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Abstract

Water-borne transmission has been suggested as an important transmission mechanism for Influenza A (IA) viruses in wild
duck populations; however, relatively few studies have attempted to detect IA viruses from aquatic habitats. Water-isolated
viruses have rarely been genetically characterized and evaluation for persistence in water and infectivity in natural hosts has
never been documented. In this study, we focused on two IA viruses (H3N8 and H4N6 subtypes) isolated from surface lake
water in Minnesota, USA. We investigated the relative prevalence of the two virus subtypes in wild duck populations at the
sampling site and their genetic relatedness to IA viruses isolated in wild waterbirds in North America. Viral persistence under
different laboratory conditions (temperature and pH) and replication in experimentally infected Mallards (Anas
platyrhynchos) were also characterized. Both viruses were the most prevalent subtype one year following their isolation
in lake water. The viruses persisted in water for an extended time period at constant temperature (several weeks) but
infectivity rapidly reduced under multiple freeze-thaw cycles. Furthermore, the two isolates efficiently replicated in Mallards.
The complete genome characterization supported that these isolates originated from genetic reassortments with other IA
viruses circulating in wild duck populations during the year of sampling. Based on phylogenetic analyses, we couldn’t
identify genetically similar viruses in duck populations in the years following their isolation from lake water. Our study
supports the role for water-borne transmission for IA viruses but also highlights that additional field and experimental
studies are required to support inter-annual persistence in aquatic habitats.
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Introduction

Water-borne transmission of influenza A (IA) viruses has been

suggested as an important transmission mechanism in wild and

domestic duck populations [1,2]. Experimentally, both low

pathogenic (LP) and highly pathogenic (HP) viruses have been

shown to persist for extended periods of time in distilled water

(several weeks), dependent on temperature, pH and salinity [3–6].

Similar results have been reported related to viral infectivity and

these same physico-chemical characteristics using field water

samples [5,7–9]. In addition, biotic components including aquatic

invertebrates (e.g. filter-feeding bivalves) and microorganisms have

recently been proposed as potential factors affecting virus removal or

accumulation in the environment [10–12]. Finally, viral persistence

in aquatic habitats has been demonstrated to be a determinant for

IA virus transmission dynamics in wild duck populations [13–15].

Several studies have attempted to isolate or detect IA viruses from

surface water in habitats utilized by waterfowl [16–22]. In these

studies, virus subtypes detected in local aquatic habitats reflected the

current subtype diversity circulating in waterfowl populations.

Considering that water-borne transmission drives IA virus dynamics

in wild birds [13–15], one could expect that a strong selective

pressure may exist for IA virus maintenance in aquatic habitats. To

date, environmental persistence and replication in the natural host

have not been documented for water-isolated viruses, limiting our

understanding of viral fitness in ducks and aquatic habitats.

In this study, we performed the complete genome sequencing

and estimated the persistence in water and replication in duck of

two IA viruses isolated from surface lake water in Minnesota, USA

(A/Surface water/Minnesota/NW1-T/2006 H4N6; A/Surface

water/Minnesota/W07-2241/2007 H3N8). In particular, we

investigated: (i) the relative abundance of the two subtypes in

viruses isolated in wild duck populations during three consecutive

seasons, at the same sampling site; (ii) the genetic relatedness of

these environmental isolates to IA recovered from wild ducks in

Minnesota and North America; (iii) the persistence of the two

viruses in water under different laboratory-conditions (temperature

and pH); and (iv) the ability of these isolates to replicate in
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experimentally infected Mallards (Anas platyrhynchos). We discuss

the significance of the results regarding the role of water-borne

transmission in IA virus ecology and epidemiology in wild duck

populations.

Results

Influenza A virus prevalence in duck populations
Based on IA virus isolation, the prevalence of infected waterfowl

was 13.165.8% and 9.961.2% in 2006 and 2007, respectively.

The H4N6 subtype represented 5.9611.2% of the total viruses

isolated from ducks in 2006 (1 of 17 isolated viruses, unpublished

data), but was the predominant subtype in 2007 (20.765.3%; 46

of 222 isolated viruses [23]). Similarly, the H3N8 subtype

represented 15.364.7% of the total viruses isolated in 2007 (34

of 222 isolated viruses [23]) and was the predominant subtype in

2008 (2664.1%; 114 of 438 isolated viruses [23]).

