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Abstract

Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil
palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi
origin. The cross out-yielded the average by 8–21% in four trials all of which yielded comparably to the best current
commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain -
from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed
AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16
linkage groups each. The number of markers per group ranged from 8–47 in the former and 12–40 in the latter. The
integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage
group was 15–57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from
77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population
and also being expanded to include yield related QTLs.
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Introduction

The oil palm, Elaeis guineensis Jacq., is the world’s most

productive oil crop. It is only grown in a belt stradding the

equator, usually from 10uN to 10uS, in smallholdings to large

plantations, and the world’s biggest producer, Federal Land

Development Authority Malaysia (FELDA), is a unique combina-

tion of both. A key contributor to FELDA’s production, in such

diverse socio-agro environments, is quality seeds from its large

breeding programme. It is the premier oil palm seed supplier in

Malaysia where about 40% of world palm oil is produced.

To accelerate its breeding progress, FELDA is using DNA

markers, as oil palm breeding is time consuming and costly due to

the long generation cycles, large plant size and an evaluation

period needed of 10–15 years. The first genetic linkage map of the

palm, based on RFLP markers and a tenera6tenera cross as the

mapping population, was published in 1997 [1]. Tenera refers to an

oil palm type which nuts have thin shells, and hence more oil-

bearing pulp, compared to the naturally more common dura type

which has thick-shell nuts. A shell-less form, the pisifera, exists but is

female sterile. Shell thickness is influenced by a single gene and the

tenera type results from a cross between dura and pisifera. The

commercially-cultivated tenera is produced as a F1 hybrid between

inbred duras and pisiferas. Not surprisingly in [1] above and later

work the preference was for populations that segregated for the

shell gene in the parallel search for a maker closely linked to this

economically important trait. The choice of markers was

influenced by developments in marker systems. Hence the above

was followed by mapping a tenera6pisifera cross with RAPD

markers while seeking a marker for the shell trait through bulk

segregation [2]. In 2001, the first quantitative trait loci (QTLs) for

yield on the same population as Mayes et al. [1] were mapped [3].

Among the outputs of the multi-institutional EU Link2Palm

project (2001–4) was publication of the first dense oil palm genetic

linkage map involving a large number of SSR and AFLP markers

[4]. The same mapping population (LM2T6DA10D) was cited in

the map published in 2005 [5]. In the last five years, researchers at

Malaysian Palm Oil Board (MPOB) have used markers for

germplasm diversity analysis [6–9], linkage to monogenic traits of

fruit colour and shell thickness, map construction and QTLs for

yield and fatty acid composition of the oil [8,10–17].

We report here the construction of a linkage map of a FELDA

high-yielding dura6pisifera cross using SSR markers posted by

CIRAD in the public domain, from MPOB and from those

developed at FELDA. Additional primer combinations were

designed to produce AFLP markers for map saturation [18–20].

Materials and Methods

Mapping population
The mapping population is a high-yielding dura6pisifera cross,

coded DA41, planted at FELDA’s main research station in
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Jerantut, Malaysia. The female parent (ARK86D) is a dura, from

selfing and sib-mating in small populations over seven generations

from a few founder palms of Deli, Sumatra origin. The male

parent (ML161P) is a pisifera descended through sib-mating in very

small populations over four generations, beginning from selections

at Yangambi in the Congo. Both parents are extensively used in

FELDA’s breeding programme, extant and have unambiguous

pedigree information as well as productivity and growth data of

themselves and their progenies. While the cross is high yielding

there is notable segregation for the components of the high yield.

In the breeding trial the cross is represented by 562 palms of which

120, with full growth and productivity records, were selected for

the mapping work reported here.

Genomic DNA extraction
Genomic DNA was extracted from mature leaflets (from frond

17, the youngest fully-opened frond being #1. Frond 17 is about

8.5 months after Frond 1, and about the middle frond in the palm

canopy) of both parents and individuals of the mapping population

using the modified cetyltrimethylammonium bromide (CTAB)

method, suitable for stored mature oil palm leaf [21]. DNA quality

was ascertained through gel electrophoresis on 0.8% agarose gel

while the DNA quantity was estimated using a NanoDropH ND-

1000 spectrophotometer (NanoDrop Technologies Inc).

