
Discrete Redox Signaling Pathways Regulate
Photosynthetic Light-Harvesting and Chloroplast Gene
Transcription
John F. Allen1*, Stefano Santabarbara2, Carol A. Allen1, Sujith Puthiyaveetil1

1 School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom, 2 Istituto di Biofisica, Consiglio Nazionale delle Ricerche,

Milano, Italy

Abstract

In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These
processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of
photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in
the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase
(CSK) is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of
plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by
phosphorylation of light-harvesting complex II (LHC II). Chloroplast thylakoid membranes isolated from a CSK T-DNA
insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced 32P-labelling of LHC II and
changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission
transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of
reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is
transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory
system.
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Introduction

Chloroplasts of photosynthetic eukaryotes are cytoplasmic

organelles that have evolved from endosymbiotic, prokaryotic,

cyanobacteria [1,2,3,4]. Chloroplasts and cyanobacteria share the

unique property of oxygenic photosynthesis, in which water serves

as the electron donor to a chain of electron carriers that includes

two separate energy-transducing photochemical reaction centres,

each bound to a distinct population of light-harvesting pigments. A

reaction centre together with its light-harvesting system and

primary electron donors and acceptors comprises a photosystem

[5]. The two distinct photosytems of chloroplasts and cyanobac-

teria, termed photosystem I and photosystem II, are connected in

series in the photosynthetic electron transport chain [6], and their

rates of electron transport are therefore equal for linear, or non-

cyclic, electron transport.

The differing composition of light-harvesting pigments confers

different absorption and action spectra on photosystem I and

photosystem II [7]. The spectral composition of incident light

changes in natural environments. The requirement for sustained

and effective conversion of absorbed light energy by two reaction

centres turning over at equal rates is satisfied by regulatory

processes that adjust (a) the relative quantities of the two

photosystems [8,9] and (b) their light-harvesting antenna size

and composition [10,11,12,13]. Both of these adjustments

compensate for an initial, transient imbalance in rate of reaction

centre turnover that causes changes in the redox state of one

or more electron carriers located between photosystem I and

photosystem II. Since photosystem II donates electrons to

photosystem I, their connecting electron carrier, plastoquinone,

becomes chemically reduced when photosystem II is favoured by a

new light regime, and oxidised when photosystem I is favoured,

instead.

In chloroplasts, post-translational modification by phosphoryla-

tion of apoproteins of chloroplast light-harvesting complex II

(LHC II) [14,15] is initiated when plastoquinone becomes reduced

[16,17,18,19,20,21]. Phosphorylation of LHC II causes a sub-

population of LHC II molecules to move from photosystem II to

photosystem I [22,23], redistributing absorbed excitation energy

so that the rates of photochemical conversion in the two reaction

centres are made equal. Thus a predominance of the reduced form

of plastoquinone, plastoquinol, initiates a self-correcting response,

a transition to a state of adaptation to light otherwise absorbed

primarily by photosystem II [16,17,24,25,26]. This adaptation to a

‘‘light 2’’ is known as a transition to ‘‘light-state 2’’ or just ‘‘state 2’’

[7,13,24,25,27,28]. Conversely, transient oxidation of plastoqui-

none inactivates phosphorylation of LHC II, and a light- and

redox-independent phospho-LHC II phosphatase [18,29] acts to
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return the mobile subpopulation of LHC II from photosystem I to

photosystem II in an adaptation to ‘‘light 1’’ termed the transition

to a ‘‘light-1 state’’ or ‘‘state 1’’ [13,30].

The protein kinase catalysing phosphorylation of LHC II in a

redox-dependent reaction, initiating the state 2 transition, has

been identified as stt7 in Chlamydomonas [31], homologous with stn7

in Arabidopsis [30,32,33,34,35]. The phospho-LHC II phosphatase

required for the state 1 transition has been identified as PPH1 [36]

also termed TAP38 [37,38].

