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Abstract

Background: Mammalian M6A, a member of the proteolipid protein (PLP/DM20) family expressed in neurons, was first
isolated by expression cloning with a monoclonal antibody. Overexpression of M6A was shown to induce filopodium
formation in neuronal cells; however, the underlying mechanism of is largely unknown. Possibly due to gene duplication,
there are two M6A paralogs, M6Aa and M6Ab, in the zebrafish genome. In the present study, we used the zebrafish as a
model system to investigate the role of zebrafish M6Ab in filopodium formation in PC12 cells and neurite outgrowth in
zebrafish embryos.

Methodology/Principal Findings: We demonstrated that zebrafish M6Ab promoted extensive filopodium formation in
NGF-treated PC12 cells, which is similar to the function of mammalian M6A. Phosphorylation at serine 263 of zebrafish
M6Ab contributed to this induction. Transfection of the S263A mutant protein greatly reduced filopodium formation in
PC12 cells. In zebrafish embryos, only S263D could induce neurite outgrowth.

Conclusions/Significance: Our results reveal that the phosphorylation status of zebrafish M6Ab at serine 263 is critical for its
role in regulating filopodium formation and neurite outgrowth.
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Introduction

The proteolipid protein (PLP), an integral membrane protein

with four transmembrane domains, is abundant in the central

nervous system [1]. DM20, an alternative splicing form of PLP,

lacks a unique 35-amino acid segment [2]. Mouse M6A and M6B

were first identified by expression cloning using an M6-20

monoclonal antibody. M6A is 43% and 56% identical to DM20

and M6B at the amino acid level [3]. Due to genome duplication,

three pairs of PLP family members were identified in zebrafish,

termed DMá1 and DMá2, DMâ1 and DMâ2, and DMã1 and

DMã2 [4]. A gene expression pattern analysis revealed that DMâ

and DMã are neuronal glycoproteins, whereas DMá/PLP/

DM20 are myelin proteins. DMá1 is respectively 59% and

60% identical to human DM20 and DMá2 at the amino acid

level, while DMá2 is only 49% identical to human DM20. In

contrast, both DMâ1 and DMâ2 show a higher identity of 85%

with human and mouse M6A and are also respectively called

M6Aa and M6Ab. Similarly, DMã2 is 81% identical to human

M6B and 83% to DMã1 at the amino acid level. In mammals,

M6A is present in neurons, while M6B is found in both neurons

and glia [5].

M6A was first isolated by expression cloning with a monoclonal

antibody [3], and treatment of this antibody was found to interfere

with neurite extension of cultured cerebellar neurons [6]. These

data suggest that M6A may play an important role in controlling

nerve extension. Indeed, overexpression of M6A in cultured

primary hippocampal neurons promotes neurite outgrowth and

the formation of filopodial protrusions [7]. Although the

mechanism of action of M6A is still largely unknown, M6A was

shown to be involved in a number of biological processes. For

example, Ca2+ influx is increased by the overexpression of M6A in

nerve growth factor (NGF)-treated rat pheochromocytoma PC12

cells [8]. M6A was also found to bind to the m-opioid receptor and

facilitate receptor endocytosis and recycling [9]. Moreover,

expression of the M6A transcript decreased under pathological

conditions such as chronic stress in animals and depression in

humans [7].
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Structurally, M6A is a glycoprotein with four transmembrane

domains, which form one intracellular (IC) and two extracellular

(EC) loops. Both the N- and C-terminal regions are located in the

cytoplasm [3,4,10]. Several studies identified the region or the

phosphorylation site within M6A that is critical for neurite/

filopodium outgrowth. Mutation analysis of two cysteine residues

(C44 and C46) in EC1 and four cysteine residues (C162, C174,

C192, and C202) in EC2 provided important data that neurons

expressing C174A and/or C192A mutants display decreased

filopodium numbers [10]. This suggests that cysteine residues in

the EC2 domain of M6A play important roles in filopodium

outgrowth. On the other hand, there are one putative phosphor-

ylation site for casein-kinase 2 (CK2), i.e., S256, and two for

protein kinase C (PKC), i.e., S267 and T268, in the C-terminal

region of rat M6A. Two of these sites (S256 and S267) were

identified by phosphoproteomic studies of brain tissues [11,12].

Moreover, expression of neither S256A nor the S267A/T268A

mutant protein of M6A in primary hippocampal neurons affected

their ability to promote filopodium formation, but did affect

protrusion motility [13].

In this study, we demonstrate that zebrafish M6Ab can induce

high-density filopodium formation in NGF-treated PC12 cells,

which is similar to the function of mammalian M6A [7]. This is

not surprising because zebrafish M6Ab is 85% identical to rat

M6A [4]. However, phosphorylation at serine 263 of zebrafish

M6Ab, which corresponds to serine 256 of rat M6A, contributes to

this induction. Transfection of the S263A mutant protein greatly

reduced filopodium formation in PC12 cells. Interestingly, only

S263D, but not the wild-type (WT) M6Ab, could induce neurite

outgrowth in zebrafish embryos, suggesting that WT M6Ab

requires further activation by other signal pathway.