AFLP Analysis
AFLP analysis was performed with some modifications [22] -

the restriction and ligation done in a single reaction. Genomic

DNA (90 ng) was double digested with EcoRI and MseI enzymes

(New England Biolabs) and the mixture incubated at 37uC for

2 hours. In the next step, the reaction mixture was diluted with

189 ml TE0.1 buffer. Two primers, used for PCR amplification,

were designed based on the adaptor sequences and restriction site

sequences. Selective nucleotide sequences were added to the 39

end of each primer. PCR amplification was conducted in two

steps: preselective and selective. For pre-amplification, the EcoRI

primer (59-GACTGCGTACCAATTC A-39) had an adenine (A)

and the MseI primer (59-GATGAGTCCTGAGTAA C-39) a

cytosine (C) as additional base at the 39-end. The EcoRI and MseI

primers in the selective amplification used three additional

nucleotides at the 39 end; therefore, each primer combination

amplified different subsets of all the fragments in the total digest.

Pre-amplification PCR was done in a thermal cycler programmed

to 72uC for 2 min; 20 cycles of denaturing for 20 s at 94uC,

annealing for 30 s at 56uC, and extending for 2 min at 72uC
followed by final extension for 30 min at 60uC. The pre-amplified

DNA was diluted 1:19 with TE0.1 buffer. A volume of 1.5 ml of the

diluted product from pre-selective amplification was used for

selective amplification in a reaction tube containing 8.5 ml selective

amplification mixtures. The reaction mixture was transferred to a

thermal cycler pre-heated to 94uC and the DNA amplified in ten

cycles of: 20 s at 94uC, 30 s at 66uC (decrease 1uC every cycle) and

2 min at 72uC, followed by a further 20 cycles with a lower

annealing temperature of 56uC. The final 60uC extension step was

extended for 30 min. The PCR products of selective amplifications

were separated by capillary electrophoresis on an ABI 3130xl

Genetic Analyzer (Applied Biosystems, USA), and detected by

fluorescence as the EcoRI site-specific primers were labeled with

blue (6FAMTM) or green (HEXTM) fluorescent dyes. An internal

standard, GeneScanTM 500 LIZTM, labelled with a red (ROX) dye

was used for size calling, to allow co-loading of three reactions. For

selective amplification, a total 80 primer combinations (PCs,

EcoRI/MseI) were tested on both parents and ten randomly picked

progeny individuals of cross DA41. The amplification products

were evaluated using GeneMapperH Software v4.0. to analyze

data from samples loaded and run on the ABI 3130xl Genetic

Analyser. The 30 most informative, in terms of number of

polymorphic fragments detected, clear dominance inheritance

patterns and reproducibility, were used for linkage analysis and

mapping.

Microsatellite analyses
Oil palm SSR primers isolated by FELDA (unpublished),

MPOB (unpublished, except some) and CIRAD (http://tropgenedb.

cirad.fr/oilpalm/publications.html.) were used, the last synthesized

locally based on the published sequences. The combined total of 800

primers were tested on both parents and ten individuals of the cross

DA41 as in the AFLP primer tests. From the 800, 247 (30.8%) that

generated robust and easily interpretable genotypes were selected for

linkage analysis and mapping. The remaining 553 primer pairs either

did not amplify or amplified complex patterns of segregation and

were not studied further. The 247 informative primer pairs were used

to screen the entire mapping population. The PCR reaction was done

in 15 ml mixture containing 0.075 U Taq Polymerase (INVITRO-

GEN, BRAZIL), 106PCR Buffer, 3 mM MgCl2, 0.3 mM dNTPs

and 2 mM of each primer. The PCR was performed in thermal

cyclers with initial denaturation for 60 s at 95uC; 35 cycles

denaturation of 30 s at 94uC, annealing for 60 s at 52uC and

extending for 120 s at 72uC followed by final extension for 15 min at

72uC.