As distinct from state transitions, changes in the quantity of

photosystem I relative to that of photosytem II are also induced by

changes in spectral composition of light absorbed and converted in

photosynthesis [8,9,39]. These changes in photosystem stoichiom-

etry represent an adaptation, or acclimation, that is complemen-

tary to state transitions, achieving balanced operation of

photosystem I and photosystem II. While state transitions are a

relatively rapid, reversible, post-translational solution to changing

spectral composition, photosystem stoichiometry adjustment is a

more long-term acclimatory response, taking hours or days to

complete, and involving control of gene expression at the level of

transcription and/or translation [9,39,40]. State transitions are

superimposed on different photosystem stoichiometries and occur

apparently independently of the ratio of photosystem I to II

[39,41], although the variable chlorophyll fluorescence often used

to monitor state transitions in vivo is influenced by both reaction

centre stoichiometry and light-harvesting antenna size [42]. A

major factor affecting fluorescence yield is the antenna size of

photosystem II, since this is the origin of the variable component of

chlorophyll fluorescence at room temperature.

Photosystem stoichiometry adjustment has been shown to be

initiated, like state transitions, by changes in redox state of

plastoquinone [43,44,45]. Thus a prolonged light 2 alters gene

expression and results in an increase in the stoichiometry of

photosystem I to photosystem II. In plants, this change may be

monitored easily as an increase in the ratio of chlorophyll a to

chlorophyll b. The core apoproteins of the photosystem I and II

reaction centres are the products of genes in chloroplast DNA.

Studies of transcription in isolated chloroplasts demonstrated that

photosystem I transcription is induced, while photosystem II

transcription is repressed, upon reduction of plastoquinone.

Conversely, photosystem I is repressed, and photosystem II

induced, upon oxidation of plastoquinone. These experiments

[43,44,45] introduced the possibility of studying early events in

control of photosystem stoichiometry in vitro.

A conserved redox sensor kinase, Chloroplast Sensor Kinase

(CSK), has been shown to be required for the plastoquinone

redox-state dependent regulation of chloroplast reaction centre

gene transcription [46,47]. Arabidopsis knockout mutants of the CSK

gene are unable to repress photosystem I genes in light absorbed

predominantly by photosystem I (‘‘light 1’’), and therefore cannot

regulate the stoichiometry of photosystem I relative to photosystem

II [47]. CSK is a bacterial-type sensor kinase that belongs to the

family of two-component signalling proteins [48,49]. CSK has

homologues in all major lineages of photosynthetic eukaryotes

[46,50]. In the complete genome sequences of the chlorophycean

alga Chlamydomonas reinhardii and the haptophyte Emiliania huxleyi,

however, no CSK gene is identified by similarity searches.

Nevertheless, the possibility exists that the histidine kinase-like

chlamyopsin protein replaces CSK in Chlamydomonas and that the

plastid-encoded histidine kinase ycf26 compensates for the lack of

CSK in Emiliania [50]. A CSK homologue is also found in

cyanobacteria, suggesting the cyanobacterial ancestry of this

chloroplast protein. The functional partner of CSK in plants

and green algae [46] is not a response regulator as in canonical

bacterial two-component systems, but a eukaryotic serine/

threonine protein kinase known as Plastid Transcription Kinase

(PTK) [51,52] and a chloroplast sigma factor, SIG1 [53,54].

Reversible phosphorylation of SIG1 by CSK is thought to be the

mechanism by which photosystem I genes are repressed in light 1

condition, as part of the photosystem stoichiometry adjustment

[46].

Given that the same changes in plastoquinone redox state

initiate both light-state transitions and complementary changes in

chloroplast reaction centre gene transcription [40,55], it is of

interest to ask whether Chloroplast Sensor Kinase is required for

state transitions. Light-induced changes in the rate of run-on

chloroplast transcription can be observed in as little as fifteen

minutes, suggesting the possibility of synchronous induction of

state transitions and the transcription control that leads, on longer

time scales, to changes in photosystem stoichiometry [40].

Here we report on state transitions in wild-type Arabidopsis

thaliana and in a CSK T-DNA insertion line. State transitions were

monitored as one of several components affecting room-temper-

ature chlorophyll fluorescence yield in vivo, and by 77 K

fluorescence spectroscopy of isolated chloroplast thylakoids. In

addition, direct visualisation of thylakoid protein phosphorylation

was carried out by autoradiography of protein gels from samples

incubated with [c̃32P]ATP.

