bioinformatics bottleneck’’ resulting
from uncertainty about the cost and infrastructure needed to meet increasing demands for next-generation sequence
analysis. Cloud computing services have been discussed as potential new bioinformatics support systems but have not
been evaluated thoroughly.

Results: We present benchmark costs and runtimes for common microbial genomics applications, including 16S rRNA
analysis, microbial whole-genome shotgun (WGS) sequence assembly and annotation, WGS metagenomics and large-scale
BLAST. Sequence dataset types and sizes were selected to correspond to outputs typically generated by small- to midsize
facilities equipped with 454 and Illumina platforms, except for WGS metagenomics where sampling of Illumina data was
used. Automated analysis pipelines, as implemented in the CloVR virtual machine, were used in order to guarantee
transparency, reproducibility and portability across different operating systems, including the commercial Amazon Elastic
Compute Cloud (EC2), which was used to attach real dollar costs to each analysis type. We found considerable differences in
computational requirements, runtimes and costs associated with different microbial genomics applications. While all 16S
analyses completed on a single-CPU desktop in under three hours, microbial genome and metagenome analyses utilized
multi-CPU support of up to 120 CPUs on Amazon EC2, where each analysis completed in under 24 hours for less than $60.
Representative datasets were used to estimate maximum data throughput on different cluster sizes and to compare costs
between EC2 and comparable local grid servers.

Conclusions: Although bioinformatics requirements for microbial genomics depend on dataset characteristics and the
analysis protocols applied, our results suggests that smaller sequencing facilities (up to three Roche/454 or one Illumina
GAIIx sequencer) invested in 16S rRNA amplicon sequencing, microbial single-genome and metagenomics WGS projects can
achieve cost-efficient bioinformatics support using CloVR in combination with Amazon EC2 as an alternative to local
computing centers.
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Introduction

Genome sequencing has found widespread applications, including

basic science, biosafety and biomedical research, and is expected to

become part of the service sector, e.g. in the form of personalized

health care [1–3]. The popularity of genomics applications has largely

been driven by the introduction of new sequencing technologies that

offer increasing sequencing throughput at a decreasing cost per

nucleotide. As third-generation sequencing platforms [4] are becoming

available, the cost of sequence generation is likely to decrease even

further. Moreover, the introduction of ‘‘benchtop’’ sequencing that

aims at integrating medium-scale, affordable sequence generation into

the standard laboratory equipment [5] is following this decentralization

trend where sequencing facilities are becoming available for any size

laboratory. As a result, genomics projects no longer depend on the

large sequencing centers for sequence generation.

As production of sequence data continues to expand, sequence

processing and bioinformatics is increasingly becoming a bottle-

neck for utilizing genomics approaches. So far, the decentraliza-

tion of sequence production has not been accompanied by a

simultaneous decentralization in computational resources and

bioinformatics expertise [6]. The generation of new sequence data

is increasing faster than the capacity to computationally analyze it

[7], making the feasibility and affordability of future genomics

projects increasingly dependent on bioinformatics components

rather than on sequence generation. The resulting ‘‘bioinformatics

bottleneck’’ describes the problem where the time and cost of basic

sequence analysis may far exceed the costs of sequence generation

for many researchers.

In this context, cloud computing provides an attractive model

with a recognized potential for genomics and bioinformatics to

meet the increasing demands for decentralized large-scale
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computational resources [8]. Following the definition of the

National Institute of Standards and Technology (NIST), cloud

computing is a ‘‘model for enabling convenient, on-demand

network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction’’

(http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf).

A key technology available with the cloud is the Virtual

Machine (VM). A virtual machine is an operating system that can

be pre-packaged with all software needed for a particular analysis.

Critically, the VM is portable and can be deployed across

institutions and platforms, including desktops, laptops, servers, and

remote clouds. The use of VMs aims to overcome difficulties

distributing analysis software that have numerous dependencies

and hinders usage. This not only addresses technical challenges of

deployment and installation but also enables performance

comparisons and ultimately cost comparisons across institutions

and architectures.

Cloud computing plus virtualization provides a model to

develop and evaluate the computational infrastructure necessary

for bioinformatics processing. The availability of cloud computing

platforms with transparent pricing has generated an opportunity to

attach real dollar costs to bioinformatics workflows and to model

the associated costs for genomics applications. The Amazon

Elastic Compute Cloud (EC2; http://aws.amazon.com/ec2/)

provides on-demand compute (priced per CPU hour) and charges

additionally for network transfers to and from the cloud

(bandwidth priced per GB) and persistent data storage (priced

per GB and per month). Academic clouds are also emerging that

aim to offer similar services at no cost to academic researchers

(e.g., DIAG, http://diag.igs.umaryland.edu/; Magellan, http://

magellan.alcf.anl.gov/).

While there is considerable enthusiasm in the bioinformatics

community about cloud computing [7–10], only a few tools and

examples are available [7,11–14] that demonstrate the usability of

cloud services to support large-scale sequence processing.

Bioinformatics case studies have been published with varying

results, e.g., favoring cloud-based over local computing in both

performance and cost for microarray-based transcriptomic

analysis [15] or demonstrating comparable performance param-

eters for cloud-based and local computing and cost advantages of

local executions for metagenomics BLAST analysis [14].

