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Abstract

Using DNA microarrays, we generated both mRNA and miRNA expression data from 6 non-small cell lung cancer (NSCLC)
tissues and their matching normal control from adjacent tissues to identify potential miRNA markers for diagnostics. We
demonstrated that hsa-miR-96 is significantly and consistently up-regulated in all 6 NSCLCs. We validated this result in an
independent set of 35 paired tumors and their adjacent normal tissues, as well as their sera that are collected before surgical
resection or chemotherapy, and the results suggested that hsa-miR-96 may play an important role in NSCLC development and
has great potential to be used as a noninvasive marker for diagnosing NSCLC. We predicted potential miRNA target mRNAs
based on different methods (TargetScan and miRanda). Further classification of miRNA regulated genes based on their
relationship with miRNAs revealed that hsa-miR-96 and certain other miRNAs tend to down-regulate their target mRNAs in
NSCLC development, which have expression levels permissive to direct interaction between miRNAs and their target mRNAs.
In addition, we identified a significant correlation of miRNA regulation with genes coincide with high density of CpG islands,
which suggests that miRNA may represent a primary regulatory mechanism governing basic cellular functions and cell
differentiations, and such mechanism may be complementary to DNA methylation in repressing or activating gene expression.

Citation: Ma L, Huang Y, Zhu W, Zhou S, Zhou J, et al. (2011) An Integrated Analysis of miRNA and mRNA Expressions in Non-Small Cell Lung Cancers. PLoS
ONE 6(10): e26502. doi:10.1371/journal.pone.0026502

Editor: Boris Zhivotovsky, Karolinska Institutet, Sweden

Received May 23, 2011; Accepted September 28, 2011; Published October 27, 2011

Copyright: � 2011 Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by Natural Science Foundation of Zhejiang Province (Y2110960) and Bureau of Science and Technology of Zhoushan awarded
to Professor Yongkui Zhang (20081059), and the Research Fund of Zhoushan Hospital awarded to Dr. Lina Ma, and the National Basic Research Program (973
Program; 2011CB944100 and 2011CB944101) and National Natural Science Foundation of China (90919024) awarded to Professor Jun Yu. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lxg2004@gmail.com (XL); yongkuizhang53@163.com (YZ); junyu@big.ac.cn (JY)

Introduction

Currently, non-small cell lung cancer (NSCLC) is the leading

cause of cancer death in the world[1]. Surgical resection is mainly

performed in early-stage cases and is also effective, but its effect is

limited for patients with locally advanced cancers because of the

high rate of distant metastasis and recurrence. Thus, chemother-

apy and radiation therapy, as well as a combination of both, are

always performed in the treatment of patients with locally

advanced cancers. However, the 5-year survival rate of lung

cancer patients decreases dramatically with clinical stages of the

disease, for instance, from an estimated 61% for patients with the

stage IA disease to 38% for patients with the stage IB disease.

Other stage-related 5-year survival rate of the disease are 34% for

patients with IIA disease, 13% for patients with stage IIIA disease,

5% for patients with stage IIIB disease, and 1% for patients with

stage IV [2,3,4,5]. Most lung cancer patients are only diagnosed

after tumors have spread beyond their primary sites, and this is an

important reason for the poor outcome of lung cancer treatments.

In addition, variation analysis among a variety of cancers

suggested that lung cancer has larger number of mutated genes

than other cancers [6]. Therefore, the discovery of effective

diagnostic markers and interrogating mechanisms of lung cancer

development, are both necessary for improving the survival rate of

lung cancer patients.

miRNAs are short non-coding RNAs (,22 nt long) that bind

complementary sequences in target mRNAs, resulting in their

selective degradation or selective inhibition of translation. There-

fore, through regulating their target genes, miRNAs are known to

be involved in a wide range of biological functions, such as cellular

proliferation, differentiation, and apoptosis [7,8]. Aberrant miR-

NAs expression has been reported to cause diseases, such as cancers

[9], Alzheimer’s disease [10], heart diseases [11], spinal motor

neuron anomalies [12], and etc.. In NSCLC, it has been suggested

that miR-31 may act as an oncogenic miRNA by repressing tumor

suppressors: LATS2 and PPP2R2A [13], and expression of hsa-

miR-205 has been suggested to be able to distinguish squamous

from nonsquamous non-small-cell lung carcinoma [14]. In addition,

evidences show that high hsa-mir-155 and low hsa-let-7a-2

expression correlated with poor survival of lung cancer patients

[15], and has-miRNA-126 may promote NSCLC cells apoptosis

induced by irradiation through the PI3K-Akt pathway [16].

miRNAs are now emerging as highly tissue-specific biomarkers

for discriminate cancers from noncancerous tissue, and different

cancer types, as well as different prognostic results [15,17].

mRNA profiling have revealed that transcriptional abnormality

of many genes are responsible for the development of NSCLC

[18,19], and differential expression of miRNAs also have been

detected between lung cancer tissues and the adjacent normal

tissues [15,20]. In the present study, we used microarrays to
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measure the expression levels of miRNAs and mRNAs simulta-

neously in paired NSCLC and their adjacent normal tissues to

investigate possible roles of miRNAs. Our analyses are both

integrated and rather deep in search for possible candidate

miRNAs and their mRNA targets for further investigations and

clinical applications.