Results

Figure 1 shows the effects of actinic light 1 and light 2 on room-

temperature chlorophyll fluorescence yield of one leaf, selected for

size and thus signal amplitude, of Arabidopsis thaliana plants growing

on compost. Figure 1 (a) shows results obtained with plants pre-

adapted for 48 hours to growth in a red and far-red enriched light

1; figure 1 (b) shows results obtained with plants maintained in

normal, low-irradiance, white light from fluorescent strips.

Measurements of the amplitude of chlorophyll fluorescence

emission, in dark adapted leaves and in presence of continuous

background lights, provide information on photochemical and

non-photochemical quenching, with components also arising from

high-energy state quenching [56] as well as state 1-state 2

transitions [57]. In dark-adapted leaves, the maximal photochem-

ical yield of PS II, as determined from the Fv/Fm ratio, is

essentially the same in the wild-type and the CSK mutant, and has

the value of 0.80. Moreover, this value is unchanged by the growth

conditions, both in the wild-type and the CSK mutant. This

indicates that inactivation of the CSK gene does not affect the

maximal photochemical yield of PS II.

However, upon the onset of background actinic illumination

which excites preferentially PS II (light 2), difference can be

observed, both in the pre-steady state kinetics manifested in the so-

called ‘‘Kautsky’’ effect and the steady-state level of fluorescence

emission between the wild-type and the CSK mutants (Figure 1).

Particularly, in plants grown under light 1 conditions (Figure 1a),

the onset of the Kautsky transient, which is an indication of the

activation of Calvin circle, is delayed in the CSK mutant with

respect to the wild-type, moreover the steady-state fluorescence

emission level in the CSK mutant is significantly higher than in the

wild-type. This is an indication that, under the same intensity and

spectral distribution of actinic illumination, the plastoquinone pool

is more reduced in the CSK mutant than in the wild-type control.

Superimposition of a light that preferentially excites PS I (light

1) after 20 minutes causes a drop in fluorescence emission. This is

commonly explained in terms of an oxidation of the plastoquinone

pool driven by PS I photochemistry which is in part limited by

photon absorption when light 2 acts as the actinic source. The

State Transitions and Chloroplast Sensor Kinase
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initial effect of light 1 superimposition is accentuated in the CSK

mutant, which might indicate that the high reduction level of PQ

pool observed under light 2 actinic illumination results only from

PS I limitation of the linear electron transport chain of thylakoids.

Moreover, while in the wild type there is a slow fluorescence rise

after light 1 superimposition, in the case of CSK mutant the

steady-state level continues to drop slowly. The slow rise in

fluorescence observed in the wild type was attributed both in part

to oxidation of a fraction of PQ pool, in part to redistribution of

LHC antenna, increasing the cross section of photosystem II

Figure 1. Chlorophyll fluorescence emission by leaves of Arabidopsis thaliana at room temperature. Two days of light 1 treatment (before
monitoring the room temperature variable chlorophyll fluorescence) are assiciated with an apparent state transition minus phenotype in CSK
mutants. Figure 1a shows the time-course of variable chlorophyll fluorescence emission from leaves of Arabidopsis thaliana, which were grown in
light 1. Illumination with light 2, which is absorbed primarily by photosystem II, initially increases chlorophyll fluorescence emission. Fluorescence
then decreases, and one component of the decrease is the removal of light-harvesting capacity from photosystem II during the transition to state 2.
Addition of light 1, absorbed primarily by photosystem I, causes an initial decrease in fluorescence and then a slow rise, as the light-harvesting
capacity of photosystem II increases during the transition to state 1. The slow components attributable to the state 2 and state 1 transitions are seen
in the wild type, but are absent from the CSK mutant. Figure 1b shows fluorescence emission from white light grown plants. Fm 1 and Fm 2 are
maximal fluorescence at state 1 and state 2 respectively.
doi:10.1371/journal.pone.0026372.g001
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during the transition to state 1. Thus the difference observed in the