In order to initiate, budget and manage genomics projects the

following questions need to be considered and adequately

addressed beforehand: (i) What are the available methods to

analyze the sequence data in order to generate publishable results

in standards-conforming formats? (ii) What are the required

computational requirements? (iii) What are the real dollar costs to

perform the analysis? (iv) Given the amount of sequence data to be

analyzed, does it make more sense to use Infrastructure as a

Service (IaaS) models, such as the Amazon EC2 cloud, or to invest

in a local grid network? The work presented here is intended to

address these questions and provide guidelines for researchers,

service providers and funding agencies, who invest in microbial

genomics projects.

To evaluate the requirements for common bioinformatics

applications in microbial genomics, we utilize the Cloud Virtual

Resource (CloVR) package (http://clovr.org/) [16]. This software

consists of a single virtual machine (CloVR VM), which contains

pre-installed and pre-configured open source programs bundled

into fully automated sequence analysis pipelines. CloVR supports

a broad variety of small to large-scale microbial genomics

applications of current and next-generation sequencing platforms

with four automated pipelines: (i) 16S rRNA-based microbial

community composition analysis of Sanger and 454 sequence data

(CloVR-16S) [17]; (ii) taxonomic and functional community

composition analysis of metagenomic whole-genome shotgun

(WGS) sequence data (CloVR-Metagenomics) [18]; (iii) bacterial

single-genome WGS Sanger, 454 or Illumina sequence assembly

and annotation using the IGS Annotation Engine (CloVR-

Microbe) [19]; and (iv) large-scale BLAST searches of Sanger,

454 or Illumina sequence data (CloVR-Search).

Methods

Analysis protocols
Four analysis protocols (CloVR pipelines) were utilized in this

study, including (i) a parallelized BLAST [20] search protocol

(CloVR-Search 1.0); (ii) a comparative 16S rRNA sequence

analysis pipeline (CloVR-16S 1.0) [17]; (iii) a comparative

metagenomic sequence analysis pipeline (CloVR-Metagenomics

1.0) [18]; and (iv) a single microbial genome assembly and

annotation pipeline (CloVR-Microbe 1.0) [19]. Figure 1 gives an

overview of the processes involved in the CloVR-16S, CloVR-

Metagenomics and CloVR-Microbe pipelines. Detailed pipeline

descriptions, including pipeline version numbers, lists of programs

used by the pipeline program version numbers and applied options

if different from the defaults, can be found in the supplementary

material (Text S1).

The 16S rRNA protocol allows for intra- and inter-group

comparative analysis (a- and b-diversity), and is based on methods

from Mothur [21], Qiime [22], the RDP Bayesian classifier [23],

and Metastats [24]. CloVR-16S calculates the number of non-

redundant sequences within the total dataset and uses a threshold

of 50,000 above which the computationally expensive distance

matrix calculation, which is part of the Mothur component of the

pipeline, is not performed. The metagenomics protocol performs

clustering of redundant sequences, a BLAST-based taxonomic

assignment against the NCBI microbial genome Reference

Sequence collection (RefSeq) [25] (BLASTN) and a functional

assignment against the Clusters of Orthologous Genes (COGs)

[26] databases (BLASTX) and further allows for comparative

composition analyses between different sequence datasets, using

Metastats. The single microbial genome analysis protocol is based

on the IGS Annotation Engine [27] (http://ae.igs.umaryland.

edu), with the addition that sequence assembly is performed using

Celera Assembler [28] for Roche/454 and Sanger platforms-

derived sequence data and Velvet [29] for Illumina platform-

derived sequence data. This protocol performs a comprehensive

annotation including CDS prediction with Glimmer3 [30],

ribosomal RNA (rRNA) gene identification with RNAmmer

[31], transfer RNA (tRNA) gene identification with tRNAscan-

SE [32], and two types of homology searches using BLASTX

against UniRef100 and HMMER [33] against the Pfam [34] and

TIGRFAM [35] domain databases.

Pipeline execution
All analyses to evaluate the resources and costs associated with

several typical analysis protocols in microbial genomics were

performed using the CloVR VM version beta-0.5 (build clovr-

standard-2011-12-04-22-00-04) downloaded from the CloVR

project website (http://clovr.org). The technical details of the

CloVR VM implementation are described in detail in a separate

publication [16]. Briefly, CloVR is a VM image based on Ubuntu

Linux 10.10 that runs on a local computer and optionally utilizes

the cloud, where a distributed architecture allows for high-

throughput parallel processing using multiple CPUs. Pipelines are
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Figure 1. Overview of the CloVR-supported microbial sequence analysis protocols. 1. CloVR-16S supports analysis of pyrotagged amplicon
pool sequence data as well as individual samples sequence data, using components from the Mothur [21] package for preprocessing, alignment,
operational taxonomic unit (OTU) assignment and alpha diversity estimation. QIIME [22] components are used for sequence clustering, alignment,
phylogenetic inference and beta diversity estimation. Sequence reads are assigned to taxonomies using the RDP classifier [23]. Additional
visualizations are generated with R script implemented in CloVR. Differentially abundant taxa determined with Metastats [24]. 2. CloVR-Metagenomics
supports functional and taxonomic assignments of non-redundant whole-genome shotgun (WGS) sequence data from metagenomic samples. Reads
are classified based on BLASTX and BLASTN searches against functional (COG [26], optionally KEGG [46], eggNOG [47]) and taxonomic (RefSeq [25])
reference databases, respectively. The results are statistically evaluated using Metastats and visualized using R scripts implemented in CloVR. 3. CloVR-
Microbe supports microbial whole-genome sequencing projects, including Illumina and 454 or Sanger sequence assembly with Velvet [29] and Celera
assembler (CA) [28], respectively. Gene predictions and annotations are performed using the complex IGS standard operating procedure for
automated prokaryotic annotation (IGS) [27].
doi:10.1371/journal.pone.0026624.g001
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executed using the Ergatis workflow system [36] and utilize Sun

Grid Engine (http://wikis.sun.com/display/GridEngine/Home)

for job scheduling.