Results

Differentially expressed mRNAs in NSCLC tissues
compared with their paired normal tissues

We performed gene expression profiling for paired tumor-

normal tissue samples from 6 NSCLC patients and investigated

34,694 genes/transcripts. We defined 581 up-regulated genes and

1, 297 down-regulated genes which were consistently up- or down-

regulated in all 6 tumor tissues compared with the adjacent normal

tissues (Table S2 and Table S3). Among differentially expressed

genes, we identified 2 significantly up-regulated and 22 signifi-

cantly down-regulated genes at a False Discovery Rate (FDR) of

0.1 (Table S2 and Table S3). We subsequently performed GO

enrichment analysis using hypergeometric test and multiple test

adjustment method BH through WebGestalt2 [21] and defined

the enriched pathways at a p value of ,0.001. The hypergeo-

metric distribution is a discrete probability distribution that

describes the number of successes in a sequence of n draws from

a finite population without replacement, just as the binomial

distribution describes the number of successes for draws with

replacement. Hypergeometric test helps to find which GO terms

are overrepresented in a large gene list. According to hypergeo-

metric test results, the cell cycle M-phase and DNA metabolic

process were predominantly activated, whereas pathways involved

in immune functions were significantly repressed in NSCLC

(Table 1). In addition, up-regulated genes were predominantly

enriched in ‘‘chromosome’’ as opposed to down-regulated genes

that were predominantly enriched in ‘‘cell membrane’’ (Table 2).

Differentially expressed miRNAs in NSCLC tissues
compared with their paired normal tissues

We performed miRNA expression profiling using the same 6

paired samples of the primary tumor and its adjacent normal

tissue. We obtained 25 up-regulated and 24 down-regulated

miRNAs which were consistently up- or down-regulated in all 6

tumor tissues compared with the adjacent normal tissues before

significance test (Table S4 and Table S5). Based on a more

Table 1. Enriched GO terms for biological process based on variable genes in lung cancer tissues when compared with their
adjacent normal tissues.

Class GO terms GO number Statistic*

Up-regulated DNA metabolic process GO:0006259 C = 552;O = 27;E = 9.68;R = 2.79;rawP = 1.48e-06;adjP = 0.0008

Up-regulated M phase GO:0000279 C = 370;O = 21;E = 6.49;R = 3.24;rawP = 2.35e-06;adjP = 0.0008

down-regulated immune response GO:0006955 C = 750;O = 101;E = 42.54;R = 2.37;rawP = 1.51e-16;adjP = 2.91e-13

down-regulated immune system process GO:0002376 C = 1066;O = 124;E = 60.46;R = 2.05;rawP = 3.98e-15;adjP = 3.84e-12

down-regulated defense response GO:0006952 C = 657;O = 89;E = 37.26;R = 2.39;rawP = 8.14e-15;adjP = 5.23e-12

down-regulated inflammatory response GO:0006954 C = 359;O = 60;E = 20.36;R = 2.95;rawP = 2.82e-14;adjP = 1.36e-11

down-regulated response to wounding GO:0009611 C = 560;O = 75;E = 31.76;R = 2.36;rawP = 2.23e-12;adjP = 8.60e-10

down-regulated response to stress GO:0006950 C = 1696;O = 147;E = 96.19;R = 1.53;rawP = 5.52e-08;adjP = 1.33e-05

down-regulated innate immune response GO:0045087 C = 176;O = 30;E = 9.98;R = 3.01;rawP = 5.52e-08;adjP = 1.33e-05

down-regulated response to external stimulus GO:0009605 C = 904;O = 91;E = 51.27;R = 1.77;rawP = 4.51e-08;adjP = 1.33e-05

down-regulated immune effector process GO:0002252 C = 200;O = 31;E = 11.34;R = 2.73;rawP = 3.06e-07;adjP = 6.56e-05

down-regulated regulation of immune system process GO:0002682 C = 362;O = 45;E = 20.53;R = 2.19;rawP = 5.72e-07;adjP = 0.0001

down-regulated leukocyte mediated immunity GO:0002443 C = 126;O = 22;E = 7.15;R = 3.08;rawP = 2.14e-06;adjP = 0.0002

down-regulated actin cytoskeleton organization GO:0030036 C = 257;O = 35;E = 14.58;R = 2.40;rawP = 1.28e-06;adjP = 0.0002

down-regulated positive regulation of immune
system process

GO:0002684 C = 229;O = 32;E = 12.99;R = 2.46;rawP = 2.08e-06;adjP = 0.0002

down-regulated lymphocyte activation GO:0046649 C = 272;O = 36;E = 15.43;R = 2.33;rawP = 1.80e-06;adjP = 0.0002

down-regulated T cell activation GO:0042110 C = 194;O = 29;E = 11.00;R = 2.64;rawP = 1.57e-06;adjP = 0.0002

down-regulated leukocyte activation GO:0045321 C = 324;O = 41;E = 18.38;R = 2.23;rawP = 1.15e-06;adjP = 0.0002

down-regulated actin filament-based process GO:0030029 C = 274;O = 36;E = 15.54;R = 2.32;rawP = 2.14e-06;adjP = 0.0002

down-regulated adaptive immune response GO:0002250 C = 113;O = 20;E = 6.41;R = 3.12;rawP = 4.97e-06;adjP = 0.0005

down-regulated adaptive immune response based
on somatic recombination of immune
receptors built from immunoglobulin
superfamily domains

GO:0002460 C = 112;O = 20;E = 6.35;R = 3.15;rawP = 4.31e-06;adjP = 0.0005

down-regulated lymphocyte mediated immunity GO:0002449 C = 106;O = 19;E = 6.01;R = 3.16;rawP = 7.04e-06;adjP = 0.0007

down-regulated positive regulation of biological
process

GO:0048518 C = 1865;O = 148;E = 105.77;R = 1.40;rawP = 9.03e-06;adjP = 0.0008

down-regulated cell activation GO:0001775 C = 366;O = 42;E = 20.76;R = 2.02;rawP = 1.05e-05;adjP = 0.0009