Results

Zebrafish M6Ab is an N-linked glycoprotein
M6A was identified as a glycoprotein in the mouse, rat, and

human and contains two potential N-glycosylation sites, 164NTT

and 208NMT, in the EC2 region of rat M6A [10]. In zebrafish,

only one potential N-glycosylation site, 164NMT, was found in the

EC2 region of M6Ab (Fig. 1A). Zebrafish M6Ab protein expressed

in COS-1 cells appears in SDS-PAGE as two major bands with

apparent molecular masses of approximately 28 and 32 kDa

(Fig. 1B). After enzymatic digestion with peptide N-glycosidase

(PNGase)-F, which removes both high-mannose, hybrid- and

complex-type N-linked glycans, we observed that the mature form

of zebrafish M6Ab displayed faster electrophoretic mobility. This

result indicated that zebrafish M6Ab contains high-mannose and/

or complex-type N-glycans. In order to investigate the role of N-

linked glycans in the function of zebrafish M6Ab, the potential N-

glycosylation site, 164NMT, was mutated to 164NMA, which was

also designed as T166A. COS-1 cells were transfected with the

pcDNA3-HA vector coding for M6Ab-wt or the T166A mutant.

HA-tagged recombinant protein expression was analyzed by

immunoblotting, using a mouse anti-HA tag antibody. The

T166A mutant was detected as a protein with only a smaller

molecular size, which was the same as that of WT M6Ab after

treated with PNGase-F. Taken together, these results indicate that

M6Ab is an N-glycosylated glycoprotein.

Overexpression of zebrafish M6Ab induces neurite
outgrowth in PC12 cells and filopodium formation in
both COS-1 and PC12 cells

To investigate the possible function of zebrafish M6Ab and the

cellular consequences of M6Ab overexpression, we used PC12 cells, a

well-defined cell model system which is widely used in studies of

neuritogenesis. We first expressed M6Ab fused to the green

fluorescence protein (GFP) or GFP alone in PC12 cells to assess

whether it modulates filopodium formation. Overexpression of

zebrafish M6Ab-GFP promoted filopodium formation and neurite

outgrowth in NGF-treated PC12 cells compared to GFP alone

(Fig. 2A, B), and this result was similar to the expression of mouse and

rat M6A in hippocampal neurons [7]. In addition, zebrafish M6Ab-

GFP was found to promote filopodium formation in non-neuronal

cell lines such as COS-1 (Fig. 2C). However, the glycosylation

mutant, T166A, as mentioned in Fig. 1, showed similar effects on the

filopodium formation in either PC12 or COS-1 cells (Fig. 2A, panels c

and c9; 2B and 2C, panels c and c9). These results suggest that

zebrafish M6Ab, glycosylated or not, can promote filopodium

formation in both neuronal-like and non-neuronal cell lines.

Serine residue S263 is critical for M6Ab-induced
filopodium formation in PC12 cells

It was recently reported by Dr. A. C. Frasch’s group that

overexpression of M6A induces neurite formation and increases

filopodium density in hippocampal neurons and neuroblastoma

N2a cells [7,10]. Although the identity of upstream kinase of M6A

remains unknown, we observed that M6A-induced neurite

formation was blocked when PC12 cells were treated with a

PKC inhibitor [8]. This suggests that PKC may act as a potential

upstream protein kinase for M6A. Similar to rat M6A, zebrafish

M6Ab has two putative phosphorylation sites, S274 and S277, by

PKC and one site, S263, for casein kinase 2 (CK2). Those three

serine residues are located in the C-terminal region of zebrafish

M6Ab [4]. To further investigate whether M6Ab C-terminal

phosphorylation contributes to the regulation of neurite outgrowth

and filopodium formation, several mutant proteins aimed at those

three serine phosphorylation sites were generated by site-directed

mutagenesis. An alanine or aspartic acid residue was introduced to

replace the original serine residue to mimic the unphosphorylated

or constitutively active form. We also generated the triple mutants

S263A/274A/S277A (A3) and S263D/274D/S277D (D3) to

further elucidate the critical roles of these three serine residues.

PC12 cells were first transiently transfected with different

expression plasmids encoding mutant proteins, such as S263A or

S263D, S274A/S277A or S274D/S277D, and A3 or D3.

Transfected cells were then treated with NGF to induce neuronal

differentiation in order to detect subcellular localizations using

immunostaining and immunofluorescence microscopy (Fig. 3A).

Expression levels of each mutant protein and WT M6Ab were

checked by immunoblotting with an anti-HA monoclonal

antibody. The membrane was also stripped and reprobed with

antibodies against tubulin (Fig. 3D). The expression level of either

the S263A mutant or the triple A3 mutant was less than that of the

other four groups, but only the S263A mutant and the triple A3

mutant greatly reduced filopodium formation.

Our data revealed that WT M6Ab was localized to membrane

protrusions (filopodia) (Fig. 3B, panels b and b9), and the extent of

filopodium formation and neurite growth was very obvious

(Fig. 3C). Overexpression of the S263A mutant (Fig. 3B, panels

c and c9) or the triple mutant, S263A/274A/S277A (Fig. 3B,

panels h and h9), greatly reduced filopodium formation, while

neurite outgrowth or neurite numbers in NGF-treated PC12

remained unchanged compared to WT M6Ab (Fig. 3C). The

filopodium numbers of the S263A mutant or the triple mutant

were reduced to be the same as those in GFP-transfected PC12

cells. On the other hand, the S274A/S277A double mutant caused

little change in the relative abundance of neurite outgrowth,

neurite numbers, or filopodium formation (Fig. 3B, panels e and

zM6Ab S269 for Neurite/Filopodium Outgrowth
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e9). These data clearly suggest that S263 plays an important role in

regulating filopodium formation in NGF-induced PC12 cells. Due

to the high-density filopodium formation by WT M6Ab, it was

difficult to analyze whether or not filopodium formation had

increased with those constitutively active forms, such as S263D or

S263D/274D/S277D (D3) (data not shown).