Computational resources
The local computer used for evaluation was a 64-bit quad core

(Intel Xeon E5520 2.27 GHz CPU) with 4 gigabytes of RAM.

For local execution, CloVR was run using VMware Player

version 2.0.5 build-109488 (http://vmware.com) configured to

use a single CPU core and 2012 MB of memory. Amazon EC2

provides numerous instance types with varying CPU speeds,

available RAM and storage (http://aws.amazon.com/ec2/

#instance). Previous work in [14] showed the choice of c1.xlarge

to be most cost efficient amongst the choices for applications

such as BLAST. The c1.xlarge instances provide 8 virtual CPU

cores, 8 GB RAM per instance, and 400 GB of local temporary

disk storage. In this study, each pipeline was run on a separate

cluster of instances within the cloud consisting of one master

instance and zero or more worker instances. All master instances

utilized the c1.xlarge instance type, except for CloVR-Microbe

runs on Illumina sequence data that utilized m2.26large and

m2.xlarge instance types. All worker instances utilized c1.xlarge

instances, which at the time of preparing this manuscript were

priced at $0.68 per CPU hour (CPU hr). Assembly and

annotation of Illumina sequence data required master instances

with RAM in excess of the c1.xlarge instance capacity. In the

case of the assembly and annotation run on single-read Illumina

sequence data, the corresponding master instance was an

m2.26large instance ($1.00/CPU hr), while for the paired-end

Illumina run we requested an m2.xlarge master Instance ($0.50/

CPU hr). Associated pipeline costs on Amazon EC2 were

calculated using cluster performance charts, visualized with the

Ganglia tool (http://ganglia.sourceforge.net/), which describe

the number of instances utilized in each cluster over time.

Pipeline runtimes were obtained from the Ergatis workflow

system [36].

Spot market bid-price simulations
To simulate runtime distributions within the Amazon EC2

spot market, we first collected corresponding hourly spot prices

for the c1.xlarge instance type from October 20, 2010 to

January 24, 2011. Assuming a hypothetical pipeline runtime of

120 CPU hours and a range of bid prices ($0.27/CPU hr to

$0.80/CPU hr), we simulated the actual (wall-clock) runtime of

a pipeline from random starting points in the collected spot

market price data. Given a bid price b and a CPU hr

requirement c, 500 random starting points were picked between

October 20, 2010 and January 24, 2011, and the runtime was

calculated assuming no processes were running whenever the

spot price was above the bid price b. For example, if the bid

price was constantly greater than or equal to the spot price, the

actual runtime would be c, because the requested price was

always met. Alternatively, if the bid price fell below the spot

price for a single hour, then no work was done in that hour and

the total actual runtime was c +1. In these simulations, if a

simulated pipeline extended beyond January 24, 2011, the

remaining runtime was calculated as continued from the

beginning of the time-series. Runtime distributions were

visualized in R (http://www.r-project.org/). To support the

dynamic nature of the spot market, CloVR utilizes a workflow

system that supports resuming pipelines from point of failure

[36], allowing for reprocessing of work units that fail on hosts

that are terminated due to rising spot market prices.

Results

Computational requirements of microbial genomics
applications

Representative datasets from two next-generation sequencing

platforms, the Roche/454 GS (GS FLX and GS FLX Titanium)

and Illumina GAIIx (Table 1), were processed with several

pipelines for microbial sequence analysis (CloVR-16S, -Microbe,

-Metagenomics, and -Search) (Fig. 1, see also Tables S1, S2, S3) to

determine processing requirements for typical microbial genome

projects (Table 2). This data provides guidelines that can help

identify applications that are amenable to execution on a local

computer and determine those that benefit particularly from

additional resources of the cloud. The datasets evaluated include

typical outputs of single or multiple sequencing reactions of the

Roche/454 and Illumina platforms or fractions thereof and stem

from published data from sequencing projects that received wide

recognition in the microbial genomics field [37–42] as well as

unpublished data from ongoing sequencing projects at the Institute

for Genome Sciences (Table 1).

CloVR-16S was always run on a single CPU, either on a local

desktop or on the c1.xlarge instance of the Amazon EC2. All runs

finished in less than three hours (see Table S1 for a comparison of

local and EC2-based runs). Processed datasets included up to

,900 K Roche/454 GS FLX reads from ,400 samples. Besides

the dataset size, runtimes were mostly affected by the species

diversity within the dataset. The 530 K humanized mouse gut

sequences from 215 different samples [41], for example, which

contain a total of 14,363 operational taxonomic units (OTUs),

were processed in about the same time as the 901 K human

vaginal sequences from 392 samples [40], which only contain

4,967 OTUs.