*The alst column lists the number of reference genes in the category (C), number of genes in the gene set and also in the category (O), expected number in the category
(E), Ratio of enrichment (R), p value from hypergeometric test (rawP), and p value adjusted by the multiple test adjustment (adjP).
doi:10.1371/journal.pone.0026502.t001
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stringent analysis, we obtained a single significantly up-regulated

miRNA, hsa-miR-96, at a False Discovery Rate (FDR) of 0.1. We

further examined the expression level of its potential mRNA

targets (These targets have conserved miRNA binding sites among

vertebrates or mammals and were predicted using TargetScan): 13

out of 728 total candidate target genes (Table S2 and Table S6)

(account for 2.24% of the 581 up-regulated genes) were up-

regulated and 48 out of the total (Table S3 and Table S6) (account

for 3.70% of the 1, 297 down-regulated genes) were down-

regulated (Figure 1A). We then validated hsa-miR-96 expression

based on quantitative RT-PCR in an independent set of 35

NSCLC and their serum samples (for the sera, expression values

were normalized to normal people without cancer history or other

illness at that time), and found hsa-miR-96 was significantly up-

regulated in both tissue and serum samples from NSCLC patients

(Figure 2). Therefore, hsa-miR-96 may be an important factor to

contribute to NSCLC development and may have great potential

to be used for diagnosing.

As miRNAs always repress the expression of the target genes,

the 48 down-regulated targets of hsa-miR-96 may be most likely

to contribute to NSCLC development through hsa-miR-96

regulation. We selected 10 down-regulated targets of hsa-miR-

96 to validate their mRNA expression levels using qRT-PCR in

20 NSCLC and found that all of them were significantly down-

regulated in tumor tissues when compared with the adjacent

normal tissues (Figure 1B). To investigate how these 48 down-

regulated potential mRNA targets may affect the development

of NSCLC, we classified them based on GO terms, and found

that these genes were involved in a variety of basic biological

process, including metabolism, biological regulation, cell

communication, developmental process, immune system, and

etc. (Figure S2).

Classification of mRNAs based on their relationship with
miRNA regulation

To characterize how miRNAs may regulate their target

mRNAs, we performed an extensive analysis on the correlated

expression of miRNAs and their target mRNAs. miRNAs are

expressed as long precursor RNAs that are processed by a cellular

nuclease, Drosha, before being transported by an Exportin-5-

dependent mechanism into the cytoplasm [22,23]. Once in the

cytoplasm, miRNAs are cleaved further by the enzyme DICER

[24,25], and this results in 17–24 nt miRNAs that are associated

with a cellular complex that is similar to the RNA-induced

silencing complex that participates in RNA interference. However,

miRNAs mainly regulate mRNA translation, whereas siRNAs

direct RNA destruction via the RNA interference (RNAi) pathway

[8,26]. Therefore, the abundance of miRNAs may mainly depend

on its original expression and not imported exogenously. In

addition, several lines of evidence suggest that elevation of miRNA

expression lead to down-regulation of the target genes, and

reduction of miRNA expression lead to up-regulation of the target

genes [13,27]. We therefore hypothesize that the effect of miRNAs

on their target mRNAs is expression level-dependent. We used a

Table 2. Enriched GO terms for cellular components based on variable genes in lung cancer tissues when compared with their
adjacent normal tissues.

Class GO terms GO number Statistic*

Up-regulated chromosome GO:0005694 C = 454;O = 26;E = 8.45;R = 3.08;rawP = 3.99e-
07;adjP = 5.35e-05

Up-regulated chromosomal part GO:0044427 C = 378;O = 23;E = 7.03;R = 3.27;rawP = 6.77e-
07;adjP = 5.35e-05

Up-regulated chromosome, centromeric region GO:0000775 C = 120;O = 11;E = 2.23;R = 4.93;rawP = 1.48e-
05;adjP = 0.0008

Down-regulated plasma membrane part GO:0044459 C = 1918;O = 169;E = 104.66;R = 1.61;rawP = 7.90e-
11;adjP = 2.21e-08

Down-regulated integral to plasma membrane GO:0005887 C = 1183;O = 112;E = 64.55;R = 1.74;rawP = 4.46e-
09;adjP = 6.24e-07

Down-regulated plasma membrane GO:0005886 C = 3650;O = 269;E = 199.17;R = 1.35;rawP = 1.34e-
08;adjP = 9.38e-07

Down-regulated intrinsic to plasma membrane GO:0031226 C = 1206;O = 112;E = 65.81;R = 1.70;rawP = 1.30e-
08;adjP = 9.38e-07

Down-regulated membrane part GO:0044425 C = 6381;O = 417;E = 348.19;R = 1.20;rawP = 7.79e-
07;adjP = 3.64e-05

Down-regulated membrane GO:0016020 C = 7186;O = 462;E = 392.12;R = 1.18;rawP = 7.05e-
07;adjP = 3.64e-05

Down-regulated I-kappaB/NF-kappaB complex GO:0033256 C = 4;O = 4;E = 0.22;R = 18.33;rawP = 8.81e-06;adjP = 0.0004

Down-regulated lytic vacuole GO:0000323 C = 206;O = 27;E = 11.24;R = 2.40;rawP = 2.13e-
05;adjP = 0.0006

