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Abstract

Immunological therapy of progressive tumors requires not only activation and expansion of tumor specific cytotoxic T
lymphocytes (CTLs), but also an efficient effector phase including migration of CTLs in the tumor tissue followed by
conjugation and killing of target cells. We report the application of an agent-based model to recapitulate both the effect of
a specific immunotherapy strategy against B16-melanoma in mice and the tumor progression in a generic tissue section. A
comparison of the in silico results with the in vivo experiments shows excellent agreement. We therefore use the model to
predict a critical role for CD137 expression on tumor vessel endothelium for successful therapy and other mechanistic
aspects. Experimental results are fully compatible with the model predictions. The biologically oriented in silico model
derived in this work will be used to predict treatment failure or success in other pre-clinical conditions eventually leading
new promising in vivo experiments.
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Introduction

Despite intensive research, cancer is still a leading cause of

death worldwide. Immunotherapy is a promising therapeutic

strategy for different types of cancer, but in its present form it is

often not sufficient to control tumor growth in patients. Antigen

specific cytotoxic T lymphocytes represent a crucial component of

the adaptive immune system with particular importance in the

eradication of intracellular pathogens and malignant cells[1].

Considering their prominent role in cellular immunity, there is a

comprehensible interest in targeting cytotoxic T-lymphocytes to

cancer. But even so adoptively transferred CTLs can be observed

infiltrating the tumor, their capacity to control tumor growth is still

insufficient in most patients[2]. Malignancies actively shield

themselves from immune attack. Soluble and membrane-attached

molecules whose normal function is to regulate immunity and

avoid self reactivity are cunningly perverted by tumors to permit

immune escape[3].

Tumor-infiltrating lymphocytes are rendered anergic through

the actions of co-inhibitory molecules expressed on the surface of

tumor and stroma cells. Successful immunotherapy requires

combined strategies that are able to turn-off deleterious signals

while enhancing CTLs migration and overall killing capacity[4–6].

CD137, also known as 4-1BB, is a co-stimulatory protein

expressed on activated T, NK, B-lymphocytes, dendritic cells and

tumor endothelium[7,8]. CD137 natural ligand, CD137L, is present

on the surface of activated antigen presenting cells[9]. Artificial

stimulation of this molecule with monoclonal antibodies therapeu-

tically augments the cellular immune response against tumors[10].

The mechanism of action is multilayered and includes effects on both

immune and non-immune cells (i.e. endothelial cells). These

powerful agents can be combined with adoptive T cell lymphocytes

as well as chemotherapy and other immuno-modulating agents to

achieve an enhanced anti-tumoral activity [5,11–13] and avoid

undesired side effects like the hepatotoxicity that has been recently

described under anti-CD137 high dosage treatment[14].

CTLs migration to tumor site is a key limiting factor to adoptive

cell therapy efficacy. We have recently shown that CD137 is

expressed on tumor endothelial cells. Ligation of CD137 on tumor

endothelium unleashes a pro-inflammatory switch that promotes

the entry of CTLs inside the tumor[7]. In this regard, CD137

monoclonal antibody (mAb) enhances T cell migration and

cytotoxic activity.

The agent based model derived in this work is first tuned to

reproduce the available in vivo results. After this tuning phase it is

used to predict the role of CD137 on endothelial cells. This is an

important step in the area of melanoma treatment as currently there

is no animal model available to fully isolate the role of CD137 on

endothelial cells in tumor rejection after immunotherapy.

Results and Discussion

We analyzed six pre-clinical cases of B16-OVA melanoma

treatment in immunocompetent mice, namely: i) Control, i.e.
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mice that received no treatment; ii) Anti-CD137, i.e. mice that

received i.p. 100 ug of anti-CD137 monoclonal antibody; iii) Non
activated OT-1, i.e. mice treated with 26106 antigen naı̈ve OT-

1-T cells i.v.; iv) Anti-CD137+Non activated OT-1, i.e. mice

that got i.p. 100 ug of anti-CD137 monoclonal antibody and i.v.

26106 naı̈ve OT-1-T cells; v) Activated OT1, i.e. mice that

received 26106 antigen activated OT-1-T cells i.v.; vi) Anti-
CD137+Activated OT-1, i.e. mice that got i.p. 100 ug of anti-

CD137 monoclonal antibody and i.v. 26106 activated OT-1-T

cells.