CloVR-Microbe and CloVR-Metagenomics analyses of all

datasets were performed exclusively on Amazon EC2 where all

runs finished in less than 24 hours (Table 2). Dataset sizes for

CloVR-Metagenomics ranged from ,600 K reads (454 GS FLX

Titanium), corresponding to 1.2 full sequencing plates, to 5.8

million reads (454 GS FLX), corresponding to 11.6 full sequencing

plates, all of which were processed in less than six hours on

Amazon EC2. Additional time due to upload of input and

download of output was consistently less than one hour. Input data

sizes for CloVR-Microbe were representative of typical microbial

genome project work loads and included sequence read numbers

corresponding to a quarter (250 K) or a half (500 K) plate of 454

GS FLX Titanium and 1/5 (8 million) of an Illumina GAIIx lane

(single read and paired-end read libraries). Pipeline outputs were

found to be in agreement with results from previously processed

similar projects in terms of number of detected OTUs, relative

OTU compositions, principal coordinate analysis plots of OTU

assignments (CloVR-16S), number of functionally and taxonom-

ically assigned reads (CloVR-Metagenomics), number and lengths

of contigs, number and functional annotation of genes (CloVR-

Microbe). Cluster sizes on Amazon EC2 were configured

automatically based on input data sizes using BLAST and other

runtime predictions as implemented in CloVR [16]. The estimates

for our evaluation ranged from 14 to 15 machine instances,

comprising up to 160 virtual CPUs (Table 2).

BLASTN searches of metagenomic WGS sequence data against

the NCBI RefSeq collection were performed on Amazon EC2

using CloVR-Search. Using the multi-CPU support of Amazon

EC2, ,600 K reads of 454 GS FLX Titanium, corresponding to

0.6 full plates could be processed in less than two hours (64 CPUs

maximum usage). In comparison, a BLASTX search of a similar

number (500 K) of shorter (75 bp) Illumina GAIIx reads against
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the non-redundant protein database at NCBI (NCBI-NR compris-

ing 14.7 M sequences, ,5000 M residues), which produced about

the same percentage of matches (3.2% vs. 3.4%) took about 10 times

longer to complete (,11 hours), using 2.5 times the amount of

CPUs (160 CPUs maximum usage). For the Illumina GAIIx

platform, 500 K reads correspond to only 1/6 of the average

sequencing output of a single channel (eight lanes per flow cell).

The impact of different analysis protocols on runtime and cost for

metagenomic WGS analysis was determined by comparing an

assembly-based (CloVR-Microbe), a gene-prediction-based and a

gene prediction-independent (CloVR-Metagenomics) protocol and

a BLAST search (CloVR-Search) on the same dataset (Table S2).

Real dollar values of bioinformatics sequence analysis
applications

Real dollar costs were calculated for all microbial sequence

analyses performed with the CloVR protocols on Amazon EC2, in

order to provide guidelines for costs associated with microbial

genomics projects (Table 2). The costs include overhead

introduced by the CloVR VM to make use of the cloud

environment, e.g. time for data upload and download and to

prepare input and output data. Table 2 also provides example

network transfer times for upload to and download from Amazon

EC2, although such times can vary substantially based on the

network environment. Several large datasets that are used as

reference data for the CloVR pipelines, e.g. the UniRef100

protein database for CloVR-Microbe comprising 3.4 GB of

compressed data, were hosted permanently on the Amazon

Simple Storage Service (http://aws.amazon.com/s3/). This

service provides data storage inside the cloud network and was

used to reduce the need for data transfer over the Internet when

executing in the cloud. During the pipeline execution, the free

ephemeral instance storage was used as temporary storage and all

output data was compressed and downloaded to the local desktop

upon pipeline completion. CloVR is configured to automatically

shut down all CloVR VMs on the cloud upon pipeline completion

in order to avoid charges for idle instances and persisting storage.

Based on the CloVR runs on Amazon EC2, the cost of each 16S

rRNA community analysis was less than $10. For the sequence

data generated with the short amplicon 454 sequencing protocol,

costs ranged from less than $1 to $2.72. Since all pipelines finished

in less than two hours, the costs associated with Amazon EC2

charges for instances being active during upload and download

times constitute a significant fraction of the total cost (Table 2), but

are nominally small at $0.68 per EC2 c1.xlarge instance hour.

All CloVR-Metagenomics and CloVR-Microbe runs were

completed at costs of less than $100. Sequence analyses with the

CloVR-Metagenomics pipeline had an associated cost of between

,$23 and ,$56; CloVR-Microbe runs had costs of between ,$39

and ,$62.

Capacity and optimization of processing pipelines
The multi-CPU capabilities of the cloud allow for decreased

runtime for pipelines involving analysis steps that can be

parallelized, such as CloVR-Microbe and CloVR-Metagenomics,

which contain BLASTX and BLASTN sequence comparisons

(Fig. 1). At the same time, partitioning the analysis with CloVR

into multiple parallel processes on different CPUs of the same

instance or even across different instances of the same cluster

involves copying of reference data, increases the amount of data

transfer between instances and incurs additional processing

overhead [16]. To determine differences in the CloVR-Microbe

Table 1. Example datasets used for CloVR pipeline benchmarking.