CSK mutant might be indicative of a perturbation of state 1-state

2 transitions. However, influence of onset and relaxation of the

high-energy component of non-photochemical quenching would

also contribute to the steady state signal. Yet, we notice that the

maximal fluorescence levels determined with a brief saturating

pulse (,800 ms) immediately before the actinic light 1 is switched

off (Fm1 in Figure 1a) are very similar in the CSK and the wild

type. This indicates that, for plants adapted to light 1 conditions,

the level of Non Photochemical Quenching (NPQ) and the

absorption cross section in the CSK mutant and the wild-type do

not differ significantly, as the probability that these two processes

compensate exactly for each other is extremely low. However,

while the value of the Fm level in the presence of actinic light 2

(Fm2) is slightly lower (,15%) than Fm1 for the WT these two

levels are virtually identical for the CSK mutant. As the changes

observed in the WT are consistent with the previous estimate of

the mobile LHC during state transitions, this might indicate some

impairment of state transition in the CSK deficient mutant. We

note that, when light 1 is turned off, the steady state reduction level

of PQ pool is again much higher in the CSK mutant compared to

the WT. This indicates that the elevated emission under actinic

illumination in the CSK mutant, also observed during the first

period of light 2 illumination, is not the result of pre-steady state

conditions and originates from a more reduced PQ pool in the

mutant than in the wild-type.

Interestingly, some significant difference between plants grown

under standard white light conditions (Figure 1b) and plants

adapted to light 1 (Figure 1a) are apparent. Excluding the Fv/Fm

values, which are essentially the same, it can be seen (Figure 1b)

that: (i) the steady-state levels of fluorescence emission in presence

of actinic backgrounds are much more similar in the CSK mutant

and WT; (ii) the pre-steady state kinetics of the Kautsky transient

are faster in CSK mutant than in the WT while the opposite was

seen for light 1 adaptation; (iii) we observe a significant increase in

the level of non-photochemical quenching in CSK mutants with

respect to WT, whereas similar levels were observed in light 1

adapted leaves; (iv) the Fm1 level is greater than Fm2 in both wild-

type and CSK mutants (Figure 1b). The increase in non-

photochemical quenching can explain in part the difference in

the steady-state level of emission observed in CSK mutant adapted

to white light or light 1 conditions, as it will tend to lower the

fluorescence emission even in the presence of a more reduced PQ

pool, which was more clearly observed in light 1-adapted plants,

but it is also apparent when actinic light 1 and light 2 are

superimposed, and during the second period of light 2 illumination

only (Figure 1b). Moreover the apparent rapid kinetic relaxation of

the Kautsky transient in the CSK mutant could also be in part due

to the onset of NPQ rather than a more rapid attainment of

steady-state level. We are unaware of protein kinases controlling

any of the non-photochemical quenching component, however

this result (Figure 1b) can be ascribed to an indirect effect, linked

to an inability of the CSK mutant to regulate the synthesis of

photosynthetic complexes in response to changes in environmental

conditions [47].

As a complete interpretation of the steady-state fluorescence

emission in presence of actinic background is complicated by the

presence of many different physiological processes, we investigated

the effect of CSK in the control of state-transitions by fluorescence

emission spectroscopy at 77 K of isolated thylakoids. Spectra are

shown in Figure 2. In all cases, two principal fluorescence emission

maxima are seen, one centred at 685 nm, also associated with a

shoulder at ,700 nm, and arising principally from photosystem II

emission and the other, centred at 735 nm, which originates from

photosystem I. The intensity of the 685 nm and 735 nm peaks

observed at 77 K can be used to estimate the relative absorption

cross-section of the two photosystems, and hence on state

transitions. The state 2 transition was induced in vitro by

illumination of thylakoids in the presence of ATP, and state 1

was produced from thylakoids incubated in the dark with ATP.

As a control, thylakoids were incubated in the dark without

ATP, and this treatment also induces state 1 (results not shown).

It is seen in all cases that the emission ratio F735/F685 is

greater in state 2 than in state 1, most noticeably in thylakoids

from white light-grown plants (Figure 2b and 2d). However, the

effect of the ATP and illumination on excitation energy

distribution between photosystems I and II is much the same

in the CSK mutant (Figure 2c, 2d) as in the wild-type

(Figures 2a, 2b). Thus, neither the Fm values from white light

grown plants at room temperature (Figure 1b) nor 77 K

fluorescence emission spectra (Figure 2) indicate any effect of

the CSK mutation on redistribution of excitation energy in

light-state transitions.