Genetic characterization
The genetic comparisons of the two water isolates showed

variable percentages of similarity for the internal segments: PB2:

91%; PB1: 91%; PA: 87%; NP: 95%; M: 98%; NS: 71%. Results

from the phylogenetic analysis indicate that, except for the Matrix

gene, these genes belonged to different genetic lineages (Figures S1,

S2, S3, S4, S5, S6). When considering the internal segments, both

viruses showed high genetic relatedness with a large diversity of IA

virus subtypes circulating in wild waterbirds in Minnesota during

the same season. In particular, A/Surface water/Minnesota/W07-

2241/2007 (H3N8) was closely related to different virus subtypes

(H1N3, H3N8, H4N6, H6N6, H10N1, H10N3, H10N6, H11N2,

H11N9) for PB1, PA and M genes and A/Surface water/

Minnesota/NW1-T/2006 (H4N6) was genetically related to A/

Mallard/MN/464334/2006 (H5N2) for PB2 and NP genes (99%

and 96% similarity, respectively).

Analysis of the HA and NA segments provided additional

information concerning the circulation of these two subtypes in

wild waterbirds in North America (Figures 1 and S7, S8, S9, S10).

A/Surface water/Minnesota/NW1-T/2006 (H4N6) was closely

related to A/Blue-winged Teal/TX/Sg-00157/2007 (H4N6) for

both genes. For A/Surface water/Minnesota/W07-2241/2007

(H3N8), the HA was closely related to H3N6 and H3N8 viruses

isolated in Alaska and Alberta the previous years (2005 and 2006)

and, for the NA, to a virus isolated in 2008 in North-Dakota: A/

Blue-winged Teal/ND/Sg-00739/2008 (H3N8).

Persistence under laboratory conditions
Results of viral persistence trials are presented in Table 1

(adjusted R2 and P values are detailed in Table S1). Overall,

increasing temperature decreased virus persistence. A slight

decrease of viral titer was observed at 4uC; both viruses were

detected 365 days post-inoculation. Infectivity was quickly reduced

when exposed to repeated freeze-thaw cycles (220uC/4uC);

however, viruses remained viable when the temperature was

changed between 17uC and 23uC, consistent with the results of

maintenance at constant temperatures (Table 1).

Replication in Mallards
None of the birds were shedding virus at the time of inoculation

and all tested negative for IA virus antibodies. Both viruses were

isolated from all ducks from day 1 to day 5 post-inoculation and

intermittently from day 7 to 14 post-inoculation (Table 2). Viruses

were isolated from both oropharyngeal and cloacal swabs. Real-

time RT-PCR results were consistent with viral isolation results for

the first five days post-inoculations, except for day 1 for A/Surface

water/Minnesota/W07-2241/2007 (H3N8) and day 5 for one

oropharyngeal swab for A/Surface water/Minnesota/NW1-T/

2006 (H4N6).

For A/Surface water/Minnesota/W07-2241/2007 (H3N8), four

of the five ducks were ELISA positive at day 4 post-inoculation and

all ducks were positive at days 7, 10 and 14. All ducks inoculated with

A/Surface water/Minnesota/NW1-T/2006 (H4N6) tested positive

for IA antibody from day 4 until the end of the experiment (day 14).

Discussion

Both the H3N8 and H4N6 subtypes that were isolated from

surface lake water have been commonly detected in North

American waterfowl [24]. At our study sites, the prevalence of

these subtypes was relatively low in wild duck populations during

the years of detection; however, the limited number of viruses

recovered during 2006 provided limited information on virus

subtypes circulating in local duck populations during that year.

Interestingly, both the H3 and H4 virus subtypes were the most

prevalent the year following their isolation in lake water [23].

Although circumstantial, this pattern is consistent with a possible

inter-annual environmental persistence.

Phylogenetic analyses suggested that both isolates were reassor-

tants related to viruses circulating in wild ducks in Minnesota at the

time of sampling. In addition, we provide evidence that surface

glycoproteins were highly similar to others identified in viruses

circulating in North American ducks both before and after their

detection in Minnesota. Based on phylogenetic analyses, no similar

viral strain (i.e. when considering all gene segments) were however

identified the years following their isolation in lake water, in

Minnesota. This result suggests that, for the two water isolates, local

persistence in aquatic habitats over winter was unlikely; although we

recognize that this conclusion is based on sequences from limited

number of viruses that may not fully represent the diversity of IA

virus circulating in Minnesota duck populations [23]. Genetic

characterization of viruses isolated in the environment can provide

interesting information regarding gene prevalence and circulation

in habitats used by waterfowl. Such information is critical to assess

the possibility of inter-annual persistence in water, long-term

circulation of environmentally-isolated virus strains in wild duck

populations, and identify potential genetic basis for the persistence

of IA viruses in water.