Down-regulated intrinsic to membrane GO:0031224 C = 5451;O = 355;E = 297.44;R = 1.19;rawP = 1.80e-
05;adjP = 0.0006

Down-regulated lysosome GO:0005764 C = 206;O = 27;E = 11.24;R = 2.40;rawP = 2.13e-
05;adjP = 0.0006

Down-regulated cell-substrate adherens junction GO:0005924 C = 100;O = 17;E = 5.46;R = 3.12;rawP = 2.67e-
05;adjP = 0.0007

*The last column lists the number of reference genes in the category (C), number of genes in the gene set and also in the category (O), expected number in the category
(E), Ratio of enrichment (R), p value from hypergeometric test (rawP), and p value adjusted based on the multiple test adjustment (adjP).
doi:10.1371/journal.pone.0026502.t002
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novel measure to evaluate miRNA regulation, termed regulation

value. We first assume that a regulation value of a miRNA is

positively correlated with its expression level. Since a miRNA

always has more than one target genes [28], we then assume that a

regulation value of a given miRNA is negatively correlated with

the number of its targets. Therefore, we define a regulation value

for miRNA as the deviation in expression level for a given miRNA

divided by the number of expressed mRNA targets.

During cancer development, the regulation may vary from case

to control for a given miRNA and, therefore, regulation value of a

given miRNA equals to the variation of miRNA expression

divided by the number of expressed targets. When the expression

of a miRNA is down-regulated in cancers, its regulation value

becomes negative if the number of its expressed targets is not

changed significantly. For a target mRNA, its regulation value is

the sum of all regulation values from its regulatory miRNA. Based

on these definitions, we classified all differentially expressed genes

in cancers into different groups based on their correlations—

correlated or anti-correlated with miRNA regulation. Before doing

this, we predicted the potential target genes of these consistently

up- or down-regulated miRNAs.

We used three methods to predict the potential targets of

miRNAs. The software TargetScan focuses more on miRNA seed

(2-8nt in the 59 region of mature miRNA), as evidence suggests the

importance of this region for miRNA target recognition

[29,30,31,32]. In addition, the sequence conservation of target

sites has been considered as an important feature to reduce false-

positive rate [30]. We therefore predicted potential miRNA targets

using TargetScan and conserved target sites among vertebrates or

mammals using PCT method of TargetScan [33]. However, seed

sites do not always confer repression, and the software miRanda

also takes into consideration of other region of miRNA in addition

to seed sites [34]. We then used miRanda as another alternative

method to predict miRNA targets. The two software were

frequently used to predict miRNA targets, and in addition, both

of them can be used to predict targets of novel miRNAs as the

illuminia miRNA microarray "humanMI_V2" contains many

novel miRNAs that are generated from next-generation sequenc-

ing efforts worldwide. We obtained 16,160 conserved miRNA-

Figure 1. Down-regulated target candidates of hsa-miR-96 in
NSCLC. (A) Microarray results of the Down-regulated target candidates
of hsa-miR-96 in NSCLC. We assayed 6 paired NSCLC vs. normal tissue. C
and N stand for cancer and adjacent normal tissue, respectively. The
asterisk marks genes belong to the correlated group and the remaining
genes are grouped into the anti-correlated group according to the
expression relationship of these genes with their regulatory miRNAs. (B)
Validation of microarray results by qRT-PCR. We selected 10 down-
regulated target candidates of hsa-miR-96 and performed qRT-PCR
experiments for the validation of relative mRNA expression in reference
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The relative
expression values are the means 6 SE. *, P,0.05 by t test; **, P,0.001
by t test.
doi:10.1371/journal.pone.0026502.g001

Figure 2. Quantitative RT-PCR analysis of hsa-miR-96 expres-
sion. Two groups of comparisons were performed: (1) tumor vs.
adjacent normal lung tissues, and (2) cancer serum vs. non-cancer
serum. Relative hsa-miR-96 expression was determined in reference to
an internal U6 snRNA control. Relative expression values are the
normalized mean 6 SE.
doi:10.1371/journal.pone.0026502.g002
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target pairs among vertebrates or mammals using PCT method of

TargetScan (Table S6), 70,320 miRNA-target pairs by using

TargetScan without considering the conservation condition (Table

S8), and 77,988 miRNA-target pairs by using miRanda (Table

S10). We observed that 48,841 miRNA-target pairs were present

in both TargetScan and miRanda results (69.46% of TargetScan

results, 62.63% of miRanda results), and 12,403 miRNA-target

pairs of conserved TargetScan results were common with

miRanda results (76.75% of conserved TargetScan results).

Therefore, there were about 70% prediction results that were

common in the two different methods, and conserved prediction

results of TargetScan exhibite a larger proportion of shared genes.