SSR assays of selected primer pairs were performed using

automated infrared fluorescence with a Li-Cor IR2 4200

sequencer (LI-COR, Lincoln, Nebraska, USA) [23]. For every

forward SSR primer, a 59tail was added with an M13 sequence 59-

GGA AAC AGC TAT GAC CAT-39 [24-25] which permitted

concurrent fluorescence labeling of PCR products by a third

primer (M13) with an incorporated Infrared dye (IR700 or IR800)

together with the reverse primer [26]. The PCR was performed in

a 15 ml reaction mixture containing 50 ng DNA, 16 PCR buffer

(2MgCl2), 0.2 mM dNTP mix, 0.2 U Taq Polymerase (INVI-

TROGEN, BRAZIL), 2.0 mM MgCl2, 0.2 mg/mL BSA, 1 ml of

three Primer Mixes (5 mM M13-tailed forward primer, 5 mM

Untailed reverse primer and 0.25 mM IRD labeled-M13 primer)

and sterile deionized water to make up to 15 ml. Following an

initial denaturation step of 1 min at 95uC, also to heat activate the

DNA polymerase, PCR was performed over 35 cycles at 94uC for

30 s, 52uC for 60 s and 72uC for 120 s and a final elongation step

at 72uC for 15 mins. IR700- or IR800-labeled PCR products were

separated using 6.5% polyacrylamide gel electrophoresis and sized

by the IR fluorescence scanner of the sequencer.

PCR–RFLP analysis
A total of 41 EST-RFLPs with at least one marker per linkage

group were selected from the MPOB oil palm linkage maps [17],

their EST sequences obtained and restriction enzyme (RE) cutting

sites ascertained. The restriction sites for 21 REs (AfaI, AluI,

BamHI, BclI, BglII, BstNI, DraI, EcoRI, HaeIII, HindIII, HpaII,

MseI, NotI, PstI, SmaI, SstI, TaqI, RsaI, HincII, MspI and XbaI) were

detected using BioEdit version 7.0.5.2 [27]. Primer pairs covering

the restriction sites were designed using Primer 3 [28].

Amplification of the amplicon was carried out in the PCR

reaction mix of 22 ml 106 PCR buffer (NEB, USA), 4.4 mM

dNTPs, 5 mM forward primer, 5 uM reverse primer, 3.5 U Taq

DNA polymerase (NEB, USA) and 100 ng template DNA. PCR

was performed in a Perkin Elmer 9600 thermocycler as follows:

denaturation at 95uC for 3 min; 40 cycles of 95uC for 30 s,

annealing (the temperature depending on the primer) for 30 s and

72uC for 1 min, and a final extension at 72uC for 20 min. The

Genetic Linkage Map of a FELDA Oil Palm Cross
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PCR products (pre-RE digestion) were checked on 2.0% agarose

electrophoresis in 16TBE buffer at 100 V for 2 hours. Only the

well amplified products were digested with REs and fragmented

on 3.0% agarose in TBE buffer at 100 V for 2 hrs. A similar

process was used for genotyping the detected polymorphic primer-

pairs on the entire mapping population.

The PCR–RFLPSs were screened for polymorphism on the same

panel used in the AFLP and SSR screening. The six primers,

SFB00154_MseI, SFB00221_MseI, MET00004_TaqI, SFB00020_

RsaI, CB00055_AluI and CA00026B_HincII, with five enzyme

combinations found to be polymorphic were used to genotype the

120 progenies and two parents of cross DA41.

Data Analysis
Polymorphic DNA fragments were scored as present/absent in

parents and progenies. The genotype configurations of the SSR,

AFLP and PCR–RFLPS markers segregating in the mapping

population were identified and coded following the nomenclature

[29] and diagramme [30] for a cross between two heterozygous

parents. Chi-square tests, at thresholds of P#0.05 and P#0.01, for

segregation distortion for all locus situations, comparing the observed

and expected ratios for each possible locus configuration (1:1, 3:1,

1:1:1:1 or 1:2:1) were performed. AFLP markers showing skewed

segregation ratios at P#0.01 were excluded as we considered the

skew to be due to identical or very close electrophoretic mobilities of

non-homologous fragments [22]. AFLP or SSR loci with 100%

similarity were discarded to simplify the computation of locus order.