Previous studies have demonstrated differences in the ability of IA

viruses to remain infective in water and have suggested that subtype-

related variations in persistence may exist, especially at low

temperatures [3,4]. Both isolates tested in our study persisted for

several months in distilled water at constant temperatures, below

17uC and at neutral pH. Overall, the estimated persistence was

higher than reported for 12 different waterfowl derived viruses

(including a H3 and H4 subtypes; [3]). Limited data precludes

conclusions related to increased environmental persistence associat-

ed with viruses recovered from the environment. Future experiments

should however consider such a possibility as the demonstration of

long-time persistence of water-isolated viruses would suggest the

potential for inter-annual persistence in aquatic habitats.

Freeze-thaw cycles have been documented to significantly reduce

virus infectivity [18]. As expected, cycles of temperature changes

between 220uC and 4uC reduced viral persistence (6–11 days) as

compared to a constant temperature of 4uC (211–270 days). We

propose that freeze-thaw cycles could be limiting for the persistence

of IA viruses in aquatic habitats especially before and after winter,

when surface water is subjected to diurnal temperature changes

around 0uC. Dabbling ducks utilize shallow water for feeding that

are likely to undergo important temperature changes and freeze-

Influenza A Virus in Surface Lake Water
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Figure 1. Genetic sub-lineages including the two water-isolated viruses, for the HA and NA genes. Posterior probability values are
indicated when higher than 0.95. Complete maximum clade credibility trees are available in Figures S7, S8, S9 and S10.
doi:10.1371/journal.pone.0026566.g001
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thaw cycles during winter, potentially precluding long-time

persistence of IA viruses. Inversely, habitats characterized by deep

water may prevent freezing and strong temperature changes

affecting viral persistence, but are less likely to be used by dabbling

ducks. Viral persistence in frozen pond and lake water has been

suggested to be an potential mechanisms for inter-annual

persistence and source of contamination for waterfowl in breeding

grounds [16,17]. In high latitude habitats, shallow lakes and ponds

may freeze relatively quickly during fall and winter, potentially

reducing effects of such temperature changes. The effects of

latitudinal-dependent temperature regimes on surface water viruses

warrant future experimental work.

Because diurnal surface water temperature fluctuations could

represent a constraint on viral persistence, we also investigated the

effects of temperature variations between 17uC and 23uC.

Compared to results from constant temperature, no effects on viral

persistence were observed. This suggests that diurnal surface water

temperature fluctuations are not likely to significantly affect virus

persistence, although as for freeze-thaw cycles additional environ-

mental simulation studies would be required to confirm this trend.

Experimental infections provided evidence that both water-

isolated IA viruses replicated efficiently in Mallards and, in both

cases, shedding patterns were consistent with a previous study

performed with duck-isolated LP IA viruses [25]. These results

support that viruses isolated from surface water replicate in ducks

as well as LP virus isolates that have a wild duck-origin.

In this study, we highlighted that water-isolated IA viruses can

provide complementary information regarding circulating viruses

and viral genes in wild waterfowl populations. With current

methodological limitations the recovery of viruses from aquatic

habitats should not be considered as a replacement of traditional

surveillance approaches utilizing wild bird or fecal sampling. We also

demonstrated that both viruses could persist for extended periods of

time in water (an attribute that might explain their original isolation)

and could efficiently replicate in Mallards. However, data on freeze-

thaw cycles presented herein could preclude long-term persistence in

habitats that freeze during winter, suggesting that the environmental

reservoir may not be surface water but other components of aquatic

habitats. Our study supports the role for water-borne transmission

for IA viruses; however, it also raises questions regarding inter-

annual persistence in aquatic habitats.