We also used nano liquid chromatography–mass spectrometry

analysis to confirm the phosphorylation at Serine 263 in WT

M6Ab. As shown in Figure 3E, a phosphorylated peptide from

WT M6Ab protein was identified as DIKpSKEEQELH due to

the observed ions y8 which carries a phosphate. This indicated the

phosphorylation site was at Serine 263.

Figure 1. Zebrafish M6Ab is an N-linked glycoprotein. (A) M6Ab structural features. Based on the predicted computational model, zM6Ab
contains four transmembrane domains [10]. The proposed N-glycosylation sites, NXT (164,166), are localized to the second extracellular domain. (B)
COS-1 cells were transfected with the pcDNA3-M6Ab-HA and pcDNA3-M6Ab (T166A)-HA plasmids. Two days after transfection, cell lysates were
treated with PNGase F for 18 h at 37uC and then subjected to an SDS-PAGE and Western blot analysis using an anti-HA antibody.
doi:10.1371/journal.pone.0026461.g001

zM6Ab S269 for Neurite/Filopodium Outgrowth
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Figure 2. Overexpression of zM6Ab can induce neurite outgrowth and filopodia in PC12 and COS-1 cells. (A) PC12 cells were
transfected with the control pcDNA3-GFP or pcDNA3-M6Ab-GFP or pcDNA3-M6Ab-T166A-GFP plasmids. Twenty-four hours after transfection, cells
were treated with nerve growth factor (NGF) (100 ng/ml) for 2 days. Cells were then fixed, and images were taken with a Zeiss LSM510 laser scanning
confocal microscope. The insets are the 26magnified images of the boxed areas. (B) Quantification of the total number of neurites, total length of
neurites, and filopodium-like processes in a 20-mm neurite length. * indicates a significant difference compared with the respective control of GFP
(P,0.05). (C) COS-1 cells were transfected with the control pcDNA3-GFP or pcDNA-M6Ab-GFP or pcDNA3-M6Ab-T166A-GFP plasmids. Cells were
fixed, and images were taken with a Zeiss LSM510 laser scanning confocal microscope. Scale bars, 10 mm.
doi:10.1371/journal.pone.0026461.g002
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Taken together, these results suggest that the S263 residue of

M6Ab greatly contributes to the regulation of filopodium

morphogenesis.

CaMKII and MEK1/2 may be involved in zebrafish M6Ab-
induced early neurite outgrowth in NGF-treated PC12
cells

As mentioned above, overexpression of M6Ab in PC12 cells

resulted in the promotion of neurite outgrowth and filopodium

formation (Fig. 2A). Several studies demonstrated that dendritic

filopodia are capable of participating in synapse formation [14,15],

and filopodium formation was suggested to play a permissive role

in synaptogenesis [16]. However, the underlying mechanism of

how M6Ab regulates neurite outgrowth and filopodium formation

remains unclear. As shown in Fig 3, phosphorylation of serine 263

is crucial for M6Ab’s ability to promote filopodium formation in

PC12 cells. To further confirm which kinase contributes to the

phosphorylation of M6Ab at serine 263 and to analyze the

signaling pathway involved in M6Ab-induced neurite outgrowth

and filopodium formation, two kinase inhibitors were utilized. In

general, PC12 cells were first transfected with pcDNA-GFP alone

or pCDNA-M6Ab-GFP, then treated with a different inhibitor,

such as U0126 (for MEK1/2 that prevents activation of MAPK by

MEK) or KN-62 (a CaMKII inhibitor) in the presence of NGF.

No significant difference was found between untreated GFP-

expressing PC12 cells compared to GFP-expressing PC12 cells

treated with U0126 or KN-62 (Fig. 4A, panels a and a9). Both

U0126 and KN-62 significantly reduced the outgrowth of M6Ab-

induced neurite outgrowth, but had no effect on M6Ab-induced

filopodium formation in PC12 cells (Fig. 4B). In addition, we also

tested PKC inhibitors, such as Gö6983 and Ro-31-8425, in the

same way and found no effect on M6Ab-induced filopodium

formation in PC12 cells (data not shown). These results indicated

that CaMKII kinases, MAPK and PKC may not participate in

M6Ab-induced filopodium formation in PC12 cells.