We performed 100 in silico experiments for each of the five

treated cases plus 100 for the untreated case. Time zero of the

simulation corresponds to a 6–8 weeks old mouse. The simulation

ends at day 33 post-tumor injection.

Figure 1 and Figure 2 show the tumor growth for the six cases in

the in vivo and in the in silico experiments, respectively.

A comparison with Figure 1 shows excellent agreement with in

vivo experiments. Substantially, in the in vivo experiments we don’t

observe any significant difference among control, treated with

Anti-CD137 mAb and treated with non activated OT-1 mice: the

tumor growth is not affected at all. Looking at the correspondent

curves in Figure 2, we find the same tumor growth dynamics.

Looking at the cases of mice treated with activated OT-1 T cells

and resting OT-1 + Anti-CD137 we observe a light reduction of

the tumor area (as reported perfectly also in the in silico curves), but

the tumor growth velocities are not affected. Finally in the mice

treated with activated OT-1 T cells + Anti-CD137 mAb the tumor

is almost totally rejected by day 20. Even in this case, simulations

show an excellent agreement with in vivo data.

Figure 3 shows four phases of tumor growth dynamics in a

typical simulation of an untreated mouse. It depicts the tumor

growth as spatial distribution of cancer cells in the simulated

portion of mouse tissue. In this case, TC cells are almost unable to

infiltrate into the core of the tumor. If we compare this situation

with the one showed by Figure 4, we note that in this case, thanks

to the effect of anti-CD137 mAb, OT-1 T cells are able to

infiltrate the tumor core, and finally destroy cancer cells (Figure 5).

The simulation is then able to capture the major effect of anti-

CD137, i.e. the augment of the cytotoxicity of TC cells and the

ability to follow chemotaxis gradients and consequently to

infiltrate the tumor (Figure 6).

In a different experiment, we started treatment with OT-1

activated T cells or OT-1 activated T cells + Anti-CD137 mAb at

day 8 after tumor inoculation. Figure 7A displays the results for the

in vivo experiment. When treatment is initiated at the indicated

time, the combined therapy is completely ineffective, suggesting a

Figure 1. The conceptual model. This figure conceptually explains the biological workflow. It represents the first step for successfully modeling
the scenario. Arrows represent the logical flow. Labels explain the interactions or the actions (i.e., status change, activities and functions) by the
involved entities.
doi:10.1371/journal.pone.0026523.g001
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relatively reduced tumor T cell infiltration capable of eradicating

B16-OVA melanoma. In silico experiments nicely reproduce the in

vivo experimental results. Our computational model is able to

capture the underlying dynamics of combined immunotherapy in

two different experimental scenarios that include 9 different

treatment options.

Model predictions
We have previously shown that CD137 is expressed on tumor

endothelial cells[7]. CD137 activation with agonist monoclonal

antibodies on tumor endothelial cells up regulates adhesion

molecules and promotes T cell infiltration inside tumors.

Currently, there is no animal model available to fully isolate

the role of CD137 on endothelial cells in tumor rejection after

immunotherapy. Such animal model, CD137 conditional

knockout on endothelial cells can be simulated using the agent

based model described in this work. Combined immunotherapy

under the same conditions as described in Figure 3 does not

eliminate B16-OVA in mice that do not express CD137 on

endothelium (Figure 8A). CD8 T cell infiltration is drastically

reduced and delayed in time compared to wild type in silico mice

(Figure 8B). Entrance of killer T cells at late time points is

ineffective to eliminate a tumor burden beyond 1 cm in

diameter. Therefore early infiltration of T cells that seems to

be dependent on CD137 expression on tumor vasculature is

predicted as an important factor to dictate the therapeutic

results. Although the predictions for endothelium CD137

involvement in therapy are of much interest, clearly demand

confirmatory experimental verification. However, previous

experimental results are fully compatible with this hypothe-

sis[7,8,22].