Construction of Genetic Linkage Map
DA41 is a cross of two heterozygous parents and hence treated

as a ‘‘double-pseudo-test cross’’ [31]. As such, the segregations of

marker loci in this population were considered to be like those in a

F2 population. First, parental linkage groups were constructed

based on the markers/fragments specific to each parent. This was

followed by taking fragments common to both parents as anchor

points and integrating them into linkage groups [29,32]. These

anchor markers were linked with zero or small recombination

frequencies (,3 cM) with individual fragments from both parents.

Then, linked fragments were arranged into linkage groups using a

minimum, commonly accepted LOD threshold of 3.0 between

consecutive markers. MAPRF7 was used to perform the required

linkage analysis between marker fragments, estimation of recom-

bination frequencies, determination of linear order between linked

loci including multipoint linkage analysis and expectation-

maximization (EM) algorithm for handling missing data [29,33].

Results

Generation of polymorphic DNA markers
Each of the 247 informative SSR primer pairs was screened for

polymorphism between its female Deli dura (ARK86D) and male

Yangambi pisifera (ML161P) parents. All the primers, except 15,

amplified a single locus each, resulting in an overall average of

1.06 markers per probe. One of the resulting 263 markers

produced a distorted segregation ratio in the progeny and was

excluded from further analysis (Table 1). Of the remaining 262, 99

(37.6%) were fully informative, i.e. segregated in both parents with

three or four different alleles each, 162 testcross and 99 intercross

markers. In the first group, 60 (37%) were heterozygous in the

female parent (ARK86D) and the rest (102, or 63%) heterozygous

in ML161P, the male parent. The SSR allele segregation patterns,

excluding the 3:1 segregation class which was not scored, fell into

four of the nine allelic configuration classes [29] for a cross

between heterozygotes with up to four alleles a locus (Table 2).

From the 80 AFLP PCs tested, 30 were informative and

generated 402 polymorphic markers of which 58% were

heterozygous in the female parent, ARK86D, and absent in the

male parent, and the rest heterozygous in the latter. The number

of polymorphic markers per PC ranged from 2 to 25, with a mean

of 13.4. The markers heterozygous in both parents (intercross

markers), being less informative co-migrating AFLPs (3:1 segrega-

tion ratio), were discarded - despite their theoretical ability to align

genetic maps [34] - as their linkage phase was not ascertained.

Of the 41 PCR–RFLPs primers tested, 32 amplified a single

band, 3 amplified 2 bands, 4 more than 2 bands while two failed to

amplify any over several optimization attempts. Only the primers

that amplified 1–2 bands were continued with restriction enzyme

digestion. Of them, 6 in combination with five enzymes revealed

polymorphism and these 6 informative primers were used to

genotype the entire mapping family. Of the six, two each were

dominant loci from the parents, ARK86D and ML161P, and the

remaining two common and co-dominant from both parents.

Linkage Analysis and Maps
A total 294 segregating markers (258 SSRs, 30 AFLPs and 6

PCR–RFLPs) contributed 805 marker loci (490 SSRs, 307 AFLPs

and 8 PCR-RFLPs) were used for linkage analysis and to construct

maps of each parent separately and in an integrated map. The

linkage group characteristics are summarised in Tables 3 and 4,

and integrated (DA41) maps displayed in Figures 1, 2, 3 and 4.

Following convention, the marker names are given on the right

and their positions in cM [35] on the left of each marker bar on

each linkage group. On the integrated map, the markers common

to both parents, most of which represent anchor points, are

underscored while those from parent 1 are shown in italics.

The ARK86D linkage map comprised 317 marker loci (236

SSRs, 75 AFLPs and 5 PCR– RFLPs) distributed on 16 linkage

groups with 8–47 markers per group. The male parent ML161P

linkage map had 331 marker loci (260 SSRs, 67 AFLPs and 4

PCR–RFLPs) distributed at 12–40 markers each in 16 linkage

groups. The first map spanned 1,912 cM with an average map

density of 6.0 cM while the latter map 1949 cM with a similar

Table 1. Characteristics of AFLP, PCR–RFLP and SSR markers screened in DA41 mapping population.

Marker type
No. probes/primer
pairs tested

No. informative
probes/primer pairs

No. polymorphic
loci identified

No. markers showing
3:1 segregation

No. markers showing
1:1 segregation

No. markers showing
distorted segregation

AFLP 80 30 402 92 307 66

PCR-RFLP 22 6 6 0 6 0

SSR 800 247 263 5 258 1

Total 902 283 671 97 571 67

doi:10.1371/journal.pone.0026593.t001

Genetic Linkage Map of a FELDA Oil Palm Cross
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Table 2. Segregation patterns of progeny phenotypes for markers in DA41 mapping population.