Dataset Data type
Sequencing
platform Library type1 Total reads Units2

Avg. read
length [bp] Size [MB] Samples

CloVR-Search

Infant gut WGS [38] WGS 454 Titanium SE 595816 0.6 plates 244 145.3 12

Metahit 500 K [39] WGS Illumina GAII - 5000003 1/80 channels 75 37.5 1

CloVR-16S

Humanized mice [41]4 Amplicon 454 GS FLX SE 530030 1.1 plates 232 122.5 215

Infant gut 16S [38] Amplicon 454 GS FLX SE 399127 0.8 plates 179 95.1 63

Human vagina [40] Amplicon 454 GS FLX SE 901264 1.8 plates 223 200.6 392

CloVR-Metagenomics

Obese twins [42] WGS 454 GS FLX SE 999990 2 plates 219 218.9 18

Infant gut WGS4 WGS 454 Titanium SE 595816 0.6 plates 244 145.3 12

Nine biomes [37] WGS 454 GS FLX SE 5785371 11.6 plates 109 631.2 45

CloVR-Microbe

Escherichia coli 250 K WGS 454 Titanium PE (3 kbp) 2500003 0.25 plates 279 69.7 1

Escherichia coli 500 K4 WGS 454 Titanium PE (8 kbp) 5000003 0.5 plates 367 183.9 1

Escherichia coli 8 M SE WGS Illumina GAII SE 80000003 0.2 channels 36 288 1

Escherichia coli 8 M PE WGS Illumina GAII PE (3 kbp) 80000003 0.2 channels 49 392 1

Acinetobacter baylyi 250 K WGS 454 Titanium PE (8 kbp) 2500003 0.25 plates 338 84.7 1

1Abbreviations: bp, basepairs; SE, single-end; PE, paired-end (in parentheses: insert size); WGS, whole-genome shotgun.
2References for unit sizes: Roche/454 GS GS FLX, 500 K reads per plate (two half plates); Roche/454 GS GS FLX Titanium, 1 M reads per plate (two half plates); Illumina
GAII, 40 M reads per channel (eight channels per flowcell).

3Trimmed datasets.
4Dataset used for Figures 2 and 3.
doi:10.1371/journal.pone.0026624.t001
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runtimes and associated costs depending on the number of CPUs

used, the same 454 GS FLX Titanium dataset, 500 K reads

corresponding to one full plate of 8 kbp paired-end sequences, was

run with different cluster sizes on Amazon EC2 (Fig. 2, Table S3).

Based on this example, the lowest runtimes and costs achieved fell

between 72 CPUs (23 hours, $58) and 120 CPUs (20 hours, $60).

These numbers represent a runtime and cost improvement of up

to 36 hours and $16 compared to a 56 hour-run with 16 CPUs for

$74. A further increase of the cluster size to 172 CPUs did not

result in runtime improvements but resulted in increased cost ($82)

due to payment for under-utilized instances. Inefficiencies in

pipeline implementation resulted in increased competition for

resources, longer runtimes, and thus increased costs for clusters

containing two and three instances (16 and 24 CPUs, respectively).

Future work on optimizing the CloVR pipelines is expected to

reduce runtimes and costs on smaller clusters. A local run on a

single-CPU machine was canceled after 14 days and was

extrapolated to require in excess of 24 days runtime.

To estimate the amount of sequence analysis that is affordable

for a given dollar value, the number of analysis runs using three

different protocols (CloVR-16S, CloVR-Metagenomics and

CloVR-Microbe) was plotted against the corresponding cost,

using results from Table 2 (Fig. 3). These costs were compared to

the $130 K estimated as average annual cost to set up and

maintain a local cluster of 240 CPUs for three years as described

by Dudley et al. [15]. Using the Dudley estimates, for the cost of a

local cluster, 43,333 runs of CloVR-16S; 5,416 runs of CloVR-

Metagenomics; and 2,166 runs of CloVR-Microbe can be

processed each year on Amazon EC2. For single whole-genome

microbial sequencing projects, with a theoretical annual output of

730 datasets per 454 GS FLX Titanium sequencer (one full plate

per day, two single-genome datasets per plate), up to three

sequencing machines can be supported using Amazon EC2 at

current prices, using CloVR-Microbe benchmark protocols,

before the estimated cost of a local cluster is reached. It should

be noted that the interpretation of these results is limited by the

fact that the comparison does not consider utilization rates on the

local cluster, which is likely to be used for a different applications,

rather than to exclusively support a single protocol.

Realizing cost savings using excess capacity in the
Amazon EC2 spot market

The Amazon EC2 spot market allows customers to place bids

on unused cloud resources and utilize instances for as long as the

bid exceeds the current spot price (http://aws.amazon.com/ec2/

spot-instances/). During periods of weak demand, the spot market

provides the ability to utilize excess resources at a discounted price.

Over the period of the past year, the spot market price for the

Table 2. Cost and runtime parameters of CloVR pipeline runs on example datasets.

Dataset
Upload
time

Pipeline
runtime

Download
time

Total
cost1

Max. VM
instances2

Max.
CPUs QC

CloVR-Search RefSeq
matches

Infant gut WGS [38],
BLASTN against RefSeq

3 min 1 hr 26 min 20 min $11 8 64 34.3

Metahit 500 K [39],
BLASTX against NR

11 min 10 hr 42 min 17 min $151 20 160 3.2%

CloVR-16S OTUs

Humanized mice [41] 42 min 1 hr 30 min 12 min $3 1 8 14363

Infant gut 16S [38] 3 min 42 min 10 min $1 1 8 3447

Human vagina [40] 1 hr 17 min 1 hr 51 min 14 min $3 1 8 4967

CloVR-Metagenomics3 nr reads RefSeq
matches

COG
matches

Obese twins [42] 8 min 2 hr 25 min 24 min $30 20 160 93.6% 33.3% 29.6%

Infant gut WGS 7 min 2 hr 17 min 29 min $24 15 120 98.2% 35.2%4 33.5%

Nine biomes [37] 15 min 5 hr 35 min 39 min $56 20 160 89.9% 9.3% 5.6%

CloVR-Microbe Scaffolds/
Contigs

N505 CDS6

Escherichia coli 250 K 24 min 16 hr 21 min 52 min $55 14 112 8/414 25 kbp 6313

Escherichia coli 500 K 20 min 20 hr 23 min 50 min $60 15 120 37/141 183 kbp 5827

Escherichia coli 8 M SE 12 min 15 hr 44 min 37 min $62 15 120 553/553 17 kbp 4803

Escherichia coli 8 M PE 16 min 15 hr 2 min 44 min $44 15 120 481/481 18 kbp 4464

Acinetobacter baylyi 250 K 20 min 9 hr 46 min 37 min $39 15 120 4/38 262 kbp 3417

1Rounded to the next full dollar.
2VM instances are linked together as a cluster for parallel processing on the cloud. The number of instances in a cluster can change during pipeline execution. The
master instance is included.