Figure 2. Activated OT-1 cells and systemic injection of anti-CD137 mAb show therapeutic synergy against B16-OVA melanoma.
Mice were subcutaneously implanted with B16-OVA cells on day 0 and treated on day 3 with 100 mg of rat IgG (control) or anti-CD137 mAb i.p. Mice
also received on the same day activated or resting OT-1 cells i.v.
doi:10.1371/journal.pone.0026523.g002

Figure 3. Tumor-area curves of virtual mice receiving OT-1 T cells and anti-CD137 mAb. B16-OVA cells were injected toward the
immediate neighborhood in the center of lattice at timestep 0. Immunotherapy on day 3 with 100 mg of rat IgG (control) or anti-CD137 mAb i.p. were
simulated injecting the compound around the lattice walls. Virtual mice that also received in the same day activated or resting OT-1 T cells i.v. were
simulated in the same way.
doi:10.1371/journal.pone.0026523.g003

SimB16
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For cost-effectiveness analysis one can estimate that each group

of six mice (as those shown in the present paper) developing

tumors and being treated takes around 600-800 $ taking into

account: per mouse cost, animal facility personnel, investigator

time, treatment cost (T cells+antibodies). Typical experiments

would cost about 1,800–2000$. Having this estimation in mind, it

is clear that an in silico approach can save both money and time,

suggesting target experiments and then minimizing the number of

needed experiments.

Biological data availability has grown enormously in the past

two decades. Such a large amount of data requires a computa-

tional and logical framework to be organized and analyzed.

In this scenario, computational models are powerful tools for

knowledge discovery both for biological and medical sciences. To

achieve this goal, one needs both descriptive and predictive

computational models. A descriptive model reproduces in silico

results obtained from wet laboratory experiments or clinical

treatment. If a predictive model is able to forecast the outcome of

Figure 4. In silico tumor growth dynamics in a typical simulation of an untreated mouse. From upper-left, following clock-wise way,
cancer cells dynamics at day 7, 14, 21, 28 following tumor cell inoculation.
doi:10.1371/journal.pone.0026523.g004
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new possible experiments or treatments and this model capability

is verified by a new experiment or independent clinical data, then

it can be used as predictive model. Then the model can be used to

forecast in silico, with much less cost and effort, the outcome of

many bio-experiments or clinical trials and rank them according to

the quality of their results. Only the best experimental condition

will be tested in vivo saving money, time and animal distress. As it is

well known, models improve in the virtuous cycle of experiment –

model – experiment widely used in the physical sciences.

In this paper we presented a model to analyze the co-

stimulatory effect of anti-CD137 mAb for the melanoma treat-

ment upon synergistic adoptive transfer of activated OT-1 T cells.

The reported in vivo show that a single administration of anti-

CD137 mAb plus activated OT-1 T cells is sufficient to completely

reject the B16-OVA, while single components or not activated

OT-1 T cells have no success.

The in silico experiments performed with the presented

computational model show very good agreement with their in vivo

counterpart. The model has been then used to identify the role of

CD137 on endothelial cells in tumor rejection after immunother-

apy, as currently there is no animal model to conduct these kind of

experiments. The model predicts that early infiltration of T cells

seems to be dependent on CD137 expression on tumor

vasculature. These predictions clearly demand confirmatory

experimental verification; however, previous experimental results

are fully compatible with this hypothesis.

Many aspects of CD137 molecule biology are still not fully

understood. Investigating these aspects requires many difficult and

expensive wet lab experiments. Our ongoing goal is to test the

predictive ability of the model with few illustrating scenarios and

then use the model as a virtual lab to analyze different aspects and

hypotheses regarding this mode of immunotherapy. This work is

still in progress and results will be published in due course.

Materials and Methods

The biological scenario in which the B16-OVA melanoma and

the related induced immune response operate, need to be

described in a rationale manner, before they can be translated

into a mathematical/computational description. This means that

the description must be able to capture the essential properties of

the phenomenon i.e., the system entities, their organization and

their dynamic behavior.

The role of a conceptual model is then to drive biological

knowledge into a solvable mathematical representation, offering a

conceptual framework for iterative thinking about the scientific

domain allowing the inclusion of additional properties in the same

scheme with a limited effort.

To satisfy the above properties, the first task in building a solid

conceptual model is to identify all the relevant entities and their

properties (cells, molecules, adjuvants, cytokines, interactions) that

biologists and clinicians recognize as crucial in the in vivo scenario.

Next, the modeler has to categorize all the interactions among

entities that play a relevant role. These must be described using

biological knowledge inside a logical framework, to be able, as a

further step, to map them from the biological world to a

mathematical/computational one. The final step is to set all the

biological constants, relevant functions, and identify the best

computational framework capable of hosting the simulated

biological scenario.

Having all the above described steps in mind, the first task to

deal with is the choice of the entities we have to include in the

model. We considered both cellular and molecular entities.