Number alleles Segregation pattern Female parent (ARK86D) Male parent (ML161P) Total

AFLP PCR-RFLP SSR AFLP PCR–RFLP SSR

1–2 1:1 175 2 60 132 2 102 473

2 1:2:1 - 2 10 - 2 10 12

3 1:1:1:1 - - 45 - - 45 45

4 1:1:1:1 - - 44 - - 44 44

doi:10.1371/journal.pone.0026593.t002

Figure 1. Integrated linkage map of FELDA’s oil palm cross DA41 (ARK 866ML 161) using MAPRF7 programme with Kosambi
mapping function (Linkage Group I–IV). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map
consists of 479 marker loci (331 SSRs, 142 AFLPs and 6 PCR–RFLPs) with 168 anchor points. Markers indicated in normal front are from map ARK86
while markers in italics are from map ML161, and markers representing an anchor point are underlined. Marker types and designations are as follows:
SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).
doi:10.1371/journal.pone.0026593.g001
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average density of 6.2 cM. For comparison, the distance of the

dura DA10D map was 1,528 cM and the tenera parent LM2T

estimated at 1597 cM [5]. Moretzsohn et al. reported parental

genetic distances of 1,685 cM and 1,561 cM on a partial RAPD

genetic map of their tenera6pisifera cross [2].

The 168 anchor points, based on codominant SSR and PCR–

RFLPs marker alleles, allowed the determination of homologous

groups for both maps and derivation of an integrated map. The

latter was 2,247.5 cM long and included 479 marker loci (331

SSRs, 142 AFLPs and 6 PCR–RFLPs) at an average 29 markers

and a range of 15–57 markers per linkage group, and an average

map density of 4.7 cM. The linkage group lengths ranged from

77.5 cM to 223.7 cM, with an average 137 cM (Figures 1, 2, 3

and 4). For comparison, the E. guineensis integrated map based on

944 markers (255 SSRs, 688 AFLPs, allele Sh) was estimated to be

1,743 cM long [5] while a genetic distance of 1,815 cM and an

average interval of 7 cM between adjacent markers for their E.

oleifera6E. guineensis interspecific cross was reported [15].

Discussion

Mapping population
The very reasons which make marker-assisted breeding

imperative for oil palm, namely, its cross-pollinating nature, long

generation interval and large size, also make it particularly difficult

to find suitable mapping populations. Existing genetically-defined

populations are usually crosses between parents of varying

heterozygosities arising from small founder populations, sometimes

Figure 2. Integrated linkage map of FELDA’s oil palm cross DA41 (ARK 866ML 161) using MAPRF7 programme with Kosambi
mapping function (Linkage Group V–VIII). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map
consists of 479 marker loci (331 SSRs, 142 AFLPs and 6 PCR–RFLPs) with 168 anchor points. Markers indicated in normal front are from map ARK86
while markers in italics are from map ML161, and markers representing an anchor point are underlined. Marker types and designations are as follows:
SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).
doi:10.1371/journal.pone.0026593.g002
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Figure 3. Integrated linkage map of FELDA’s oil palm cross DA41 (ARK 866ML 161) using MAPRF7 programme with Kosambi
mapping function (Linkage Group IX–XII). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map
consists of 479 marker loci (331 SSRs, 142 AFLPs and 6 PCR–RFLPs) with 168 anchor points. Markers indicated in normal front are from map ARK86
while markers in italics are from map ML161, and markers representing an anchor point are underlined. Marker types and designations are as follows:
SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).
doi:10.1371/journal.pone.0026593.g003

Genetic Linkage Map of a FELDA Oil Palm Cross
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down to a single palm, that have subsequently been subjected to

selection on a limited set of traits and inbreeding or outcrossing.