3The standard CloVR-Metagenomics pipeline refers to the gene prediction-independent protocol.
4For the CloVR-Metagenomics pipeline sequence reads are clustered, representative reads for each cluster searched against the reference database, and matches of the
representative reads assigned back to all reads from the cluster, resulting in a slightly larger number of overall matches than for the comparable CloVR-Search pipeline.

5Scaffold or contig N50 is a weighted median statistic such that 50% of the entire assembly is contained in scaffolds or contigs equal to or larger than this value.
6CDS, coding sequences.
doi:10.1371/journal.pone.0026624.t002
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c1.xlarge instance averaged $0.26 compared to an on-demand

price of $0.68. This variable pricing is well-suited to processing

needs that are not time critical, since analyses purchased under

this model will only proceed when the provided bid price is above

the current market price for the resource. This market model also

provides the ability to predict the expected completion time of a

pipeline for a particular bid price using historical pricing data.

To evaluate potential cost savings and associated runtime

increases that could be achieved with the Amazon EC2 spot

market, the expected completion times were estimated for bids of

$0.27 to $0.80 using a hypothetical analysis requiring 120

c1.xlarge instance hours (960 c1.xlarge CPU hours) for completion

(Fig. 4). The expected completion time was predicted for each bid

price using the recorded pricing data for the past month. Based on

this model, at a bid price of $0.68 the analysis was expected to

execute in ,120 hours, while never taking longer than

,145 hours. By comparison, a $0.27 bid, which during the

recorded month was not fulfilled during times of peak demand,

when the market price rose above the bid, realized savings of 40%

for the user. A bid of $0.27 was estimated to result in an average

runtime of ,185 hours, 50% more than when using the full on-

demand price. Altogether, predicted runtimes for this bid ranged

from ,155 hours (29% slower) to ,225 hours (87% slower). In

this example, runtimes were estimated based on a task that was

executed on a single CPU, whereas many bioinformatics pipelines

utilize multiple CPUs in parallel across several instances, thereby

reducing the actual pipeline runtime.

Discussion

In this study, we explore the costs and resources required for

microbial sequence analysis using pre-packaged protocols in

CloVR [16]. By packaging these pipelines into a single automated

framework, the CloVR virtual machine, the performance of

protocols between platforms and costs on commercial clouds can

easily be compared and evaluated.

Figure 2. Cost and performance of CloVR-Microbe using different cluster sizes. A) Steps of the CloVR-Microbe pipeline can be executed in
parallel to improve performance as shown by plotting pipeline runtimes (blue) and associated costs (red) against the number of CPUs used to
perform the analysis on Amazon EC2. B) Using this data, the theoretical maximum throughput per year (blue) as well as associated costs (red) of
analysis can be extrapolated. As an example, the output of a single 454 GS FLX Titanium machine, run every other day with two single microbial
genomes per sequencing plate (365 total runs), can be processed on Amazon EC2 using 60 CPUs (or eight Amazon EC2 c1.xlarge instances) for less
than $25,000, as indicated by the dashed red and blue lines. Inefficiencies in pipeline implementation resulted in increased competition for resources,
longer runtimes, and thus increased costs for clusters containing 2 and 3 instances (16 and 24 CPUs, respectively).
doi:10.1371/journal.pone.0026624.g002

Figure 3. Costs and throughput of CloVR-16S, CloVR-Metage-
nomics and CloVR-Microbe analysis runs. Costs for single CloVR-
16S (blue), CloVR-Metagenomics (red) and CloVR-Microbe (black) runs
of comparable datasets (,500 K 454 GS FLX or GS FLX Titanium reads,
see Table 1) on Amazon EC2 were extrapolated to calculate the number
of runs that are obtainable for a given dollar value. The black dashed
line represents the average annual cost ($130 K) to set up and maintain
a local cluster of 240 CPUs for a three years from Dudley et al. [15].
Numbers in boxes show how many runs of CloVR-16S, -Metagenomics,
and -Microbe can be afforded for the same cost. As an example,
approximately three 454 GS FLX Titanium sequencers (two genomes
per sequencing plate and one run per day, adding up to 2,190 datasets)
or one Illumina GAIIx sequencer (five genomes per lane, eight lanes per
sequencing flow cell and one run per week, adding up to 2,080
datasets) can be processed with CloVR-Microbe on Amazon EC2
annually for the same cost as estimated to set up and maintain the 240
CPU local cluster. The local cluster would, however, provide resources
exceeding those required for each of the projected analysis protocols.
doi:10.1371/journal.pone.0026624.g003
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The automated pipelines in CloVR were selected with the

intention of packaging existing community-supported analysis

protocols. The protocol, CloVR-Microbe, combines a sequence

assembly step with the IGS Annotation Engine [27]. With the

support of a large local grid cluster, the IGS Annotation Engine

was designed to be thorough for genome annotation but not

optimized for speed or efficient CPU usage, and many alternative

genome annotation protocols exist, e.g. RAST [43], DIYA [44].