We firstly used the conserved prediction results to classify

mRNAs based on their relationship with miRNA regulation. In

particular, we defined 197 and 190 genes as anti-correlated and

correlated, respectively, and 1,491 as ‘‘others’’, whose miRNA

regulation values are null (Table S7). We further investigated the

distribution of miRNA regulation value, gene expression level and

the potential relationship between these two parameters. In the 197

anti-correlated genes, 171 (account for 13.18% of 1, 297 down-

regulated genes) were down-regulated and 26 (account for 4.48% of

581 up-regulated genes) were up-regulated. Gene distribution based

on the regulation value also suggested that the anti-correlated group

were always down-regulated by miRNAs (Figure 3A). In the 190

correlated genes, 140 (account for 10.79% of 1, 297 down-regulated

genes) were down-regulated and 50 (account for 8.61% of 581 up-

regulated genes) were up-regulated. Gene distribution based on the

regulation value suggested that the correlated group were always

Figure 3. miRNA regulation analysis. We classified all expression-variable mRNAs during lung cancer development based on their relationship
with miRNAs. The results are classified into correlated, anti-correlated, and others (no correlation). The correlated mRNAs show correlated expressions
to their regulatory miRNA expressions and the anti-correlated mRNAs are not. Three different methods were used to predict potential miRNA targets:
‘‘Conserved’’ are those genes that have conserved miRNA binding sites among vertebrates or mammals, and these genes were predicted by using
the PCT method of TargetScan; ‘‘TargetScan’’ are those genes that are predicted by using a perl script of TargetScan without considering conservation.
‘‘miRanda’’ are those genes that are predicted potential targets based on miRanda v3.3a on Linux platform. (A) Gene distribution of the correlated
and anti-correlated mRNAs was plotted based on their miRNA regulation values. (B) Gene distribution of the three groups of mRNAs was plotted
based on their expression values. The expression value was defined by referencing that of the adjacent normal tissue (log2). (C) The relationship
between gene expression and miRNA regulation.
doi:10.1371/journal.pone.0026502.g003
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down-regulated (Figure 3A). For 1,491 genes in ‘‘others’’, 986

(account for 76.02% of 1,297 down-regulated genes) were down-

regulated and 505 (account for 86.92% of 581 up-regulated genes)

were up-regulated (Table 3). In conclusion, these results indicate

that miRNAs tend to down-regulate gene expression, especially for

those of the anti-correlated group. We also investigated potential

functions of the anti-correlated group, which were supposed to be

regulated by miRNAs, and found they were involved in a variety of

biological processes, including metabolism, immune systems, cell

killing, multicellular organismal development, and cell communi-

cation (Figure S3).

We further verified this result using predictions of TargetScan

without considering sequence conservation and predictions of

miRanda. Using miRanda, we have 482 and 294 genes as anti-

correlated and correlated, respectively, and 1,102 as ‘‘others’’.

Using TargetScan without considering conservation, we have 472

and 285 genes as the anti-correlated and correlated, respectively,

and 1,121 as ‘‘others’’. We further investigated the intersection

between TargetScan and miRanda, and found that the three

methods shared about 80% in the anti-correlated group;

TargetScan and miRanda shared about 70% genes in the

correlated group, while PCT method shared only about 50%

genes with the remaining two methods in the correlated group.

Consistent with the results of conserved predictions, miRNAs in

the anti-correlated group seem regulate higher proportion of

down-regulated mRNAs as compared to the remaining groups

defined based on the following two methods (Table 3), and the

anti-correlated group exhibited strikingly different distribution of

regulation value as compared to the correlated group (Figure 3A).

We then examined target expression level of the three

regulation groups and found that expression level of the anti-

correlated group was higher than the remaining groups

(Figure 3B). Further investigation of regulation values with the

expression level showed that highly-expressed genes in the anti-

correlated group tended to be down-regulated by miRNAs,

whereas lowly-expressed genes tended to be up-regulated. Genes

in the correlated group behave in the opposite way (Figure 3C).

This result suggested that highly expressed genes may contribute

more to down-regulated genes in anti-correlated group than to up-

regulated genes in the same group.

Potential relationship of miRNAs with methylation in
regulating mRNA expression

As methylation is another important mechanism to regulate

mRNA expression, we further studied how it may interact with

miRNA regulation. We first categorized the target genes into

HCG (high CpG content), LCG (intermediate CpG content), and

ICG (low CpG content) classes (Table S2 and Table S3) according

a method previously described [35]. We found that in the

conserved prediction results, both the anti-correlated and

correlated groups contained more HCG genes than others or all

genes (Figure 4A), and the result suggests that HCG genes are

most likely to be regulated by miRNAs that have conserved target

sites.

Since a large number of highly-expressed genes were found in

the anti-correlated group, we further asked if these HCG genes are

always highly-expressed and tend to miRNA-regulated. In all

genes expressed in NSCLC, HCG genes were not seen as

dominant in highly expressed genes as compared to LCG or ICG

genes. The peak expressions of HCG range from 5 to 10, whereas

those of ICG or LCG genes are in a range of 2 to 7. miRNA tends

to regulate more genes at the relative expression level of 5 to 10,

therefore, when regulated by miRNAs, the peak of ICG or LCG

gene expressions should be in this range, and we observed that

there were less LCG genes in this expression range as compared to

HCG or ICG genes. However, ‘‘others’’ (genes with no regulation

value variation) also has a peak in the expression range but there

was no difference in gene density among the three CpG classes

(Figure 4B). In summary, HCG genes may be enriched genes that

are regulated by miRNAs due to their high expression levels, but

this is obviously not the only reason.

We also performed GO analysis between the miRNA-regulated

and miRNA-insensitive groups to show that their genes and

functions are different from the anti-correlated and the correlated

groups (Figure 5 and Figure S5). As it is shown in Figure 5, the

miRNA-regulated group contains more genes in the following

processes: transcription regulation, nucleic acid binding, cell

communication, metabolic, and development regulation. These

differences demonstrate from another angle why miRNAs tend to

affect HCG genes with conserved miRNA target sites as CpG

island content is always correlated with gene regulation and

functional differentiation, and these genes may be of importance

for basic cellular functions of different vertebrates or mammals

[36].