M6Ab can induce neurite outgrowth in the presence of
constitutively active CaMKIIb1 in zebrafish embryos

Like mammalian M6A, zebrafish M6Ab was also found to be

capable of inducing high-density filopodium formation in NGF-

treated PC12 cells (Fig. 2A). To further elucidate whether zM6Ab

can trigger neurite outgrowth in zebrafish embryos, the GFP

fusion protein of WT zM6Ab was expressed under the control of a

neuron-specific HuC promoter in zebrafish embryos. The HuC

gene is known as a useful early marker for neurons in zebrafish,

and the upstream 3.4 kb-long promoter fragment was demon-

strated to be sufficient to confer on its downstream target gene a

neuron-specific expression pattern closely resembling that of the

endogenous HuC gene. As shown in Fig. 5A, HuC promoter-driven

GFP was expressed in trigeminal ganglia, axons, and interneurons

of zebrafish embryos at 48 hpf (Fig. 5A, panel a) [17,18,19]. The

expression pattern of zM6Ab-GFP was observed to be similar to

that of GFP (Fig. 5A, panels b, b9 and b0), but the percentage of

zebrafish embryo with neurite outgrowth was only 12.5%

compared to 30% of the control zebrafish injected with pHuC-

GFP (Fig. 5B). However, the S263D mutant protein induced

significant neurite outgrowth with neurites covering the yolk ball

or reaching the margin of the dorsal and ventral fins (Fig. 5A,

panels c, c9, c0). The percentage of zebrafish embryo with neurite

outgrowth reached 87.5% (Fig. 5B). These data suggest that

zM6Ab needs to be activated by another signaling pathway to

induce neurite outgrowth in zebrafish embryos during develop-

ment.

Based on the phosphorylation site consensus sequences

(KinasePhos 2.0 program; http://kinasephos2.mbc.nctu.edu.tw)

[20], the Motif (263SKEE) is a potential target sequence for casein

kinase II (CKII) and calcium/calmodulin-dependent protein

kinase II (CaMKII). Therefore, we further examined whether

CaMKII activity could trigger neurite outgrowth by zM6Ab-GFP

in zebrafish embryos. A constitutively active form of zebrafish

CaMKII ? b1 (T287D) (pHuC-CaMKII ? b1 (T287D)-DsRed) was

generated by site-directed mutagenesis and then driven by the

same neuron-specific HuC promoter with a second reporter DsRed

gene. Plasmid DNAs of both pHuC-CaMKII b1 (T287D)-DsRed

and pHuC-M6Ab-GFP were co-injected into zebrafish embryos at

the 1-cell stage. Although neurite outgrowth by zM6Ab-GFP was

observed in zebrafish embryos at 48 hpf (Fig. 5A, panels d, d9, d0),

but the percentage of zebrafish embryo with neurite outgrowth

was only 30% (Fig. 5B). These data indicate that the wild-type

M6Ab possibly inhibited the neurite outgrowth, and co-expression

of CaMKIIb1(T287D) could only restore the neurite outgrowth to

the normal level, 30%. Again, the phosphorylation status of

zM6Ab is critical for neurite outgrowth in vivo and which protein

kinase is involved to regulate the phosphorylation of zM6Ab at

serine 263 in zebrafish embryos needs further investigstion.

Discussion

Due to genome duplication, there are two M6A homologs,

DMâ1 and DMâ2, in the zebrafish genome [4]. Both DMâ1 and

DMâ2 show an identity of 85% at the amino acid level to M6A of

the human, mouse, and rat. Due to correlations with the function

of mammalian M6A, we adopted the names, M6Aa and M6Ab,

used in the databank, instead of DMâ1 and DMâ2. Human M6A

is a protein of 267 amino acids which lacks the N-terminal 11

amino acid residues, found in zM6Aa, zM6Ab, mouse M6A, and

rat M6A. There is a stretch of 7 amino acid residues,
171SLSSVNS, which is only present in zM6Ab. Without these

residues, zM6Ab exhibits 87% identity to zM6Aa. In this study, we

provide evidence indicating that zebrafish M6Ab may induce

high-density filopodium formation in NGF-treated PC12 cells

Figure 3. Phosphorylation of S263 is critical for regulation of filopodium formation in PC12 cells. (A) Partial amino acid sequences of the
wide-type and mutant proteins of zebrafish M6Ab. (B) PC12 cells were transfected with pcDNA3-GFP-HA(a), pcDNA3-M6Ab-HA(b), pcDNA3-
M6Ab(S263A)-HA(c), pcDNA3-M6Ab (S263D)-HA(d), pcDNA3-M6Ab(S274A/S277A)-HA(e), pcDNA3-M6Ab(S274D/S277D)-HA(f), pcDNA3-M6Ab(A3)-
HA(g), or pcDNA3-M6Ab(D3)-HA(h) plasmids. Twenty-four hours after transfection, cells were treated with nerve growth factor (NGF) (100 ng/ml) for
2 days. Then transfected cells were fixed, and M6Ab-HA was detected using anti-HA antibodies for immunostaining. PC12 neurites are shown at a
higher magnification (a9–h9). (C) Quantification of the total number of neurites, total length of neurites, and filopodium-like processes in a 20- ? m
neurite length. Results are expressed as the mean 6 SD of at least 40,50 neurites. At least three independent experiments were analyzed.
*Significant difference compared with the respective control of WT-M6Ab overexpression (P,0.05). (D) Cell lysates from different transfected cells as
indicated were extracted and immunoblotted with an anti-HA antibody or anti-Tubulin antibody. (E) MS/MS spectrum on [M+2H]2+ (m/z 718.32) ion
for the peptides DIKpSKEEQELH from WT M6Ab protein. The product ion y8 which carries a phosphate indicated that Serine 263 was phosphorylated.
Residues bearing phosphate moieties are indicated with p. ‘‘b’’ and ‘‘y’’ ion series represent fragment ions containing the N- and C-termini of the
peptide, respectively. Scale bars, 10 mm.
doi:10.1371/journal.pone.0026461.g003
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(Fig. 2), and its phosphorylation at serine 263 (263SKEE) possibly

contributes to this induction, as expression of the S263A mutant

protein greatly reduced filopodium formation in PC12 cells (Fig. 3).