Phosphorylation of light harvesting complex II (LHC II) by the

LHC II kinase induces state 2 transition, and its dephosphory-

lation by the phospho-LHC II phosphatase leads to state 1

transition [16,25]. In order to further probe the role of CSK in

state transitions, we carried out a thylakoid phosphorylation assay

for the CSK mutant and the wild-type. Thylakoids were first

isolated from white light grown plants, and incubated in light for

10 minutes in the presence of [c-32P] ATP. The results of 32P-

labelling experiments are shown in Figure 3. Incubation of

thylakoids in white light induces the state 2 transition via

phosphorylation of LHC II. Figure 3 shows equal levels of LHC

II (protein band around 25 kDa) phosphorylation in both CSK

mutant and wild type. In the light, the electron transport

inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) in-

hibits electron transport to plastoquinone and makes the

plastoquinone pool oxidised. Oxidised plastoquinone promotes

the state 1 transition, and LHC II remains in an unpho-

sphorylated state. Thus, incubation of wild-type and CSK mutant

thylakoids with DCMU in the presence of light abolishes 32P-

labelling of LHC II (Figure 3).

Dark-incubated thylakoids are in state 1, as the plastoquinone

pool is usually oxidised in the dark, but state 2 can be induced in

dark-incubated thyalkoids by the addition of the reducing agent

sodium dithionite. Incubation of thylakoids in the dark in the

presence of sodium dithionite results in phosphorylation of LHC

II, more or less equally in both CSK mutant and wild-type

(Figure 3a). In addition to LHC II, other thylakoid proteins are

known to become phosphorylated in response to changes in

plastoquinone redox state, and the phosphorylation pattern of

several additional polypeptides appears to be different in CSK

mutant and wild-type (Figure 3a). In particular, phosphorylation of

photosystem II reaction centre proteins D1 and D2, at 32–34 kDa,

is more pronounced in the CSK mutant. Reaction centre

phosphoryation is not dorectly related to state transitions.

Phosphorylation of polypeptides at 10 to 20 kDa is also affected

in the CSK mutant (Figure 3a). Figure 3b reports substantially

similar thylakoid polypepetide composition between the CSK

mutant and wild-type, except in the upper part of the gel where

some of the higher molecular weight polypeptides are unresolved

in the CSK mutant. It is possible that these polypeptides are

present, but aggregated near the top of the gel. However, these

changes cannot account for the large redox-dependent effects on

LHC II phosphorylation (Figure 3a) and may arise from effects of

CSK on photosystem stoichiometry and from further, pleiotropic

effects, as yet uncharacterized.

State Transitions and Chloroplast Sensor Kinase
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Discussion

Chloroplast Sensor Kinase provides the redox-signalling ma-

chinery that connects plastoquinone redox state to chloroplast

reaction centre gene transcription during photosystem stoichiom-

etry adjustment [47,58]. Changes in plastoquinone redox state also

trigger light state transitions, and CSK could act as the common

plastoquinone sensor in both stoichiometry adjustment and state

transitions. However, the data presented in figures 2 and 3 argue

against direct involvement of CSK in state transitions. Room

temperature chlorophyll fluorescence data for light 1-acclimated

plants (Figure 1a) indicate that CSK gene inactivation causes

pleiotropic effects. Two days of light 1 acclimation before measuring

state trasitions is considered to increase photosystem II antennae,

and therefore light 1-acclimated plants are expected to undergo

robust state transitions. It is not clear what caused this pleiotropic

effect on room temperature fluorescence in CSK mutants in light 1

(Figure 1a). It should be noted that unlike the earlier study where

two independent T-DNA lines have been analysed for the gene

expression phenotype of CSK [47], the present study employed only

one of the two CSK T-DNA lines. The chances of the room

temperature phenotype (Figure 1a) arising from a secondary

mutation other than the CSK gene locus, although unlikely, cannot

be completely excluded. Since CSK is known to regulate

stoichiometry of photosystems, it may be that light-1 acclimated

CSK mutants are unable to adjust relative quantities of the two

photosystems, and that this altered stoichiometry manifests itself as

an aberrant room temperature fluorescence property. But given the

independent nature of state transitions and photosystem stiochio-

metry adjustments [59] this possibility seems less certain. Other

factors such as altered photochemical quenching, high-energy

quenching or LHC II gene (cab or Lhcb) expression may also account

Figure 2. Fluorescence emission spectra of isolated thylakoids at 77 K. 77 K fluorescence emission spectra from wild type and CSK null
mutant thylakoids as measured by the Perkin-Elmer LS 55 luminescence spectrometer. Figure 2a and 2c shows fluorescence emission spectra of
thylakoids isolated from light 1 adapted plants. Figure 2b and 2d show fluorescence emission spectra of thylakoids isolated from white light grown
plants. The excitation wavelength was 435 nm (5 nm slit width) and emission was detected from 650 to 800 nm (2.5 nm slit width). All spectra were
normalized at 685 nm.
doi:10.1371/journal.pone.0026372.g002
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for this anomaly in CSK mutants. It is also important to consider