Materials and Methods

Viruses
Both viruses were isolated from surface lake water in Minnesota,

USA: A/Surface water/Minnesota/NW1-T/2006 H4N6 was

isolated from a water sample collected in Thief Lake Wildlife

Management Area (48u309400N, 95u559120W), in September 18,

2006; and A/Surface water/Minnesota/W07-2241/2007 H3N8

from a sample collected in Agassiz National Wildlife Refuge

(48u189580N, 96u009230W), in October 28, 2007. Information

related to water sample collection and virus isolation have been

previously described [18]. Second (H4N6) or third (H3N8) passages

of stock viruses were propagated in 9 to 11 days old specific

pathogen free (SPF) embryonating chicken eggs. Amnio-allantoic

fluids were harvested 5 days post infection and were titrated in both

9 to 11 days old SPF embryonating chicken eggs and Madin Darby

canine kidney (MDCK) cells [3]; titers were determined according

to the method described by Reed and Muench [26].

Influenza A virus prevalence in duck populations
Prevalence estimates and subtype diversity were available from

ongoing long-term population studies of wild duck populations in

Northwestern Minnesota [23]. In total, 130 and 2246 cloacal

samples were collected from wild ducks in 2006 and 2007,

Table 1. Estimated time (in days) required for a decrease of the viral titer by 1 log10 TCID50/mL.

Virus pH Constant temperature Variable temperature

46C 106C 176C 236C 286C 2206C/46C 176C/236C

6.2 13 6

A/Surface water/MN/W07-2241/2007 (H3N8) 7.2 211 175 79 51 11 6 82

8.2 22 8

6.2 9 3

A/Surface water/MN/NW1-T/2006 (H4N6) 7.2 270 193 102 51 13 11 62

8.2 18 7

doi:10.1371/journal.pone.0026566.t001

Table 2. Virus shedding pattern based on oropharyngeal (OP) and cloacal (CL) swab samples.

Virus Sample Days post-inoculation

1 2 3 4 5 7 9 11 14

A/Surface water/MN/W07-2241/2007 (H3N8) OP 5 (2) 5 (5) 5 (5) 5 (5) 5 (5) 1 (0) 1 (0) 2 (0) 1 (0)

CL 5 (1) 5 (5) 5 (5) 5 (5) 5 (5) 3 (2) 3 (2) 2 (1) 0 (0)

A/Surface water/MN/NW1-T/2006 (H4N6) OP 5 (5) 5 (5) 5 (5) 5 (5) 5 (4) 2 (1) 3 (0) 4 (0) 2 (0)

CL 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 2 (5) 2 (3) 5 (1) 2 (0)

Number of ducks tested positive for viral isolation and real-time RT-PCR (in parenthesis).
doi:10.1371/journal.pone.0026566.t002
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respectively. Sampling was performed in September in 2006 and

from July to October in 2007. Detailed method for sample

collection, virus isolation and subtyping were previously described

[23]. In brief, cloacal swabs were obtained using sterile cotton-

tipped applicators (Puritan, Medical Products Company LLC,

Guilford, ME) and placed in 2 ml of Brain Heart Infusion media

(Becton Dickinson and Co., Sparks, MD) supplemented with

penicillin G (1,000 units/ml), streptomycin (1 mg/ml), kanamycin

(0.5 mg/ml), gentamicin (0.25 mg/ml), and amphotericin B

(0.025 mg/ml) (Sigma Chemical Company, St. Louis, MO).

Samples were stored at 4uC (24–72 hrs) and then frozen at

280uC until processed. Each sample was inoculated into four 9–

11 day old SPF embryonated chicken eggs via the allantoic route

(0.25 ml/egg). Amnio allantoic fluid were tested by hemaggluti-

nation assay and positive samples were confirmed by RT-PCR

[27]. Subtyping was done at the National Veterinary Services

Laboratories (Ames, Iowa) using hemagglutination inhibition and

neuraminidase inhibition tests and via genotyping of the HA and

NA genes, at the University of Minnesota, St. Paul, Minnesota and

the University of California Davis, using standard Sanger

sequencing for HA and NA segments.

For virus and subtype prevalences, 95% confidence intervals

(CI) were calculated with the equation for the normal approx-

imation for the binomial CI (CI = 1.96!(p(12p)/n; where p is the

observed prevalence and n is the sample size).