We considered both B lymphocytes and T lymphocytes. Plasma

B cells (P) were inserted as specific antibodies producers. Both

cytotoxic T cells (TCs) and helper T cells (TH) were inserted in the

model. Monocytes are represented as well and we take care of

macrophages (M). Dendritic cells play the role of cross-

presentation antigen processing cells. Two major types of dendritic

cells have been discovered and have been named conventional

(cDCs) and plasmacytoid dendritic cells (pDCs). pDCs are not able

to present the antigen, so we represented only cDCs in the model,

along with their specific capability of processing and cross-

presenting antigen peptides both in MHC class I and MHC class

II molecules. Immune complexes (ICs) were also inserted in the

model and treated as antibody-tumor antigen complex[15].

Several molecules entities engage an important role in

simulating the B16-OVA melanoma biological scenario. The

model distinguishes between simple small molecules like interleu-

kins or signaling molecules in general and more complex

molecules like immunoglobulins and antigens, for which we need

to represent the specificity. Regarding the interleukin class

molecules, we represent interleukin 2 (IL-2) that is necessary for

the development of T cell immunologic memory, one of the

unique characteristics of the immune system, which depends upon

the expansion of the number and function of antigen-selected T

cell clones.

Immunoglobulins of class IgG are represented as well. There is

no immunoglobulins class switching representation, because we

don’t need to represent other classes of Ig and because IgG is the

most versatile immunoglobulin since it is capable of carrying out

all of the functions of immunoglobulins molecules. Moreover IgG

is the major immunoglobulin in serum (75% of serum Ig is IgG)

and IgG is the major Ig in extra vascular spaces.

The model also contains dominant characteristics of the OT-1

transgenic mice that were used in in vivo experiments, i.e.:

N all CD8 single positive T cells in the thymus express the

transgenic TCR that is specific for OVA peptide in the context

of H2-Kb;

N the CD8 single positive T cells in the thymus express high

levels of the transgenic TCR;

N increased CD8-positive T cell number respect to CD4-positive

(7-fold reduction of CD4-positive)

N CD8 T cells have high cytolytic activity toward target cells

containing OVA peptide.

A detailed overview of the conceptual model is shown in Fig. 1.

The biological dynamics of the cells is realized by state-changes:

each cellular entity is labeled by a suitable state that describes its

current biological condition (naı̈ve, activated, duplicating and so

on). The state can change when a cell interacts with another cell,

with a molecule or with both of them.

Next step is to identify the relevant interactions that happen

during the induced immune response against B16 melanoma. We

included the following interactions.

N B lymphocyte and helper T lymphocyte interaction. If the T receptor

(CD4) at the surface of a T helper lymphocyte binds

specifically peptide/major histocompatibility complex class II

Figure 5. Cytotoxic T cells dynamics. With the anti-CD137 stimulation, TC cells are able to infiltrate tumor and consequently they kill cancer cells,
causing total rejection of B16- melanoma. From upper-left, following clock-wise way, OT-1 cells dynamics at day 7, 14, 16, 20, 24, 28.
doi:10.1371/journal.pone.0026523.g005
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at the surface of the antigen presenting B lymphocyte, helper T

lymphocyte proliferates and secretes interleukin 2. At the same

time, B lymphocyte proliferates and differentiates into a

plasma cell.

N Macrophage and helper T lymphocyte interaction. If a T cell receptor

(CD4) at the surface of T helper lymphocyte binds specifically

peptide/major histocompatibility complex class II at the

surface of antigen processing macrophage cell, helper T

lymphocyte proliferates and secretes interleukin 2.

N Dendritic cell with B16 melanoma tumor associated antigen. If a cDC

encounters a B16 melanoma tumor associated antigen, the

cDC internalizes the antigen and processes it into peptides that

are then presented by major histocompatibility complex class

II or by major histocompatibility complex class I (cross-

presentation ability of cDCs) at the dendritic cell surface. cDC

becomes antigen presenting cell.

N Cytotoxic T cell with antigen presenting cDC interaction. If a T cell

receptor (CD8) at the surface of cytotoxic T lymphocyte binds

specifically peptide/major histocompatibility complex class I at

the surface of antigen processing dendritic cell, cytotoxic T

lymphocyte begins activated (primed).

N Cytotoxic T cell with B16-OVA melanoma cell interaction. If the T cell

receptor at the surface of an activated T cytotoxic lymphocyte

binds specifically peptide/major histocompatibility class I at

the surface of B16-OVA melanoma cell, in presence of IL-2

and anti-CD137 the TC kills B16-OVA melanoma cell.