Interestingly, zM6Aa may also induce high-density filopodium

formation in NGF-treated PC12 cells (data not shown), but its

corresponding serine residue (256SKEE) is not essential for

filopodium formation in PC12 cells. However, the S256A mutant

protein of zM6Aa still has the ability to induce filopodium

formation in PC12 cells (data not shown). These data contain

similarities to a recent report that expression of the S256A mutant

protein of rat M6A in primary hippocampal neurons does not

affect its ability to promote filopodium formation, although it may

affect protrusion motility [13]. Although we did not perform

protrusion motility studies, zM6Aa is a possible ortholog of

mammalian M6A. Further investigations are pending, in order to

further explore the relationships of structure and function between

zM6Aa and zM6Ab.

Gene duplication in the zebrafish genome is commonly

observed and results from an early duplication specific to ray

finned fish [21]. Based on molecular phylogenetic and gene

synteny analyses, two duplicated genes were proposed to have

emerged as a consequence of whole-genome duplication before the

divergence of jawed vertebrates. The retention of functional gene

duplicates in genomes, known as paralogs, is attributed to their

role in maintaining a prompt response when loss-of-function

mutations in one copy of an essential gene occur [21,22].

Neofunctionalization may follow [23,24]. As a result, paralogs

may evolve to have distinct expression patterns and functions.

Mammalian M6A was shown to induce neurite outgrowth in

cultured primary hippocampal neurons [7], but whether it can

also promote neurite outgrowth in vivo is unclear. In the present

study, we showed that only the S263D mutant protein, not the

WT M6Ab, could induce neurite outgrowth in zebrafish embryos

(Fig. 5A, panels b and c). On the other hand, the WT M6Ab could

promote neurite outgrowth only in the presence of a constitutively

active CaMIIb1 (panels d and e). These data suggest that WT

M6Ab can be activated through other signal pathways to induce

neurite outgrowth in zebrafish embryos. One of these pathways is

mediated by type II calcium-calmodulin activated protein kinase

(CaMKII). This is consistent with an earlier notion that

mammalian M6A can act as an NGF-gated Ca2+ channel in

neuronal differentiation, and Ca2+ influx increases when M6A is

overexpressed in NGF-treated rat pheochromocytoma PC12 cells

[8]. However, it is difficult to envision that M6A functions as a

calcium channel, M6A may regulate the expression or function of

calcium channels instead. It may be worth investigating whether

calcium influx is affected when the expression of either zM6Aa or

zM6Ab is knocked down by morpholino oligonucleotide (MO)

technology [25]. In zM6Ab MO-injected zebrafish embryos, we

can further test whether the expression of zM6Aa mRNA can

rescue its phenotype. Such experiments will clarify whether zM6Aa

and zM6Ab are redundant genes or perhaps have different roles

during zebrafish development.

An increase in the Ca2+ concentration in response to

extracellular stimuli can activate various Ca2+/calmodulin

(CaM)-dependent enzymes including Ca2+/CaM-dependent pro-

tein kinases (CaMKs) to regulate a variety of cellular processes

[26,27]. Among many serine/threonine CaM kinases, CaMK-II is

known for its high concentration in the adult central nervous

system [28] with vital roles in spatial memory [29,30] and neuron

function [31]. In mammals, CaMK-II is composed of four

isoforms, a, b, c, and d. Each isoform has several alternative

spliced forms [32,33]. As a result of genome duplication, four pairs

of the CaMK-II family member were identified in zebrafish [34].

Similarly, at least 20 splice variants were found to have been

generated by alternative splicing during development. In this

study, we observed that only the S263D mutant protein, not WT

zM6Ab, could induce neurite outgrowth in zebrafish embryos

(Fig. 5A, panels b and c). This suggests that the WT zM6Ab needs

to be activated by unknown protein kinases to promote neurite

outgrowth in zebrafish embryos. To explore which protein kinase

has the potential to activate the WT zM6Ab, we generated a

constitutively active CaMKIIb1 (T287D) from zebrafish through

site-directed mutagenesis in accordance with a previous report that

mammalian CaMKIIb can regulate neurite extension in rat

hippocampal neurons [35]. Interestingly, enhanced neurite

outgrowth by zM6Ab-GFP was observed in zebrafish embryos

in the presence of CaMKIIb1 (T287D)-DsRed (Fig. 5B). But the

level was less than that of the S263D mutant protein. This suggests

that other protein kinases in addition to zCaMKIIb may regulate

phosphorylation of zM6Ab in zebrafish embryos to induce neurite

outgrowth.

In mammals, dendritic spines in the hippocampus are small

protrusions from the main dendritic stalk with important roles in

learning and memory [36]. Calcium signaling can modulate the

activity of many proteins implicated in neurite, filopodium, and

spine formation [37,38]. In the present study, zebrafish M6Ab

showed its ability to induce filopodium formation in PC12 cells

(Fig. 2) and to promote neurite outgrowth in zebrafish embryos

(Fig. 5). As for spine formation, the S263D mutant protein of

zM6Ab will be an ideal target to test once a hippocampus-specific

or midbrain-specific promoter is available which can drive the

expression of this gene.