Discussion

In this study, we investigated the mRNA and miRNA profiling

of NSCLC. mRNA profiling revealed that a number of

differentially-expressed genes are involved in activation of cell

Table 3. Three groups of mRNAs predicted with different methods.

miRanda* TargetScan* Conserved*

Anti-correlated All 482 472 197

Up-regulated 53(9.12%) 55(9.47%) 26(4.48%)

Down-regulated 429(33.08%) 417(32.15%) 171(13.18%)

Correlated All 294 285 190

Up-regulated 117(20.14%) 108(18.59%) 50(8.61%)

Down-regulated 177(13.65%) 177(13.65%) 140(10.97%)

Others All 1102 1121 1491

Up-regulated 411(70.74%) 418(71.94%) 505(86.92%)

Down-regulated 691(53.28%) 703(54.2%) 986(76.02%)

*The proportion was calculated by dividing the number of all up-regulated mRNAs or down-regulated mRNAs.
doi:10.1371/journal.pone.0026502.t003
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cycle in NSCLC. This finding is consistent with results of previous

studies, which suggest that abnormal cell cycle is associated with

elevated lung cancer risk [37,38]. The down-regulated genes are

found to be predominantly enriched in immune systems as well as

those localized on cell membranes, which are usually correlated

with cell-cell communication and participate in immune process.

Inhibitions of these genes have been supposed to facilitate lung

cancer development and progression, and this may to some extent

due to the escape of cancer cells from detection and destruction by

the host immune system [39,40,41].

In miRNA profiling comparison, we found hsa-miR-96 was

significantly up-regulated in NSCLC. 48 hsa-miR-96 potential

targets were predominantly enriched in the down-regulated

mRNA group and are involved in a variety of biological processes

according to GO annotations. Based on regulation value estimates,

we showed that 42 of them belong to the anti-correlated group

(Figure 1A, Table S7). Our validation experiments revealed that

the mature form of hsa-miR-96 is highly expressed not only in

cancer tissues but also in sera of cancer patients. This result

suggests that hsa-miR-96 has a great potential to be used as a

noninvasive biomarker for NSCLC diagnosis.

Our current knowledge about hsa-miR-96 is rather limited. It

resides in the intergenic area between NRF1 and UBE2H on

human chromosome 7 [42] and has a very broad distribution

among animals, from nematodes to mammals, and is more

conserved among vertebrates (Figure S4). Previous studies have

suggested that it functions to regulate the progression of

differentiation in mammalian cochlear inner and outer hair cells

[43], and is associated with aggressive human behaviors [44]. In

the relationship with cancers, hsa-miR-96 has been reported to be

highly expressed in bladder cancer [45], prostate carcinoma [46],

and chronic myeloid leukemia [47]. It can be detected in urine

and is correlated with stage and grade based on urinary cytology of

urothelial carcinoma [48]. Up-regulation of hsa-miR-96 results in

down-regulations of transcriptional factor FOXO3a and FOXO1,

and thus induces cell proliferation in human breast cancer [49,50].

In our assays, we found a set of potential targets that may correlate

with the function of hsa-miR-96 in NSCLC development, but

none of the potential targets have been validated by experiments.

Therefore, further experimentation is of essence in revealing

relationship between hsa-miR-96 and NSCLC. In addition, we

will increase the size of the specimen to investigate possible

relationship of hsa-miR-96 expression with prognosis, and other

characteristics of NSCLC.

In General, miRNAs are believed to bind the 39 untranslated

region of a target mRNA and down-regulate its expression at

Figure 4. Potential relationship between miRNA and DNA methylation. (A) The distribution of CpG-density classified genes in each group.
These target genes were predicted using three different methods: ‘‘Conserved’’ are those genes that have conserved miRNA binding sites among
vertebrates or mammals, and these genes were predicted by using the PCT method of TargetScan; ‘‘TargetScan’’ are those genes that are predicted by
using a perl script of TargetScan without considering conservation. ‘‘miRanda’’ are those genes that are predicted potential targets based on miRanda
v3.3a on Linux platform. (B) Relationship between CpG island density and gene expression. Three groups were classified: all expressed genes in
NSCLC, the miRNA-regulated genes, and other genes which may not be influenced by miRNAs.
doi:10.1371/journal.pone.0026502.g004
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mRNA or protein levels but mostly at mRNA level [51].

Therefore, when the expression of a miRNA is elevated, mRNAs

that are regulated by the miRNA is expected to be down-

regulated; when the expression of miRNA is repressed, its target

mRNAs should show up-regulations. However, according to our

results, the anti-correlated mRNAs are always down-regulated and

only a small fraction of genes are up-regulated. Further

examination suggested that in the anti-correlated group, down-

regulated mRNAs are always highly expressed, and up-regulated

mRNAs are always lowly expressed. Therefore, the existence of

more highly expressed genes may be an important contributor to

the effect. The reason why highly-expressed mRNAs tend to be

down-regulated by miRNAs and the lowly-expressed mRNAs tend

to be up-regulated by miRNAs suggests an existence of a

regulatory balance that functions to keep the entire transcriptome

in an optimized dynamic range.

In our analysis, we failed to find any clues that are responsible

for the difference between the anti-correlate and the correlated

mRNAs. GO classification did not show any obvious difference

either (Figure S5). In addition, expression levels of the target

mRNAs that have a high regulation value did not show significant

variation, and vice versa (Table S2, Table S3,Table S7, Table S9,

Table S11), and genes whose expression are significantly varied

are not necessarily significantly regulated. Since a mRNA is often

regulated by more than one miRNAs [28], we are still unable to

know how these miRNAs interact with one another, and which

kind of direct interactions are most effective. Furthermore,

miRNAs may repress their target genes only at the protein level

[52] and the targets may not exhibit noticeable changes at the

mRNA level. There are other factors that are involved in

regulating mRNAs at epigenetic levels, such as histone methyla-

tion [53,54] and acetylation [55,56], and that are always capable

of interfering with miRNA-centric networks [57,58], making

deciphering such networks more difficult.