To our knowledge, CloVR-Microbe represents the first automated

pipeline that combines sequence assembly and annotation in an

automated pipeline that runs on the desktop.

The CloVR-16S pipeline was designed to combine compo-

nents of several widely used 16S rRNA sequence analysis

protocols, without making the entire workflow computationally

too complex to process even large sequence datasets (.200

samples, .500 K sequences). The current implementation of

CloVR-16S supports a distance matrix-based operational taxo-

nomic unit (OTU) assignment and a-diversity analysis with

Mothur [21], direct taxonomic classifications of sequence reads

with the RDP classifier tool [23] and microbial community

analysis with the QIIME tool, which has a strong focus on tree-

based metric for b-diversity analysis [22]. A critical component of

CloVR-16S in its current implementation is the threshold of

50,000 non-redundant sequences above which the Mothur

component with its computationally expensive distance matrix

calculation is not carried out.

Metagenomics projects are usually designed to generate the

most sequence data per invested dollar and, thus, often involve

large-scale next-generation sequencing. Due to the resulting

dataset sizes, metagenomics analysis protocols often rely on the

direct classification of individual sequence reads by BLAST,

instead of using sequence assembly, which is computationally

demanding. Similarly, the CloVR-Metagenomics pipeline was

built to examine and compare taxonomic and functional microbial

community compositions within and between metagenomic

samples using two BLAST searches against a bacterial genome

database (BLASTN against NCBI’s RefSeq) and against a

functionally annotated protein database (BLASTP against NCBI’s

COG). The CloVR-Search pipeline was designed to provide

support for large-scale BLAST comparisons using the cloud multi-

processor architecture. A direct BLASTN comparison of each

sequence read against the NCBI RefSeq nucleotide database with

CloVR-Search was shown to provide runtime improvements albeit

without producing the visual and statistical evaluations of the

results that are generated by the CloVR-Metagenomics pipeline.

BLAST search results alone can be used in downstream

applications, e.g. with the MEGAN tool, which utilizes pre-

computed BLAST result to calculate taxonomic classifications of

metagenomic sequence data [45].

The comparison of two pipelines for processing metagenomics

WGS data demonstrates that the choice of analysis protocols is

most critical and will be the primary determinant of performance

rather than the execution environment. Runtimes and costs for

the same dataset differed significantly, depending on whether the

data was processed using assembly-based, gene prediction-based

or gene prediction-independent protocols (Table S2). A recent

publication suggests that for the analysis of metagenomics WGS

data, an exhaustive translated BLASTX against NCBI-NR may

be prohibitively time-consuming and expensive on the cloud [14].

Similarly, based on our calculations, the BLASTX protocol is

expensive for searching Illumina short read data (11 hours, $150

for 500 K reads), such as those generated from the recent

MetaHIT study on the human gut microbiota [39]. In summary,

these results support the notion that the bioinformatics bottleneck

of next-generation sequence data will not be completely

addressed simply by scaling up the computational resources

without utilization of methods specifically designed for large data

volumes.

Cloud computing has caused notable excitement in the

bioinformatics community as a potential solution to the so-called

‘‘bioinformatics bottleneck’’, resulting from the increasing pro-

duction of second- and third-generation sequence data with high

computational demands for analysis [7,8]. There is, however,

concern and uncertainty over the costs of using commercial cloud

resources. We decided to use the popular Amazon EC2 cloud as a

model for evaluating analysis costs. Importantly for budgeting, the

costs at Amazon EC2 are transparent and directly obtainable for

any workload, allowing for attaching real dollar costs to

computational analyses. Our results show that bioinformatics

support for microbial genomics can be provided at a competitive

price, provided analysis protocols are chosen carefully. In addition,

as many analysis needs are not time-critical and can wait for off-

peak hours, a bidding market for computational resources, such as

the Amazon EC2 Spot Market, provides an intriguing model for

further cost savings. Since these costs depend substantially on the

choice of analysis protocol, the results in this study can also be used

as benchmarks for comparing costs and resources of other analysis

protocols.

The Amazon EC2 cloud can also serve as a model to evaluate

the computational infrastructure needed to perform common

microbial genomics applications. Our tests with the CloVR

protocols show that typical workloads of small to midsize

sequencing facilities are economically processed either locally, on

a single desktop machine (CloVR-16S), or online using the

Amazon EC2 cloud (CloVR-Metagenomics, -Microbe, -Search).

The computational resources deployed for the evaluation were

modest, utilizing no more than 20 virtual machine instances, eight

CPUs per instance and 152 CPUs at a maximum, indicating that

use of comparable resources through shared local computing

infrastructures is also feasible. As multi-core CPUs are increasingly

becoming accessible on the desktop computer market, the ability

to process larger data on local desktops is also likely to increase in

the future.