that state transition, Stn7 mutation may, conversely, have indirect,

pleiotropic effects on reaction centre gene transcription [34] and

thus on photosystem stoichiometry.

Since CSK is not involved directly in the mechanism of redox

sensing in state 1- state 2 transitions (Figures 2 and 3), and a

protein kinase known as Stt7/Stn7 has been implicated in state

transitions by acting as the LHC II kinase, it seems necessary

to assume that a bifurcated redox signalling pathway carries

information from the plastoquinone pool, as depicted in Figure 4.

One distal branch of the pathway, containing Stt7/Stn7, affects

post-translational modification of existing proteins by phos-

phorylation. The second branch, consisting of CSK, controls

photosystem stoichiometry by means of regulation of transcription

of chloroplast genes for reaction centre apoproteins. Upstream of

the point of divergence of the two branches is plastoquinone itself.

It remains to be seen whether two separate plastoquinone/quinol-

binding sensors initiate the two signal transduction events, or

whether a single plastoquinone-binding redox sensor, as yet

unidentified, controls both CSK and the LHC II kinase. The first

possibility, that plastoquinone redox state is sensed by two

independent redox sensors – CSK and LHC II kinase – is

supported by the available evidence and consistent with a recent

model for redox control of Stn7 [35].

It will also be important to resolve the evolutionary origin of these

related redox signal transduction pathways. Plastoquinone itself is

common to electron transport in both chloroplasts and cyanobacte-

ria, and in both cases, both state transitions and photosystem

stoichiometry appear to be initiated by changes plastoquinone redox

state [9,60,61]. CSK and its homologues [62] are likely to be involved

in transcriptional control in all cases, while the differing peripheral

light-harvesting antenna systems of cyanobacteria and chloroplasts

make the participation of an LHC II kinase and phosphatase in

cyanobacterial state transition unlikely. Nevertheless, quinone-level

redox control seems to be a conserved feature of regulation in a very

wide range of bioenergetic systems and it is usual in prokaryotic signal

transduction for a single environmental input to exert effects at

multiple levels of gene expression, from transcription to post-

translational modification of pre-existing proteins [63,64,65,66].

Materials and Methods

Plant material
Arabidopsis thaliana (Col-0) obtained from Nottingham Arabi-

dopsis Stock Centre (NASC) was grown from seed at 24uC with

an 8-hour day at 120 mE m22 s21. The CSK T-DNA line

(SALK_027360) was obtained from the Arabidopsis Biological

Resource center (ABRC) and grown under the same conditions.

The CSK T-DNA line used is one of the two well-characterised T-

DNA insertion lines used in our earlier investigation of the CSK

phenotype [47]. This T-DNA line has been genotyped for

homozygous T-DNA insertion, and the absence of transcription

from the CSK gene locus has been confirmed by a Reverse

Transcriptase Polymerase Chain Reaction (RT-PCR), as previ-

ously described [47].

Room temperature fluorescence measurement
State transitions were monitored by recording room temperature

variable photosystem II fluorescence using a Walz PAM 101

chlorophyll fluorometer with the 101-ED emitter-detector unit. 6–8

week old plants, grown under white light, 120 mE m22 s21, 8-hour

day, were used for the measurement. Before measuring state

transitions, one set of plants were given two days of light 1 treatment

to increase the size of the photosystem II antenna, while the other

set of plants remained in white light condition. State transitions were

thus measured for both light 1-treated and white light grown plants.