Full-genome sequencing
Sample preparation, viral RNA extraction, and amplification of

all segments of the genome in a single step multiplex PCR were

performed as described by Zhou et al. [28] with a modification of

single base in primer MBTuni-12 (the new primer is MBTuni-

12(M): 59- ACGCGTGATCAGCRAAAGCAGG-39). cDNA li-

braries were prepared from PCR-purified multiplex amplicons

using QIAquick PCR Purification kit (Qiagen, Valencia, California

USA), following manufacturer’s instructions, and subjected to

adaptor ligation and whole genome sequencing using 454 FLX

technology using protocols described by Ramakrishnan et al. [29].

Obtained DNA sequences were analyzed as previously described

[29]. In brief, all the sequencing reads were aligned against

influenza genomes using BlastN algorithm of NCBI BLAST 2.2.16.

The ‘non influenza’ sequences were filtered out and only influenza

reads were assembled in GS De nova Assembler 2.0.00.20 and

mapped in GS Reference Mapper 2.0.00.20. The influenza contigs

obtained using the above software were reassembled in Sequencher

Version 4.9 (Genecodes) and annotated based on BLAST analyses.

Sequences generated in this study have been deposited in

GenBank under the accession numbers CY073707 to CY073714

(A/Surface water/Minnesota/NW1-T/2006) and CY073717 to

CY073724 (A/Surface water/Minnesota/W07-2241/2007).

Phylogenetic analysis
Complete nucleotide sequences of the 8 segments of IA viruses

isolated in wild waterbirds in North America were retrieved from

the Influenza Sequence Database [30]. For computational reasons,

we selected only sequences obtained from viruses isolated in

Minnesota for internal segments (PB2, PB1, PA, NP, MP and NS).

For the HA and NA segments, the dataset was extended to viruses

isolated at other sites in North America. For each sequence, the

following information was collected: subtype, geographic origin

(country and state), strain name, bird host species and year of

collection. Analysis was restricted to viruses isolated from wild

avian species belonging to the Anseriformes and Charadriiformes

orders, as they are recognized to be the natural host reservoir for

IA viruses. Sequences for which bird species were not identified

(e.g., ‘duck’ or ‘bird’, without any additional information

concerning their origin) were not included. Duplicate sequences

from the same strains, undefined subtypes and mixed infections, as

well as sequences previously identified as reflecting potential

laboratory errors [31], also were not included. Sequences were

aligned with CLC sequence viewer 6.3 (CLC bio, Aarhus,

Denmark) and edited in order to restrict the alignment to the

coding region for each gene. The definitive data sets included 2121

nucleotide sequences of viruses isolated between 1976 and 2009

(c.f. Table S2 and S3 for details).

Phylogenetic trees were generated with a Bayesian Markov

chain Monte Carlo (MCMC) coalescent approach, implemented

in the program BEAST 1.5.3 [32]. The Shapiro-Rambaut-

Drummond-2006 (SRD06) nucleotide substitution model was

used in all simulations as this model is recognized to provide

better resolution for coding regions [33]. Three molecular clock

models were tested for each gene: the strict clock (SC) that

assumes a single evolutionary rate in the phylogenetic trees and

two relaxed clocks: the uncorrelated exponential (UE) and the

uncorrelated lognormal (UL) that allows evolutionary rates to

vary along branches, within an exponential or lognormal

distribution [34]. Molecular clock models were evaluated and

tested with the Bayes Factor (BF) [35,36] implemented in the

program TRACER 1.5.0 [37]. The ratio of marginal likelihoods

were compared between models and BF significance was

determined from the values of 2 ln(BF) as described in Brandley

et al. [38]. A Bayesian skyline coalescent tree prior was used in all

simulations as it makes the fewest a priori assumptions about the

data [39] and has been shown to be more appropriate to describe

the population dynamics of IA virus [40]. Three independent

analysis were performed (with the SC, UE and UL molecular

clocks) for each segment, with a chain length of 140–320 million

generations sampled every 1000 iterations. Results were analyzed

with TRACER 1.5.0, phylogenetic consensus trees were

produced using the program TREEANNOTATOR 1.5.3 and

edited for generation of figure captions with the program FigTree

1.3.1.