The large size of the palm severely limits the number available for

mapping as usually only 48–120 are planted per cross, the breeder

having to choose between number of crosses and size of each cross

in breeding trials. Furthermore, the search for marker(s) for the

shell gene has veered most mapping work to tenera6tenera [1,11],

dura6tenera [4,5] and tenera6pisifera [2] crosses as mapping

populations. Only more recent interest in QTLs is expanding

the types of populations analysed to include crosses, such as

FELDA DA41, which are genetically closer to commercial

planting materials as well as having larger populations which

segregate for the QTLs of interest. Of particular interest is the high

oil content of the fruit bunches of this cross, 35.4% in an early trial

and 32.3–35.4% in three subsequent trials (FELDA, unpublished

data). For comparison, current commercial plantings have a bunch

oil content of ,26%. The high bunch oil of DA41 derives from

more mesocarp and higher oil content in the mesocarp. Fruit

bunch production was average but the higher bunch oil resulted in

a 8–21% higher oil yield than the trial average in the four trials

mentioned above.

Genetic Markers
SSR markers offer many advantages for marker-assisted

selection and will be the markers of choice for the FELDA

marker breeding programme. They form the backbone of the

present map. Of the 162 test cross SSR markers, 37% were found

to be heterozygous descending from ARK86D and 63%

heterozygous from ML161P. This suggests the male parent to be

more heterozygous possibly due to less inbreeding. The female

parent of DA41 is a Deli dura descended from at least seven

generations of selfing, or sib-mating, from a gene pool of four

founder palms first brought to the Bogor Botanic gardens,

Indonesia in 1848. The absence of rare and low-frequency alleles

Figure 4. Integrated linkage map of FELDA’s oil palm cross DA41 (ARK 866ML 161) using MAPRF7 programme with Kosambi
mapping function (Linkage Group XIII–XVI). Marker names are shown to the right of each LG, with map distances (in cM) to the left. The map
consists of 479 marker loci (331 SSRs, 142 AFLPs and 6 PCR–RFLPs) with 168 anchor points. Markers indicated in normal front are from map ARK86
while markers in italics are from map ML161, and markers representing an anchor point are underlined. Marker types and designations are as follows:
SSRs (CNI, DHP, mEgCIR, PJ, sEg, sMg and sMo); RFLPs (CA, CB, MET and SFB); AFLPs (EAAC, EAAT, EACA, EACC, EACT, EAGA and EAGG).
doi:10.1371/journal.pone.0026593.g004
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in their Deli dura population was reported [6,8] while 36 more

RFLP alleles were found in germplasm dura populations compared

to the Deli duras [7]. There were only 41 EST-SSR alleles found

in Deli dura, where Ao was 2.7, compared to germplasm dura

populations (Ao of 2.8–3.9) [9]. The male parent descended,

through fewer generations of sib mating, from ancestral palms

from a wider gene pool at an early oil palm research station at

Yangambi, Congo. This finding of lower heterozygosity in the Deli

dura population has also been previously reported [5].

In this study, the markers were well distributed over all the 16

linkage groups. There were two long intervals of 26.9 cM in

Group III and 25.6 in Group IX, 7 (Fig. 1) suggesting them to be

more homozygous regions, or where recombinations are not

uniformly distributed as assumed by mapping algorithms [5,20].

There were no intervals longer than 25 cM in any of the other

groups, which is promising in the search and tagging of QTLs.

The core markers in this study were SSRs given their advantages

and utility when the work is later extended to other breeding

crosses. SSR markers from in-house development and those

provided by MPOB as well as CIRAD markers from the public

domain were used. This is the first time that the FELDA and

MPOB markers are being reported on. The CIRAD SSR markers

mapped, except for two linkage groups, into 14 linkage groups,

similar to those reported [5]. This lack of complete congruence is

not unexpected given the very different genetic backgrounds of the

populations used – for example only 144 (56.5% of the 255) of the

CIRAD SSR markers were successfully mapped in this study.

When the AFLP markers were added to saturate the map, the

addition did not seriously disturb the original order of relative

distances. It was likewise reported with RFLP markers [18],

although some reported substantial expansion [36,37]. In our

study, the relatively large mapping population, informativeness of

the, codominant, SSR markers and rejection of markers with

unexpected segregation ratios may be responsible for length

conservation as also reported elsewhere [38].