Light 1, with a photon flux density of 6 mE m22 s21, was provided

by two red fluorescent strip lamps (Osram L 18W/60 Red from

Osram GmbH, Hellabrunner Straße 1, 81536 München

Germany) each wrapped in red filter (Lee 027 medium red from

Lee Filters, Andover, Hants, U.K.). For the Walz PAM

measurements Light 1 was provided in to the fibre-optic bundle

Figure 3. CSK mutants show normal LHC II phosphorylation. (a) Autoradiographs of Arabidopsis thylakoid phosphoproteins separated by
SDS-PAGE. The positions of molecular weight markers are indicated on the left. Thylakoid samples from the wild-type (WT) and the CSK mutant are
loaded in each lane and labelled accordingly at the top. The experimental conditions for each pair of samples are labelled at the bottom. (b)
Coomassie-stained gel as protein loading control. The gel from which the autoradiograph was developed is stained with Coomassie brilliant blue to
show that results presented in (a) results from 32P-labelling and not from unequal protein loading.
doi:10.1371/journal.pone.0026372.g003

State Transitions and Chloroplast Sensor Kinase
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by the Walz 102-FR far-red photodiode array (maximum

intensity at 735 nm) and light 2 was similarly provided by a

Flexilux 150 HL white light source behind a Corning 4–96 glass

filter. Maximal fluorescence (Fm) in state 1 and 2 were measured

by a 0.8 second long, saturating (6500 mE m22 s21) light flash

delivered from a Schott KL 1500 white light source.

77 K fluorescence measurement
Fluorescence emission spectra from wild type and CSK mutant

thylakoids were recorded in liquid nitrogen (77 K) using the

Perkin-Elmer LS 55 luminescence spectrometer. Thylakoid

membranes were prepared as in Harrison and Allen [67]. State

1 was induced by 20 minutes of dark incubation of thylakoids in

the presence of 0.4 mM final concentration of ATP and state 2, by

illuminating the thylakoid suspension with 80 mE m22 s21 of

white light for 20 minutes and by the addition of 0.4 mM final

concentration of ATP. 20 minutes of dark incubation of thylakoids

was done as a control treatment (results not shown). Thylakoid

suspension equivalent to 5 mg/ml chlorophyll was taken per

sample. The excitation wavelength was 435 nm (5 nm slit width)

and emission was detected from 650 to 800 nm (2.5 nm slit width).

All spectra were normalized at 685 nm.

Thylakoid protein phosphorylation
Arabidopsis thylakoids were isolated from detached leaves of two-

month old plants grown under white light, 120 mE m22 s21, 8-

hour day. Isolation was as described by Harrison and Allen

[67]. The thylakoid suspension was kept in the dark, on ice,

for 45 minutes before the start of the experiment to en-

sure dephosphorylation. Incubation conditions used were light

(80 mE m22 s21), light plus DCMU (at 10 mM final concentration)

and dark plus sodium dithionite (at 20 mM final concentration).

Reactions were initiated by the addition of ATP to thylakoid

suspension equivalent to 16 mg of chlorophyll per reaction to give

0.4 mM final concentration of ATP with 10 mCi [c-32P] ATP

(3000 Ci/mmol). Reactions were stopped after 10 minutes by

addition of electrophoresis sample buffer. Samples were loaded

onto a 12–20% SDS-PAGE gel, with a constant loading of 16 mg

chlorophyll per lane. The gel was stained with Coomassie brilliant

blue, and exposed to a phosphor-imager plate for 36 hours.
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Figure 4. Interactions of photosynthetic electron carriers with redox-signalling components of photosystem stoichiometry
adjustment and state transitions. Light reactions of photosynthesis are represented as electron transport from H2O to NADP+ via two
photosystems connected by a cytochrome b6f complex which oxidizes plastiquinol (PQH2) to plastoquinone (PQ). CSK senses the redox state of the
plastoquinone pool directly by becoming autophosphorylated and activated by PQ. CSK phosphorylation and dephosphorylation initiate
transcription of PS II reaction centre (psbA,D) and PS I reaction centre (psaA,B) genes, respectively, selectively controlling expression of reaction centre
genes in chloroplast DNA. The LHC II kinase Stn7 responds to PQH2 and initiates the state 2 transition, while the phospho-LHC II phosphatase, TAP38/
PPH1, is redox-independent and predominates, inducing the state 1 transition, when PQ is oxidized. Even though they are both controlled by
plastoquinone redox state, CSK exerts its transcriptional effect on photosystem stoichiometry independently of the effect of Stn7 in state transitions.
doi:10.1371/journal.pone.0026372.g004
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