Methods

Zebrafish care
Zebrafish embryos were raised at 28.5uC, and different

developmental stages were determined based on criteria described

in the Zebrafish Book [39]. All animal handling procedures were

approved by the Animal Use and Care Committee of Academia

Sinica (protocol #10-12-114).

Reagents and antibodies
U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]

butadiene) and KN-62 were obtained from Sigma (St Louis,

MO, USA). N-glycosidase F was purchased from Roche

(Indianapolis, IN, USA). mNGF 2.5S (mouse nerve growth factor

2.5S) was acquired from Promega (Madison, WI, USA). A mouse

monoclonal HA-probe (F-7) was obtained from Santa Cruz

Biotechnology (Santa Cruz, CA, USA). Cy2-conjugated secondary

antibodies were purchased from Jackson Immunoresearch Labo-

ratories (West Grove, PA, USA).

Figure 4. Inhibition of CaMKII and MEK1/2 reduces M6Ab early neurite outgrowth in nerve growth factor (NGF)-differentiated PC12
cells. (A) PC12 cells were transfected with the pcDNA3-M6Ab-GFP or pcDNA3-GFP plasmids. After transfection, PC12 cells were differentiated with
100 ng/ml NGF for 72 h in the presence of 10 mM KN-62 or 10 mM U1026 (Con; 0.1% DMSO). Cells were fixed, and images were taken with a Zeiss
LSM510 laser scanning confocal microscope. (B) Quantification of the total number of neurites, total length of neurites, and filopodium-like processes
in a 20-mm neurite length. Results are expressed as the mean 6 SD of at least 40,50 neurites. At least three independent experiments were analyzed.
*Significant difference compared with the respective control of WT M6Ab overexpression (P,0.05). Scale bars, 10 mm.
doi:10.1371/journal.pone.0026461.g004
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Cell culture and plasmid transfection
Monkey kidney fibroblast COS-1 cells (ATCC CRL-1650;

Manassas, VA, USA) were cultured in high-glucose Dulbecco’s

modified Eagle’s medium (DMEM), supplemented with 10% fetal

bovine serum (FBS; Hyclone, Logan, UT, USA) in a humidified

atmosphere of 5% CO2 at 37uC. Rat PC 12 cells were purchased

from ATCC (CRL-1721; VA, USA) and cultured in low-glucose

DMEM, supplemented with 10% FBS in a humidified atmosphere

of 5% CO2 at 37uC.

PC12 and COS-1 cell transfection was conducted using the

PolyJet In Vitro DNA Transfecton Reagent (SignaGen Labora-

tories, Ijamsville, MD, USA) following the manufacturer’s

instructions. COS-1 or PC12 cells were transfected with

pcDNA3.1-GFP or pcDNA3.1-M6Ab-GFP. Transfected cells

were then harvested at 24 and 48 h, fixed with 4% paraformal-

dehyde, and permeabilized in PBS with 0.1% Triton X-100. In

order to block CaMKII kinase or mitogen-activated protein kinase

(MAPK) kinase 1/2 (MEK1/2) activities, transfected cells were

then exposed to U0126 (10 mM) or KN-62 (10 mM) for 72 h,

respectively. The kinase inhibitors were first dissolved in dimethyl

sulfoxide to a concentration of 1 mM and then diluted to 1/100

with culture media before use.

Immunostaining
Immunostaining was performed using an anti-HA monoclonal

antibody (1:500 dilution) at 4uC overnight, followed by incubation

with a Cy2-conjugated goat-anti-mouse antibody for 30 min at

room temperature. Photo images were captured with a Zeiss

LSM510 laser scanning confocal microscope (Carl Zeiss, Jena,

Germany).

Peptide: N-glycosidase F (PNGase F) treatment
COS-1 cells in 100-mm plates were grown to 80% confluence

and transfected with plasmids encoding the WT M6Ab-HA fusion

protein or M6Ab T166A mutant protein (8 mg of DNA) using the

PolyJet In Vitro DNA Transfection Reagent (SignaGen Labora-

tories) following the manufacturer’s instructions. Forty-eight hours

after transfection, cells were harvested and lysed in 0.4 ml lysis

buffer (150 mM NaCl, 20 mM HEPES (pH 7.2), 10 mM NaF,

1 mM EDTA, 0.5% NP-40, 1 mM Na3VO4, 1 mM PMSF, and

1 mM DTT), and incubated for 30 min at 4uC. The lysate was

centrifuged at 13,000 rpm for 15 min. The concentrated super-

natant was digested with 1 U of PNGase F (Roche, Indianapolis,

IN, USA) at 37uC for 18 h. Untreated and N-glycosidase-treated

culture supernatants were separated by sodium dodecylsulfate

polyacrylamide gel electrophoresis (SDS-PAGE) and were then

electrophoretically transferred to polyvinylidene difluoride (PVDF)

membranes according to the Western blot method.

Isolation of the full-length M6Ab and CaMKIIb1 from
zebrafish

Complementary (c)DNAs encoding the complete open-reading

frame (ORF) of zebrafish M6Ab and CaMKIIb1 were obtained by

PCR amplification according to the NCBI GenBank database with

the respective accession nos. of AB089242 and XM_685461. The

primers used were as follows: M6Ab forward primer, 59-AAA

AGC TTA TGG AAG AGA ACA TGG AAG AG -39 and

reverse primer, 59-GGG GTA CCT GTG TAT GCG TTC AGG

CGC TC-39 and CaMKIIb1 forward primer, 59-CGG GAA GAC

ATG GCC ACG ACT ACA TGT-39 and CaMKIIb1 reverse

primer, 59-TAG ATG TTG CTA CAA TGA GCT CAA CCT-

39.