Another interesting observation is that genes in either the

correlated group or the anti-correlated group have a larger

proportion of HCG genes than that in ‘‘others’’ group. Both the

correlated and the anti-correlated groups are considered most

likely to be influenced or possibly regulated by miRNAs. This

result suggests that miRNAs tend to regulate HCG genes. Further

investigation demonstrated that HCG genes tended to express at a

higher level when compared with ICG or LCG genes. Therefore,

there may be a possibility that more HCG genes are influenced by

miRNAs. However, comparisons based on all potential targets

failed to show any difference among these groups (Figure 4A). As

the stringent standard selected targets have conserved binding sites

of miRNAs among vertebrates or mammals, more HCG target

genes in miRNA-influenced group may correlate with gene

evolution among vertebrates.

GO comparison between the regulated and the unregulated

groups demonstrated they were quite different as the former

always contains more genes involved in transcription regulation,

nucleic acid binding, cell communication, metabolic, and

development regulation. The function of genes and their

expression is always correlated with the CpG island content of

promoters. It has been suggested that house-keeping functions are

significantly overrepresented in the HCG class, whereas terms

associated with specific functions characteristic of more differen-

tiated or highly regulated cells are significantly overrepresented in

the LCG class [36,59]. miRNA has been proposed to be a primary

regulation mechanism as it is present from low to high organisms,

it therefore may prefer to regulate a higher proportion of HCG

genes for basic cellular functions. These are possible reasons why

miRNA regulation may be more biased toward HCG genes.

DNA methylation plays a role in the repression of gene

expression in animal cells, but in many cells, most genes are

inactive even their CpG island-containing promoters remain

unmethylated [35,60]. This implies that there may be other

regulatory mechanisms involved, such as histone modifications

and miRNAs. Inactive HCG genes were more frequently

unmathylated as compared with ICG or LCG genes, and it was

most likely that the role of enriched demethylated H3K4 is to

Figure 5. Different GO terms between the miRNA-regulated and miRNA-unregulated genes. P,0.05 was considered as significant [67].
doi:10.1371/journal.pone.0026502.g005
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protect CpG islands from methylation [35]. In addition, a broad

H3 hyperacetylation in CpG islands has been reported [61].

Therefore, histone modifications are most likely to affect DNA

methylation regulated gene repression, and an increasing number

of evidence has confirmed this conclusion [62,63]. Lung cancer

development is closely correlated with three most studied

epigenetic phenomena including modifications in DNA and

histone proteins as well as miRNAs [64]. The interaction between

DNA methylation and histone modification have been well studied

[65], while the relationship between DNA methylation and

miRNAs or miRNAs and histone modification has not been

elucidated. According to our results, there may be a possibility that

miRNAs play a role in bridging DNA methylation repression and

histone modifications.

Materials and Methods

Ethics Statement
All samples were obtained from the tissue bank of Zhoushan

Hospital (city of Zhoushan, Zhejiang province, China), which

assures written informed consent from all subjects. The Institu-

tional Review Board of Zhoushan Hospital approved the use of

samples for this study.

Patients and RNA extraction
We performed miRNA microarray and mRNA microarray

using 3 adenocarcinomas and 3 squamous cell carcinomas of the

lung as well as the paired control samples from their adjacent

normal tissues, which were carefully diagnosed and pathologically

defined (Table S1). Specimens were brought to pathologists

immediately for diagnosis (Figure S1). Tumor tissues and the

corresponding adjacent normal tissues were placed in different

tubes in liquid nitrogen and subsequently stored at -180uC. The

Total RNA that was used to perform microarray analysis was

extracted using TRIZOL (Invitrogen).

Since we used 3 adenocarcinomas (and controls) and 3

squamous cell carcinomas (and controls) of the lung for the

microarray analysis, we chose a comparable number of corre-

sponding NSCLC cases for validation. We also took into

consideration of the coverage of different genders, cancer stages,

ages, and other characteristics. In particular, we performed tissue

qRT-PCR validation using 35 pair specimens (17 paired samples

of adenocarcinomas and 18 paired samples of squamous cell

carcinomas of the lung), and further examined miRNA expression

abundance in the serum samples from the same 35 specimens.

There are 17 patients whose ages are more than 60 and 18

younger than 60 (including 7 males and 28 females). As for the

grade of differentiation, the tumors are 13 well differentiated, 18

moderately differentiated, and 4 are poorly differentiated. The

tumor stages are also clearly defined: 28 are at T1-T2 and 7 are in

T3-T4. In addition, lymph node metastases were found in 15

patients (8 patients are at stage I and 17 patients are higher stages;

Table S1). We collected the sera before surgical resection and

chemotherapy. We selected 20 people (9 males and 11 females; all

aged below 60) without any cancer histories and other illness and

collected their sera as normal controls. Total RNA including

miRNA from the tissue and serum samples were extracted by

using a commercial kit (mirVana RNATM Isolation kit, Applied

Biosystems) according to the supplier’s instruction. Quality of total

RNA was determined by using Bioanalyzer (UV spectrophotom-

eter Q3000, Quawell). Extracted RNA samples were stored at -

80uC until used.