Figure 6. In silico tumor growth dynamics in a typical simulation of a mouse treated with activated OT-1 cells and anti-CD137. From
upper-left, following clock-wise way, OT-1 cells dynamics at day 7, 14, 16, 20, 24, 28.
doi:10.1371/journal.pone.0026523.g006

Figure 7. Combined treatment started at day 8 is not effective
to eliminate B!6 melanoma. A. In vivo experiment. Mice were
subcutaneously implanted with B16-OVA cells on day 0 and treated on
day 8 with 100 mg of rat IgG (control) or anti-CD137 mAb i.p. Mice also
received on the same day activated or resting OT-1 cells i.v. B. In silico
experiment. B16-OVA cells were injected toward the immediate
neighborhood in the center of lattice at timestep 0. Immunotherapy on
day 8 with 100 mg of rat IgG (control) or anti-CD137 mAb i.p. were
simulated injecting the compound around the lattice walls. Virtual mice
that also received in the same day activated or resting OT-1 T cells i.v.
were simulated in the same way.
doi:10.1371/journal.pone.0026523.g007

Figure 8. Model prediction. CD137 expression on endothelial cells is
essential for tumor rejection. A. In silico experiment. WT or CD137
KO (only on endothelial cells) virtual mice were treated as in Figure 3. B.
CD8 T cell infiltration after combined therapy in WT and or CD137 KO
virtual mice.
doi:10.1371/journal.pone.0026523.g008
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N Anti-CD137 with activated cytotoxic T cell. Anti-CD137 will

improve cytotoxicity, duplication rate and chemotaxis sensi-

tivity of activated cytotoxic T cell.

The model takes into consideration a 2D domain physical space

with periodic boundaries. Apparently this seems a limitation in

terms of space representation. On the other hand we know that all

the processes and interactions of the simulated scenario take place

in an epithelium tract and in the surrounding lymph nodes. Hence

this is a good approximation and gives to the model implemen-

tation improvements in both speed and simplicity.

As all the entities and the interactions have been identified and

conceptually introduced, one has to deal with the final step of the

modeling process i.e., the choice of the more suitable modeling

technique.

Using our previous experiences in the field of simulation of

different pathologies and the related immune system response [16–

18,24–28], we choose to adopt an agent based modeling (ABM)

approach as a computational framework.

Although ABM is not subject to a deep analytical analysis by

presently known methods, it has many advantages.

The ABM is stochastic, so it is possible to estimate the

distribution of behaviors exhibited by the entire system, not just

the average, in fact determinism is avoided and it is possible to take

into account the effect of the spatial distribution easily.

The ABM is also able to accurately represent many of the

biological processes of interest so that the approximations in the

model are usually more biological in character than mathematical.

Moreover it is possible to approaching nonlinearities in as

simple way because they are not intrinsically hard to handle. This

also means that it is possible to add complexity or modify the

model without introducing any new difficulties in solving it.

Most mathematical models of the immune response are

deterministic and use, for example, differential equations (solved

by numerical integration) to model the biological interactions

among cells and molecules. However, the assumptions made by

the deterministic method do not hold for many processes that are

sensitive to the behavior of a relatively small number of entities.

Another problem of equations is given by their formalism. The

‘‘language’’ used by equations is not usually known to biologists,

making the communication with mathematicians/Computer

scientists even more hard and damaging the interdisciplinary

collaboration for any model to be built [23].

This method is also intrinsically numerically stable thanks to the

fact that most of the variables representing the attributes of the

entities are integers and very few floating point operations are

required. Modeling the immune system response with a differen-

tial equation model, trying to represent all the immunological

aspects modeled by the ABM, is discouraging. To justify this

statement consider that to coherently model the immune system it

is fundamental to take into account entities receptors variability.

Receptors variability can reach approximately 107 different

receptors at the same time in the host (from a range of 1013 2

1015 possible receptors) and, even modeling a smaller receptor

range (i.e. 103 2 106), it can represent a problem.

To model, for example, the clonal selection process problem

with an ODE, one should take into account a number of equations

that is of the same order of the allowed receptors variability.

Moreover presentation or stimulation processes involve different

types of specialized cells, so the number of equations grows further.