Persistence in distilled water
Distilled water buffered with 10 mM HEPES was adjusted with

1 N solutions of NaOH or HCl to provide 3 different pH conditions

(6.2, 7.2 and 8.2). Five constant temperatures (4uC, 10uC, 17uC,

23uC and 28uC) were tested at pH = 7.2. Two additional pH

conditions (6.2, 8.2) were tested at 17uC and 28uC. For both viruses,

infective amnio-allantoic fluids were diluted 1:100 in the water

samples. Inoculated water samples were divided into 2 mL aliquots

in 5 mL polystyrene round-bottom tubes and placed in incubators

set to the appropriate temperature. The effect of temperature

changes was also investigated at two conditions (pH = 7.2): 220uC/

4uC and 17uC/23uC. Inoculated water samples were transferred

daily into the appropriate incubators in order to reflect cyclic

temperature changes: samples were maintained 14 hours under low

temperatures (220uC and 17uC) and 10 hours under high

temperature (4uC and 23uC).

For each treatment, the viral-inoculated water was sampled at

the time of inoculation (day 0) and between 9 to 23 times post-

inoculation. Sampling frequency varied between treatments (from

1 to 28 days) and was adjusted during the course of the experiment

to ensure at least a 1 log10 decrease of the TCID50/mL.

Experiments were conducted during 10 to 365 days post-

inoculation, depending on the treatment, with a final sampling

performed the last day of the experiment. At the time of sampling,

duplicate 0.5 mL samples of IA virus-inoculated water were

diluted 1:1 by addition of 0.5 mL of 26MEM. Ten-fold dilutions

Influenza A Virus in Surface Lake Water
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(1021 to 1026) were made in 16 MEM supplemented with

antibiotics (10000 U Penicillin G, 10 mg Streptomycin, 25 mg

Amphotericin B/mL).

Infectivity assays were performed on MDCK, following the

method described by Brown et al. [3]. Results from duplicate

titrations were log10 transformed and averaged. Simple linear

regressions were used to calculate the time required for a 90%

reduction in infectivity (i.e. time required for a decrease of the

viral titer by 1 log10 TCID50/mL); previous studies indicated that

loss of IA virus infectivity in water over time decreased at a log-

linear rate [3,5]. Statistical analysis was performed in R 2.10.1

[41].

Experimental infections
One-day-old Mallards were purchased from a commercial

source (Murray McMurray Hatchery, Webster City, Iowa,

USA) and raised for one month under confined conditions

until the beginning of the experiments. Three days before

inoculation, ducks were separated into two groups of five and

transferred to self-contained isolation units ventilated under

negative pressure with high-efficiency particulate air-filters.

Each duck was weighed before inoculation and samples were

collected to test for IA virus shedding (oropharyngeal and

cloacal swabs) or antibodies (serum). General care was

provided in accordance to an animal use protocol (AUP #
A2010 6-101) approved by the Institutional Animal Care and

Use Committee at the University of Georgia, Athens, Georgia,

USA. All work was conducted at an enhanced Biosafety Level

2 facility at the Poultry Diagnostic Research Center, Athens,

Georgia, USA.

Five birds in each group were inoculated in the choanal cleft

and the trachea with a volume of 0.2 mL containing an infectious

titer of 105.63 EID50 for A/Surface water/Minnesota/NW1-T/

2006 and 106.54 EID50 for A/Surface water/Minnesota/W07-

2241/2007 (based on back titers). Oropharyngeal and cloacal

swabs were collected from all birds on days 1, 2, 3, 4, 5, 7, 9, 11

and 14 post-inoculation and stored at 280uC until viral isolation

and RNA extractions were performed. Blood samples were

collected from the right jugular vein on days 4, 7, 10 and 14 post-

inoculation, centrifuged for 30 minutes at 1500 rpm, and sera

stored at 220uC until testing. Birds were evaluated twice daily

and were weighed on days 4, 7, 10 and 14 post-inoculation to

ensure that they gained weight during the course of the

experiment.

Viral isolation was performed on cloacal and oropharyngeal

swabs using 9 to 11 days old SPF embryonating chicken eggs

following previously described procedures [42]. For each sample,

RNA was extracted the same day as viral isolation was

performed, with the MagMAXTM-96 AI/ND Viral RNA

Isolation kit (Ambion, Austin, Texas, USA) using the Thermo

Electron KingFisher magnetic particle processor (Thermo

Electron Corporation, Waltham, Massachusetts, USA) according

to the modified protocol proposed by Das et al. [43]. Real-time

RT-PCR targeting the Matrix gene was conducted with the

QIAGEN OneStep RT-PCR kit (QIAGEN Valencia, California,

USA) and the Cepheid SmartCycler System (Cepheid, Sunny-

vale, California, USA) following the protocol described by

Spackman et al. [44]. Samples with a cycle threshold value

equal or less than 40 were considered positive.