For mRNA expression validation, we used 20 pair specimens (9

paired samples of adenocarcinomas and 11 paired samples of

squamous cell carcinomas of the lung. 12 pair were from the

previous 35 patient cohort.). In particular, There are 5 patients

whose ages are more than 60 and 15 patients who are younger

than 60 (17 male and 3 female). For the grade of differentiation, 11

and 9 are moderately differentiated and poorly differentiated,

respectively. For tumor stages, 19 patients are at T1-T2 and one is

at T3-T4. Lymph node metastases were found in 5 patients. For

the tumor stage, 9 patients have stage I and 11 patients have

higher stage tumors (Table S1).

Quantitative real-time PCR
10 ng of total RNA was reverse-transcribed using the TaqMan

miRNA reverse transcription kit and RT primers for miR-96 and

U6 snRNA (Applied Biosystems). The cDNAs were then analyzed

by real-time PCR using TaqMan probes for miR-96, and U6

snRNA (Applied Biosystems). We reverse transcribed three

micrograms of total RNA to single-stranded cDNA using Fermentas

kit and then performed qRT-PCR experiments using SYBR Green

(RealMasterMix(SYBR Green), TIANGEN) on Applied Biosystems

7500 Real-Time PCR System. We analyzed gene expression using

2DDCT method [66]. Relative expression of hsa-miR-96 was

determined in reference to an internal U6 snRNA control, and

relative mRNA expression was determined in reference to

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We listed

the primer sequences that were used in mRNA expression

validation experiments in Table S12. In the statistical analysis, we

presented results as mean 6 SE, and assessed differences between

the groups by using paired or independent T-Test in SPSS 15.0.

Microarray hybridization
mRNA profiling were performed by using Illuminia Technol-

ogies ‘‘HumanHT-12 v4’’ according to manufacturer’s protocol.

miRNA profiling were performed by using Illuminia Technologies

‘‘humanMI_V2’’ according to the manufacturer’s protocol.

GenomeStudio 1.0 was used to perform average normalization

of the results from mRNA and miRNA microarrays. All data is

MIAME compliant and that the raw data has been deposited in a

MIAME compliant database. The expression data generated by

this study are available in the NCBI Gene Expression Omnibus

(GEO) as accession GSE29250.

Differential expression analysis
In each group-based comparison, we filtered out all miRNAs or

mRNAs that were not detected in any sample. Considering that

these samples may be too few to draw any reliable conclusions

about differential expression, we only chose genes that are

consistently up- or down-regulated in all the 6 NSCLC tissues

compared with the adjacent normal tissues as the differential

expression results. To get the significantly differential expression

results, the signal values were transformed (log2) and median

centered for each array, and then two-class paired differential

expression analysis was performed by using SAM (version 3.11;

Stanford University). Genes with significant differences were

selected at a FDR of 0.1.

miRNA target prediction and miRNA regulation value
We used three methods to predict miRNA targets. UTR

sequences were downloaded from the website of TargetScan. We

used perl scripts of TargetScan to predict targets. First, we

predicted targets with conserved miRNA binding sites using the

PCT method of TargetScan [33]. We then predicted all the

potential targets using TargetScan without considering sequence

conservation. At last, we run miRanda v3.3a on Linux platform as
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the third method to predict potential targets using default

parameter settings.

We hypothesized that the average regulation value of a miRNA

is correlated with its expression level and the number of targets,

and can be calculated as: the expression value variation divided by

the number of expressed targets. During the process of cancer

development, some miRNAs may be up-regulated in cancer as

compared with the adjacent normal tissue, and in contrast, some

may be down-regulated, and therefore the regulation value will

become positive or negative respectively if the number of its

expressed targets is not changed significantly. For an mRNA, it

can be regulated by a variety of miRNAs, so the regulation value is

calculated by the addition of regulation value variations over all

variable miRNAs.

Supporting Information

Figure S1 Histological images of lung tumor tissues and the

adjacent normal lung tissues.

(TIF)

Figure S2 GO results of the 48 down-regulated conserved

targets of hsa-miR-96 (predicted using TargetScan).C

(TIF)

Figure S3 GO results of the anti-correlated genes (predicted

using TargetScan, and the conserved target sites were chosen).

(TIF)

Figure S4 Mature sequence alignment of hsa-miR-96 in

different species.

(TIF)

Figure S5 Different GO terms between the anti-correlated

group and the correlated group.

(TIF)

Table S1 Information for the 35 patients that were used in qRT-

PCR examination and the 6 patients that were used in performing

microarray.

(XLS)

Table S2 Up-regulated genes in NSCLC cancer tissue com-

pared with the adjacent normal tissue.

(XLS)

Table S3 Down-regulated genes in NSCLC cancer tissue

compared with the adjacent normal tissue.

(XLS)

Table S4 Up-regulated miRNAs in NSCLC cancer tissue

compared with the adjacent normal tissue.

(XLS)

Table S5 Down-regulated miRNAs in NSCLC cancer tissue

compared with the adjacent normal tissue.

(XLS)

Table S6 Target genes (predicted using PCT method of

TargetScan) which have conserved miRNA binding sites among

vertebrates or mannals.

(XLS)

Table S7 Target genes which have conserved miRNA binding

sites.

(XLS)

Table S8 All potential target genes that are predicted by

TargetScan.

(XLS)

Table S9 Regulation pattern based on all potential target genes

that are predicted by TargetScan.

(XLS)

Table S10 All potential target genes that are predicted by

miRanda.

(XLS)

Table S11 Regulation pattern based on all potential target genes

that are predicted by miRanda.

(XLS)

Table S12 Primer sequences for mRNA expression validation

experiments.

(XLS)
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