Our evaluation datasets were small (631 MB maximum) and

network transfers were not prohibitively long (,1.5 hours

maximum), although we do expect that network transfer can

contribute significantly to overall runtime for larger datasets or

lower speed connections. Although raw data output sizes may

increase from new sequencing platforms, in the case of single-

genome projects, the amount of raw sequence data necessary for

Figure 4. Predicted runtimes using varying bid prices for the
Amazon EC2 spot market. An analysis requiring 120 CPU hours was
used an example to estimate the expected completion time for
different bid prices for the Amazon EC2 c1.xlarge instance, ranging from
$0.27 to $0.80 (on-demand price: $0,68).
doi:10.1371/journal.pone.0026624.g004
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whole genome assembly and annotation is not expected to grow

dramatically in the near future. The overhead costs resulting

from data transfers, either because Amazon EC2 charges directly

for the transfer itself ($0.1 per GB of inbound and $0.15 per GB

of outbound data transfer, April 2011) or for the instance, which

is online during the transfer, are insignificant in our evaluations,

totaling no more than a few dollars. It is noteworthy that

Amazon allows for data import using physical storage devices

sent to the Amazon Web Services (http://aws.amazon.com/

importexport/).

In a recent publication the Amazon EC2 cloud was reviewed

favorably as an alternative to local compute clusters for large-scale

microarray data analysis [15]. In the same publication the cost to

set up a local compute cluster (240 CPUs) was estimated as about

$130 K per year (for three years total). Using our example

calculations and an average of two datasets per 454 GS FLX

Titanium sequencing run (500 K reads each) 59, 7 and 3 454 GS

FLX Titanium sequencers running daily could be supported with

the CloVR-16S, CloVR-Metagenomics and CloVR-Microbe

protocols, respectively. However, it should be noted that the

capacities of the local compute cluster used for the comparison

would exceed those required for the analysis examples. The excess

in computational capacities provided by the local cluster would

allow for resource sharing with additional users to reduce overall

costs or provide computational support for bioinformatics research

and development, which can be critical especially in the academic

environment.

In general, local cluster setups and cloud computing services are

best compared when taking into account average utilization rates

and expectations on process runtimes. The on-demand model of

the cloud makes it most attractive when compared to a local

cluster that is under-utilized since paying for idle cycles is avoided.

Local clusters, on the other side, can be better designed to meet

the exact requirements for particular analysis types, for example

by providing high memory machines or fast networking, which

may be unavailable on the cloud. In academic or other research

settings, cost savings for local setups are realized by integrating the

local compute cluster into a core facility, allowing for multiple user

support, shared expenses for maintenance, and operation at levels

closer to maximum capacities. In cases where a local resource

achieves a very high utilization rate, the benefits and cost savings

of an on-demand model may disappear. However, there is a

considerable challenge in right-sizing the resource to both achieve

a high utilization rate and deliver results in a reasonable amount of

time.

The microbial genomics field is in the middle of experiencing a

fundamental re-organization, as sequence generation is increas-

ingly becoming decentralized and introduced as a standard

application not only in smaller research laboratories but also the

clinical and public health sector. This development requires a

concomitant decentralization of the sequencing-associated bioin-

formatics, i.e. widespread access to bioinformatics expertise and

computing infrastructures, as well as improved transparency of

associated cost and required infrastructures. The CloVR project

aims at closing the bioinformatics gap by providing automated

pipelines and support for cloud computing from the local desktop

(http://clovr.org). The results presented, which use CloVR in

combination with the Amazon cloud, attach transparent cost and

runtime calculations to common microbial genomics applications.

All benchmarks provided here are specifically tied to the CloVR

analysis protocols, CloVR implementation, Amazon cloud

hardware, and size of data sets, and changes in any of these

areas may alter the benchmarks. Users should therefore consider

carefully if the examples provided will apply to a particular

sequence analysis task. However, the results presented here show

that microbial sequence analysis is generally affordable to the

broad user community and that cloud computing provides an

economical resource for microbial genomics analysis pipelines,

such as those implemented in CloVR. As virtualization and cloud

computing have found widespread applications in sequence

analysis, we expect the ability to evaluate and compare the cost

and scalability of bioinformatics applications will increase in the

future.

Supporting Information

Text S1 Detailed descriptions, including pipeline ver-
sion numbers, lists of programs used by the pipeline
program version numbers and applied options if
different from the defaults for CloVR-16S v1.0, CloVR-
Metagenomics v1.0 and CloVR-Microbe v1.0.

(PDF)

Table S1 Comparison of CloVR-16S runtimes executed
locally and on Amazon EC2.

(XLSX)

Table S2 Variations in cost and runtime parameters of
different CloVR pipeline runs on the same metage-
nomics WGS dataset (Infant gut WGS). Three different

analysis protocols (CloVR-Microbe, CloVR-Metagenomics and

CloVR-Search) were evaluated for their impact on runtime and

cost for metagenomic WGS analysis. All analyses were run on the

Infant Gut Microbiome WGS input dataset [38], corresponding to

0.6 full plates of single-end 454 GS FLX Titanium sequences. The

CloVR-Microbe pipeline was included to provide a comparison of

assembly-based and assembly-free analysis methods. We note that

the Glimmer gene finding tool [30], which is part of the CloVR-

Microbe protocol, was optimized for large contiguous assembled

sequence data and is known to perform less optimally on short

sequence fragments that contain a large number of truncated

coding sequences. Two variations were used of the CloVR-

Metagenomics protocol: i) The first searches each nucleotide

sequence read against the COG database [26] by BLASTX, using

all six nucleotide sequence frames translated into protein

sequences, whereas ii) the second first runs a gene prediction with

Metagene [48], before translating the identified genes into protein

sequences and running a BLASTP search against the COG

database. A BLASTN comparison of each read against NCBI’s

RefSeq database performed with CloVR-Search was used as the

most basic analysis protocol.

(XLSX)

Table S3 Runtime and cost comparisons of CloVR-
Microbe executions on the same input dataset run with
different Amazon EC2 cluster sizes.

(XLSX)
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