Serum samples were tested with a commercial ELISA assay

(IDEXX FlockCheck IA MultiS-Screen Antibody Test Kit,

IDEXX Laboratories, Westbrook, Maine, USA) according to

the manufacturer’s instructions.

Supporting Information

Figure S1 Maximum clade credibility tree for PB2 of

viruses isolated in wild waterbirds in Minnesota,

between 1979 and 2008. Red dots represent nodes with

posterior probability values superior to 0.95. Viruses characterized

in this study are colored in blue. Viral strain names and sequence

accession numbers are listed in Table S3.

(PDF)

Figure S2 Maximum clade credibility tree for PB1 of

viruses isolated in wild waterbirds in Minnesota,

between 1979 and 2008. Red dots represent nodes with

posterior probability values superior to 0.95. Viruses characterized

in this study are colored in blue. Viral strain names and sequence

accession numbers are listed in Table S3.

(PDF)

Figure S3 Maximum clade credibility tree for PA of

viruses isolated in wild waterbirds in Minnesota,

between 1979 and 2008. Red dots represent nodes with

posterior probability values superior to 0.95. Viruses characterized

in this study are colored in blue. Viral strain names and sequence

accession numbers are listed in Table S3.

(PDF)

Figure S4 Maximum clade credibility tree for NP of

viruses isolated in wild waterbirds in Minnesota,

between 1979 and 2007. Red dots represent nodes with

posterior probability values superior to 0.95. Viruses characterized

in this study are colored in blue. Viral strain names and sequence

accession numbers are listed in Table S3.

(PDF)

Figure S5 Maximum clade credibility tree for M (M1) of

viruses isolated in wild waterbirds in Minnesota,

between 1979 and 2008. Red dots represent nodes with

posterior probability values superior to 0.95. Viruses characterized

in this study are colored in blue. Viral strain names and sequence

accession numbers are listed in Table S3.

(PDF)

Figure S6 Maximum clade credibility tree for NS of

viruses isolated in wild waterbirds in Minnesota,

between 1979 and 2007. Red dots represent nodes with

posterior probability values superior to 0.95. Viruses characterized

in this study are colored in blue. Viral strain names and sequence

accession numbers are listed in Table S3.

(PDF)

Figure S7 Maximum clade credibility tree for HA (H3)
of viruses isolated in wild waterbirds in North America,
between 1976 and 2008. Red dots represent nodes with

posterior probability values superior to 0.95. The virus character-

ized in this study is colored in blue and the box represents the

genetic sub-lineage detailed in Figure 1. Viral strain names and

sequence accession numbers are listed in Table S3.

(PDF)

Figure S8 Maximum clade credibility tree for HA (H4)
of viruses isolated in wild waterbirds in North America,
between 1977 and 2008. Red dots represent nodes with

posterior probability values superior to 0.95. The virus character-

ized in this study is colored in blue and the box represents the

genetic sub-lineage detailed in Figure 1. Viral strain names and

sequence accession numbers are listed in Table S3.

(PDF)
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Figure S9 Maximum clade credibility tree for NA (N6)
of viruses isolated in wild waterbirds in North America,
between 1976 and 2009. Red dots represent nodes with

posterior probability values superior to 0.95. The virus character-

ized in this study is colored in blue and the box represents the

genetic sub-lineage detailed in Figure 1. Viral strain names and

sequence accession numbers are listed in Table S3.

(PDF)

Figure S10 Maximum clade credibility tree for NA (N8)
of viruses isolated in wild waterbirds in North America,
between 1979 and 2007. Red dots represent nodes with

posterior probability values superior to 0.95. The virus character-

ized in this study is colored in blue and the box represents the

genetic sub-lineage detailed in Figure 1. Viral strain names and

sequence accession numbers are listed in Table S3.

(PDF)
Table S1 Adjusted R2 and P value obtained for linear
regression models.
(PDF)

Table S2 Information related to nucleotide sequences
used for phylogenetic analysis.

(PDF)

Table S3 Viral strain names, accession numbers and
taxa codes used in Figures S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10.

(PDF)
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