Imagine a typical process of the immune system, i.e. when an

cell A, after an interaction with a cell B, switches its internal state

and mutates into a new cell C (for example a B lymphocyte that

differentiates into a plasma cell after stimulation by a TH

lymphocyte).

Let R be the allowed set of possible receptors, Ai be the set of

entities of type A with receptor i M R and Ci be the set of entities of

type C with receptor i M R (even if affinity maturation occurs in

real immune system, we suppose for simplicity that the receptor

does not change during the switch).

The Ai cells can hypothetically interact with all Bj , j = 1...|R|,

and the stimulation depends by the affinity between receptors i

and j, so one has:

dCi tð Þ
dt

~
XR

j~1

AiBjKijz . . .

where kij represents the affinity ratio between the receptors i and j

and i, j = {1, . . . , |R|}. This differential equation has to be

repeated for all the A clones (one for each different receptor i,

i M R).

If the biological problem is not homogeneous in space, the use

of a density function f (t, x) should be required for every population

(i.e. a partial differential equations system), further increasing the

complexity of the model.

Moreover immune system interactions and events are not

deterministic. This means that one should include a source of

randomness into the equations. Stochastic differential equations

(SDE) or stochastic partial differential equations (SPDE) should be

then used.

Summarizing, if R is allowed receptor variability (i.e. 212 in

SimB16) and S the number of different kinds of entities with

specialized receptors (i.e. S = 3 for B, TC and TH representation,

forgetting about plasmacells, antibodies, antigens and entities

state-changes), a system of (at least) R ? S ( = 3 ? 212 < 104)

stochastic partial differential equations (with various non-lineari-

ties) has to be used to tackle the biological problem in a similar way

the CS automaton does.

Model implementation: SimB16 simulator
The computer implementation of the model (SimB16 hereafter)

has three main classes of parameters: i) values known from

standard immunology literature; ii) parameters strictly correlated

with the specific biological scenario we want to simulate, i.e.

parameters that measure the B16-OVA melanoma dynamics, its

behavior and its interactions with the immune system of the host;

iii) parameters with unknown values which we set to plausible

values after performing a series of systematic tests.

Table 1 details the values of the parameters retrieved from the

literature. Table 2 shows specific parameters of B16-OVA

melanoma.

SimB16 has set of free parameters that can be used to tune the

model results with experimental data. The list of these parameters

and their final used values are quoted in Table 3. Tuning

parameters were initially set using previous modeling experience

and then adjusted to reproduce experimental behavior. The first

parameter we set is nbit_str that determines the repertoire size. It

indicates the number of bits used to represent the molecules and

the cells binding sites like cell receptors and antigen peptides and

epitopes. It was set to 12 corresponding to a potential repertoire of

4096 cell receptors. This is obviously very poor respect to the real

immunological repertoire, but it was sufficient to capture the

global behavior of the B16-OVA/immunotherapy process. The

parameter min_match specifies the minimal number of matching

bits that are required to have a non-zero probability to bind;

affinity_level is the probability to interact between two binding sites

SimB16
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whose match is min_match; max_lfact regulates the probability for

a cell that is duplicating to create a new cell; IL2_eff is a factor

expressing the efficiency of interleukin-2 in stimulating growth of

the lynphocytes; thymus_eff represents the efficiency of the thymus

in selecting non self-reactive thymocytes. In general the fraction of

circulating auto-reactive TH cells should be below 0.1%.

In order to catch the evolution of all quantities, the time step of

a simulation must be lesser than all characteristics times. We chose

a time step of 8 hours to satisfy this requirement.

Parameter hyper_mut is the per-bit mutation probability for the

antibodies. The hyper-mutation rate of antibodies is taken as the

suggested value in Celada, 1996; plasma_rel controls the quantity of

specific IgG antibodies released by a plasma B cell per time step;

prob_M_Ag is the probability for a macrophage to phagocyte/

internalize an antigen; prob_M_IC is the probability for a

macrophage to phagocyte an immune complex; prob_cDC_Ag is

the probability for a dendritic cell to phagocyte/internalize an

antigen. This was set to a higher level than the prob_M_Ag as DC

are known to be better antigen presenting cells; B_dup is the

number of time steps a B cells creates a copy of itself when

duplicating; TH_dup is the number of time steps a TH cells creates

a copy of itself when duplicating; TC_dup is the number of time

steps a TH cells creates a copy of itself when duplicating.