Site-directed mutagenesis of zebrafish M6Ab
Site-directed mutagenesis was performed to generate plasmids

encoding M6Ab mutants such as T166A, S263A,S263D, S274A/

S277A, S274D/S277D, A3(S263A/S274A/S277A), D3(S263D/

S274D/S277D), and the constitutive form of CaMKII ?

b1(T287D) using the pGEM-T-M6Ab and pGEM-T-CaMKIIb

plasmids as templates in the Quick Change Site-Directed

Mutagenesis kit (Stratagene, La Jolla, CA, USA) according to

the manufacturer’s instructions. The corresponding oligonucleo-

tides used were as follows (with the altered bases underlined):

T166A-F: 59-AAC ACT TGT CAG AAC ATG ACT CTG CTG

GAG-39, T166A-R: 59-CTC CAG CAG AGT CAT GTT CTG

ACA CGT GTT-39, S263A-F: 59-GAG GAC ATC AAG GCC

AAG GAG GAG C-39, S263A-R: 59-GCT CCT CCT TGG

CCT TGA TGT CCT C-39, S263D-F: 59-AGG ACA TCA AGG

ACA AGG AGG AGC-39, S274A/S277A-F: 59-ATC CAC GCT

ACT CGC GCT AAA G-39, S274A/S277A-R: 59-CTT TAG

CGC GAG TAG CGT GGA T-39, S274D/S277D-F: 59-ATC

CAC GAT ACT CGC GAT AAA G-39, S274D/S277D-R: 59-

CTT TAT CGC GAG TCT CGT GGA T-39, CaMKII ?

b1(T287D)-F: 59-AGA CAG GAG GAT GTG GAA TGC CTG-

39, and CaMKII ? b1(T287D)-R: 59-CAG GCA TTC CAC ATC

CTC CTG TCT-39. The sequences of the resultant plasmids were

verified using DNA sequencing.

Construction of expression plasmids
To express the GFP fusion proteins or HA-tagged proteins in

PC12 and COS-1 cells, cDNA encoding each of the M6Ab and

M6Ab mutants was re-amplified by a PCR using primers with

HindIII and KpnI restriction sites followed by subcloning of the

PCR products into pcDNA-GFP, pcDNA-DsRed, or pcDNA-HA

to generate pcDNA-M6Ab-GFP, pcDNA-M6Ab-D3-GFP, pc

DNA-CaMKII ? b1 (T287D)-DsRed, pcDNA-M6Ab-HA, pc

DNA-M6Ab(T166A)-HA, pcDNA-M6Ab(S263A)-HA, pcDNA-

M6Ab(S263D)-HA, pcDNA-M6Ab(S274A/S277A)-HA, pcDNA-

M6Ab(S274D/S277D)-HA, pcDNA-M6Ab(A3)-HA, and pc

DNA-M6Ab(D3)-HA.

To express GFP fusion proteins and DsRed fusion proteins in

neurons, each DNA fragment encoding the GFP-fusion or DsRed-

fusion protein from pcDNA-M6Ab-GFP, pcDNA-M6Ab-A3-

GFP, pcDNA-M6Ab-D3-GFP, and pcDNA-CaMKII ? b1

(T287D)-DsRed respectively, was released by the BamHI and

XhoI sites, and inserted into the corresponding sites of the pHuC-

GFP plasmid to replace the GFP coding region and respectively

generate pHuC-M6Ab-GFP, pHuC-M6Ab-D3-GFP, and pHuC-

Figure 5. Expression of M6Ab-GFP and M6Ab(S263D)-GFP driven by a neuron-specific HuC promoter in zebrafish embryos. (A) To
express the wild-type and S263D mutant proteins of zebrafish M6Ab under the control of a neuron-specific HuC promoter, plasmids pHuC-GFP,
pHuC-M6Ab-GFP, pHuC-M6Ab(S263D)-GFP, and pHuC-M6Ab-GFP/pHuC-CaMKII ? 1(T287D)-DsRed were individually injected into zebrafish embryos
at the one-cell stage. Zebrafish embryos at 48 h post-fertilization (hpf) with GFP fluorescence were selected for the image analysis. Images were taken
using a Zeiss LSM510 laser scanning confocal microscope. Merged images of red and green fluorescence are shown in (e, e9, and e0), while only green
fluorescence images are shown in (a, a9, a0, b, b9, b0, c, c9, c0, d, d9 and d0). Higher magnification of two regions marked with yellow boxes in panel a-e
is shown in panels a9–e9 and a0–e0, respectively. (B) Quantification of zebrafish numbers with significant neurite outgrowth at 48 hpf. Scale bars,
10 mm.
doi:10.1371/journal.pone.0026461.g005
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CaMKII ? ? 1(T287D)-DsRed. The control plasmid, pHuC-GFP

or pHuC-DsRed [18,19], was previously described, and GFP or

DsRed genes were driven by a zebrafish neuron-specific HuC

promoter [17].