In conclusion, using 571 SSR, AFLP and PCR–RFLP markers

from public domain publications, provided by MPOB and

developed in-house, we constructed the first integrated genetic

linkage maps of a FELDA high-yielding commercial oil palm cross

and its parental palms. The maps share many characteristics with

other oil palm maps as well as exhibit features which may be

unique to the mapping population. The markers were fairly well

distributed across 16 linkage groups though slightly more were

mapped in the more heterozygous pisifera parent.

This work is a first step towards application of DNA markers to

augment FELDA’s oil palm breeding programme, recognising the

potential contribution of the technology in breeding long-lived,

long generation interval, high economic value plants. Current

work is progressing along three tracks, a) continued map

saturation, b) map validation from closely-related to divergent

populations, and c) mapping of QTLs for yield components.

Table 3. Characteristics of genetic linkage groups of parents
of mapping population DA411.

Linkage
group Parent 1 (ARK86) Parent 2 (ML161)

IP1 CM TM cM AMD IP2 CM TM cM AMD

1 17 2 19 80.2 4.2 15 1 16 100.2 6.3

2 15 4 19 157.6 8.3 14 4 18 172.5 9.6

3 13 3 16 171.9 10.7 16 2 18 89.4 5.0

4 7 1 8 47.1 5.9 12 1 13 76.4 5.9

5 15 4 19 90.4 4.8 15 4 19 121.1 6.4

6 9 1 10 89.1 8.9 17 1 18 119.4 6.6

7 12 5 17 152.7 9.0 25 3 28 139.3 5.0

8 17 6 23 115.7 5.0 18 6 24 138.7 5.8

9 39 8 47 250.5 5.3 32 8 40 197.9 4.9

10 16 2 18 76.4 4.2 14 3 17 116.4 6.8

11 32 7 39 178.1 4.6 28 8 36 111.6 3.1

12 13 6 19 92.9 4.9 13 6 19 116.7 6.1

13 13 3 16 114.4 7.2 10 3 13 85.9 6.6

14 11 6 17 102.6 6.0 17 6 23 128.0 5.6

15 14 2 16 101 6.3 15 2 17 131.9 7.8

16 8 6 14 91.3 6.5 11 1 12 103.5 8.6

Total 251 66 317 1911.9101.9 272 59 331 1948.9100.0

Mean 13.5 4 17.5 101.8 6.0 15 3 18 118.1 6.2

Min 7 1 8 47.1 4.2 10 1 12 76.4 3.1

Max 39 8 47 250.5 10.7 32 8 40 197.9 9.6

IP1 = individual markers (parent 1 specific); IP2 = individual markers (parent 2
specific); CM = markers common to both parents; TM = total number of markers for
linkage group; cM = centiMorgan; AMD = Average marker density.
doi:10.1371/journal.pone.0026593.t003

Table 4. Characteristics of genetic linkage groups of
mapping population DA411.

Linkage group DA41 Integrated Map (ARK86D6ML161P)

IM1 IM2 CM TM AP cM AMD

1 17 9 1 27 7 101.6 3.8

2 15 12 5 32 5 167.8 5.2

3 13 12 3 28 6 169.1 6.0

4 7 7 1 15 6 77.5 5.2

5 15 7 4 26 12 114.4 4.4

6 9 12 1 22 6 129.9 5.9

7 12 20 5 37 8 171.1 4.6

8 17 6 6 29 18 126.9 4.4

9 39 10 8 57 30 223.7 3.9

10 16 10 3 29 6 176.2 6.1

11 32 9 8 49 26 144.1 2.9

12 13 10 6 29 9 122.5 4.2

13 13 5 3 21 8 100.3 4.8

14 11 13 7 31 9 145.2 4.7

15 14 7 2 23 10 119.9 5.2

16 8 10 6 24 2 157.3 6.6

Total 251 159 69 479 168 2247.5 77.9

Mean 14 10 4.5 29 8 137 4.7

Min 7 5 1 15 2 77.5 2.9

Max 39 20 8 57 30 223.7 6.6

IP1 = individual markers (parent 1 specific); IP2 = individual markers (parent 2
specific); CM = markers common to both parents; TM = total number of markers for
linkage group; AP = number of anchor points; cM = centiMorgan; AMD = Average
marker density.
doi:10.1371/journal.pone.0026593.t004
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