With these settings, the model showed a good robustness, giving

reasonable output. This means that if we slightly change

parameters such as the initial leukocyte formula, the half life of

entities, and so on, the model consistently varies its results, without

biological discrepancy when compared with available experimen-

tal data retrieved from the above cited literature.

SimB16 takes care of the main immune system functions and

peculiar characteristics, such as diversity of specific elements, major

histocompatibility classes restriction, clonal selection by antigen

affinity, thymus education of T cells, antigen processing and

presentation (both the cytosolic and endocytic pathways are

implemented), cell-cell cooperation, homeostasis of cells created by

the bone marrow, hypermutation of antibodies, cellular and humoral

response and immune memory. Receptors, ligands and immune

system specificity are implemented in SimB16 by a bit-string polyclonal

lattice method. This was well-described method and the interested

reader can found additional information in specific literature [19].

Immune system entities interact both each other and with the

cells and molecules of the body. From the point of view of biology,

an interaction is a complex event that includes chemical, biological

and dynamical actions. We implemented both recognition phase

and affinity eventually enhanced by adjuvants. When two entities,

which may interact, lie in the same lattice site then they interact

with a probabilistic law. All entities that may interact and are in

the same site have a positive interaction.

Physical proximity is modeled through the concept of lattice-

site. All interactions among cells and molecules take place within a

lattice-site in a single time step, so that there is no correlation

between entities residing on different sites at a fixed time.

The simulation space is represented as an L6L hexagonal (or

triangular) lattice (six neighbors), with periodic boundary conditions

to the left and right side, while the top and bottom are represented by

rigid walls. All entities are allowed to move with uniform probability

between neighboring lattices in the grid with equal diffusion

coefficient. We considered 3600 mm2 (60 mm660 mm) of mouse

tissue that we simulated using a lattice grid size of 9466946.

Compared to the complexity of the real biological scenario, the

model can be extended in many aspects. On the other hand the

model is complete enough and is able to describe the major aspects

of the modeled experiment.

In order to model the melanoma growth pattern, we followed

the procedure described hereinafter. The first step to accomplish is

Table 2. SimB16 parameters with known values retrieved
from specific literature.

Entity Initial quantity (per mL) Half life

B16 cancer cells 0 10 years

Anti-CD137 N/A 23 days

OT-1 T-cells N/A 3.3 days

N/A means not applicable.
doi:10.1371/journal.pone.0026523.t002

Table 1. SimB16 parameters with known values retrieved
from immune system specific literature.

Entity Initial quantity (per mL) Half life

B 260 3.3 days

TH 200 3.3 days

TC 434 3.3 days

cDC 351 3.3 days

M 351 3.3 days

EP 351 3.3 days

NK 351 3.3 days

P 0 3.3 days

IC 0 4.0 days

IL-2 0 1.6 days

CA 0 1.6 days

IgG 0 23.0 days

CA stands for Chemo-Attractans.
doi:10.1371/journal.pone.0026523.t001

Table 3. SimB16 tuning parameters.

Parameter Value

Timestep 8 hours

hyper_mut 1024 in 8 hours

plasma_rel 10 ng/m per 8 hours

prob_M_Ag 1022 in 8 hours

prob_M_IC 1021 in 8 hours

prob_cDC_Ag 261022 in 8 hours

B_dup 16

TH_dup 16

TC_dup 16

nbit_str 12

min_match 9

affinity_level 561022

max_lfact 5

IL2_eff 100%

thym_eff 99.9%

doi:10.1371/journal.pone.0026523.t003
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to keep track of the temporal evolution of the cancer in absence of

any treatment. To this end the diameter of melanomas for

untreated mice has been measured and stored at different times

during the experiment.

Supposing a disk-shaped layout for the melanoma and having

knowledge of the mean diameter of melanoma cancer cells, we

estimated the number of cancer cells (in the observed melanomas)

for all the measurements made.

This data has been used with a curve fitting procedure to

estimate the unknown parameters needed to model the cancer

growth kinetics under the hypothesis that the melanoma growth

followed a Gompertz law[20].

The law, which is commonly considered suitable for describing

populations growths, uses two factors: a growth factor that

decreases in time and a constant mortality factor. Thanks to the

growth factor deceleration, the dimension of the population tends

asymptotically to a certain threshold (carrying capacity) giving a

sigmoid shape to the law.