Protein in-gel digestion
The protein bands on 1D gel were manually excised from the

gel and cut into pieces. The gel pieces were dehydrated with

acetonitrile for 10 min, vacuum dried, rehydrated with 50 mM

DTE in 25 mM ammonium bicarbonate, pH 8.5, at 37uC for 1 h,

and subsequently alkylated with 100 mM iodoacetamide in

25 mM ammonium bicarbonate, pH 8.5, at room temperature

for 1 h. The pieces were then washed twice with 50% acetonitrile

in 25 mM ammonium bicarbonate, pH 8.5 for 15 min each time,

dehydrated with acetonitrile for 10 min, dried, and rehydrated

with a total of 10 ng of sequencing grade, Asp-N (Promega,

Madison, WI, USA) in 25 mM ammonium bicarbonate, pH 8.5,

at 37uC for 16 hr. Following digestion, digested peptides were

extracted twice with 50% acetonitrile containing 5% formic acid

for 15 min each time with moderate sonication. The extracted

solutions were pooled and evaporated to dryness under vacuum.

Enrichment of phosphopeptides from the digested
sample

The phosphorylated peptides were concentrated using a Titan-

sphere Phos-Tio kit (GL Sciences, Tokyo, Japan). Prior to loading

samples, the titania tips were equilibrated with 0.1% TFA, 80%

acetonitrile (solution A) and 300 mg/mL lactic acid in 0.1% TFA,

80% acetonitrile (solution B). The digested sample was diluted

with 100 mL of solution B and loaded onto the titania tip. After

successive washing with 20 mL each of solution B and solution A,

50 mL each of 5% ammonium hydroxide and 5% Pyrrolidine

were used for elution. The eluted fraction was acidified with

20 mL of 1% TFA, desalted using C18 ZipTip and concentrated

in a vacuum evaporator, followed by the addition of 0.1% FA for

the subsequent nanoLC-MS/MS analysis.

Nanoflow HPLC-MS/MS
The peptide mixtures were analyzed by online nanoflow liquid

chromatography tandem mass spectrometry (LC-MS/MS) on a

nanoAcquity system (Waters, Milford, MA, USA) connected to an

LTQ Orbitrap Velos hybrid mass spectrometer (Thermo Fisher

Scientific, Bremen, Germany) equipped with a PicoView nanospray

interface (New Objective, Woburn, MA, USA). Peptide mixtures

were loaded onto a 75 mm ID, 25 cm length C18 BEH column

(Waters) packed with 1.7 mm particles with a pore with of 130 Å

and were separated using a segmented gradient in 30 min from 5%

to 40% solvent B (acetonitrile with 0.1% FA) at a flow rate of 300 nl/

min and a column temperature of 35uC. Solvent A was 0.1% FA in

water. The effluent from the HPLC column was directly electro-

sprayed into the mass spectrometer. The LTQ-Orbitrap Velos mass

spectrometer was operated in positive ion mode and a data-

dependent ‘‘Top 20’’ method was employed. In each cycle, a full-

scan spectrum was acquired in the Orbitrap at a target value of 5E5

ions with resolution R = 60,000 at m/z 400 followed by ion-trap

CID on the 20 most intense ions with a target value of 5E3 ions. The

‘lock mass’ function was enabled for the MS mode, where the

background ion at m/z 391.284286 was used as the lock mass ion.

General MS conditions were as follows: spray voltage, 1.9 kV; no

sheath or auxiliary gas flow; S-lens, 50%. FT preview mode was

enabled, charge-state screening enabled, and rejection of singly

charged ions enabled. Ion selection thresholds were 500 counts for

MS2, 35% normalized collision energy, activation q = 0.25, and

activation time of 10 ms were applied for CID. Dynamic exclusion

was employed and 10 ppm window of the selected m/z was

excluded for 90 s. near ion trap. To improve the fragmentation

spectra of the phosphopeptides, ‘‘multistage activation’’ at 97.98,

48.99, 32.66, and 24.49 Thompson (Th) relative to the precursor ion

was enabled in all MS/MS events. The MS and MS/MS raw data

were processed by Raw2MSM and searched against NCBI database

(5/26/2011) with the Mascot Daemon 2.3 server. Search criteria

used were AspN digestion, variable modifications set as carbamido-

methyl (C), oxidation (M) and phosphorylation (STY) allowing up to

2 missed cleavage, mass accuracy of 10 ppm for the parent ion and

0.60 Da for the fragment ions. Phosphorylation sites and peptide

sequence assignments contained in MASCOT search results were

validated by manual confirmation from raw MS/MS data.

Microinjection of the expression plasmid into zebrafish
embryos

The expression plasmid was linearized by digestion with suitable

restriction enzymes and purified with a PCR Gel extraction kit

(Qiagen, Hilden, Germany). DNA was adjusted to a final concentra-

tion of 100 mg/ml in 16Danieau solution (5 mM Hepes (pH 7.6),

58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, and 0.6 mM

Ca(NO3)2) containing 0.5% phenol red and injected into zebrafish

embryos at the one-cell stage using a Narishige IM 300 microinjector

system (Narishigi Scientific Instrument Lab., Tokyo, Japan).

Embryos at 48 h post-fertilization (hpf) were observed under an

Olympus IX70- FLA inverted fluorescence microscope. Images

were taken using a Zeiss LSM510 laser scanning confocal

microscope (Carl Zeiss).

Statistical analysis
Quantitative data from three to three independent experiments

are expressed as means (6SD). Unpaired Student’s t-tests were

used to analyze between group differences. P,0.05 was consid-

ered statistically significant.
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