Once the unknowns of the growth law have been determined,

they can be used to reproduce the growth kinetics in time of the

melanoma. In particular, we approximate the differential form of

the Gompertz law with the forward Euler discretization method,

obtaining:

w~xtz1{xt~Dt(xt(a{b:ln(xt)))

where xt and xt+1 are the number of cancer cells at time t and t+1, a

and b are the fitted unknowns of the growth law, and Dt = 1 since the

simulator uses discrete time-steps. Starting from time-step 0, where

it is supposed x0 = 200000 (we suppose that nearly 60% of the

injected cancer cells die before to settle and duplicate), the model

determines at each time-step t the expected number of newborn

cancer cells w ( = xt+12 xt) that will be introduced into the simulation

at time-step t+1 on the basis of the actual number of cancer cells xt.

Chemotaxis is a biological phenomenon in which some cells,

like immune system cells, direct their movements according to

certain chemical signals. Chemotaxis is a very complex process

involving many factors such as short and long range interactions

and no model is probably able to completely represent this

phenomenon, since it has not yet fully understood[21].

In a first attempt to mimic short range chemotaxis effects,

higher probabilities of being chosen are given to sites containing

chemoattractans released by endothelial cells, activated macro-

phages and activated OT-1 cells.

In vivo experimental settings
Immunotherapy setting. B16 melanoma cell line was

derived from an aggressive spontaneous melanoma in pure

C57BL6 and B16F10 was derived as a clonal variant from a

lung metastasis of this cell line. B16-OVA was transduced with the

chicken ovalbumin gene to use it as a model tumor antigen. In

tumor immunology these variants are considered poorly

immunogenic in the sense that immune-mediated rejections or

growth retardations are difficult to achieve.

The experimental setup is oriented to model therapeutic

synergy between anti-CD137 monoclonal antibodies and adoptive

T cell therapy in melanoma. B16-OVA is a poorly immunogenic

murine tumor that does respond to neither anti-CD137 mAb nor

adoptive transfer used as monotherapy. The treatment protocol

includes a single injection of anti-CD137 mAb and adoptive T cell

transfer of OVA specific TCR-transgenic CD8 T cells.

Cell lines. B16-OVA was obtained and authenticated from

ATCC. Cells were cultured in complete RPMI medium (RPMI

1640 with Glutamax [Gibco, Invitrogen, CA] containing 10%

heat-inactivated FBS (SIGMA-ALDRICH, UK), 100 IU/ml peni-

cillin and 100mg/ml streptomycin (Biowhittaker, Walkersville,

MD) and 50 mM 2-mercaptoethanol.[Gibco]). B16-OVA was

cultured under G418 selection (1 mg/mL, Gibco).

Mice. C57 BL/6 female mice (6–8 weeks old) were purchased

from Harlan Laboratories (Barcelona, Spain). OT-I TCR-transgenic

mice were from The Jackson Laboratory (Barcelona, Spain) and

bred in our animal facility under specific pathogen-free conditions.

Animal procedures were conducted under institutional guidelines

that comply with national laws and policies (study 066/10).

Antibodies. Anti-CD137 mAb is produced from the 2A

hybridoma, kindly provided by Dr. Lieping Chen. The mAb

produced by this hybridoma was purified from culture supernatant

by affinity chromatography in sepharose protein G columns (GE

Healthcare Bio-sciences AB, Uppsala, Sweden) dialized and

quality controlled including determinations of lipopolysaccharide

(LPS) concentration (Antibody BCN, Barcelona, Spain, as a

contractor). Control IgG from rat serum was obtained from

Sigma-Aldrich.

In vivo tumor growth and treatment. 0.56106 B16-OVA

cells were injected in 100 mL PBS subcutaneously in the right flank

of C57 BL/6 mice. OT-1 T cells were prepared from the spleens of

OT-I TCR transgenic mice and activated with 5 ug/mL of

OVA257-264 peptide (NeoMPS, Strasbourg, France) for 48 hours

at 37uC in 5% CO2 and washed extensively before i.v. inoculation.

On day 3 or 8 after tumor injection mice received i.p. 100 ug of

anti-CD137 monoclonal antibody or control rat IgG and 26106

activated or naive OT-1T cells i.v. Tumor growth was evaluated by

measuring 2 perpendicular diameters with a digital caliper every 3–

4 days. Mice were sacrificed when tumor sizes reached 450 mm2.

Ethics
The protocol was approved by Comite de Etica para la

Investigacion Animal of the University of Navarra (ID:066/10).
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