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Abstract

The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort
of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort,
parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal
tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and
varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature
proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized
fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis
(d15N and d13C) revealed trophic impacts associated with infection, particularly for d15N where values for parasitized fish
were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed
ad libitum on an identical food source, there was no significant difference in values of d15N and d13C between parasitized
and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower
than non-parasitized fish, with their feeding rate (items s21) also significantly lower. Thus, infection by an introduced
parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite.
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Introduction

Emerging infectious diseases are associated with pathogens that

have recently increased in incidence, impact or geographic or host

range [1,2]. They may pose a greater threat to biodiversity

through biomass loss and extinctions of host species than

pathogens responsible for endemic diseases [3,4]. This is because

the dynamics of the host-parasite interactions may differ as the

pathogen has not coevolved with the host or the ecosystem in

which they emerged [5]. An outbreak of an emerging disease may

occur when the parasitic fauna of a species is introduced from its

natural range into a new region at the same time as its host,

providing the opportunity for host switching [2,6]. Given the lack

of co-evolution between these new host species and the introduced

pathogen, transmission rates and infection impacts may be high.

Indeed, it has been suggested that the introduction of pathogens

into new areas through human activities is one of the most

important factors driving disease emergence in natural populations

[2,7].

Host responses to parasite infection are important to understand

as they form the basis of the population response [8]. In co-evolved

host: parasite relationships, infections tend to negatively impact

host fitness, modulate the dynamics of host populations and have

indirect consequences for non-host populations through changes

in the strength of interspecific competitive relationships [9].

Infection costs are compensated by hosts through, for example,

developing immune systems as an infection barrier and tolerance

through alteration of life-history traits, particularly in the pre-

reproductive life-span [10,11]. This then impacts reproductive

effort [12,13] and body size [14] as individuals allocate more

resources to reproduction than growth and survival to ensure

reproduction before resource depletion, castration or death [15].

How hosts respond to introduced pathogens where there has been

no co-evolution is less clear; whilst expectations are of catastrophic

outcomes through strong negative effects on host survivorship

[16], these may not always be apparent [17].

In freshwater ecosystems, the opportunity for fish parasites to be

moved between regions by anthropogenic activities is high given

that the rate of introduction of non-native fishes has doubled in the

last 30 years, mainly due to the globalization of aquaculture [18].

Introduced diseases resulting through fish movements in aquacul-

ture have already resulted in significant impacts in some fish, for

example the infection of European eel Anguilla anguilla with

Anguillicoloides crassus has been implicated as a major factor in their

global decline [19,20]. Research on the host consequences of

infection by introduced parasites has tended to focus on those that

impact immediately on host population dynamics through high

mortality rates [6], with sub-lethal impacts, such as alterations in

host behaviour and growth rates rarely considered despite their

potentially significant consequences for wild populations [6,17].

Consequently, the aim of this study was to identify the

pathological, growth rate, feeding rate and trophic consequences
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of infection in a host: parasite relationship lacking co-evolution.

Objectives were to use parasitized and non-parasitized fish sourced

from a wild population that were free of confounding infections to

identify the: (i) parasite prevalence and abundance within the host

population; (ii) pathological consequences of the parasite in

parasitized hosts; (iii) the consequences of infection for the weight

and condition of hosts (as a proxy of life history traits generally);

and (iv) whether parasitized hosts were impacted in their feeding

(trophic niche). It was then identified whether any measured

consequences of infection were reversible when the parasitized fish

were held in captivity in a stable, non-competitive environment. It

was predicted that due to the lack of experience of hosts with the

parasite, the pathology of infection would be severe and be allied

to the sub-lethal impacts of reduced growth and feeding rates, and

occupying lower trophic levels compared to non-parasitized fish.

Materials and Methods

Ethics statement
All animal work was conducted in accordance to national and

international guidelines to minimize discomfort to animals. All

regulated procedures completed under the Animals (Scientific

Procedures) Act 1986 were licensed by the UK Home Office

under project licence number PPL 30/2626. The Ethics Review

Panel of the School of Applied Sciences of Bournemouth

University approved this project licence.

Host:parasite model
The host: parasite model used was the fish common carp

Cyprinus carpio and the intestinal fish parasite Bothriocephalus

acheilognathi, a cestode native to Japan and China where it infects

members of the Cyprinidae family [21,22]. Bothriocephalus acheilog-

nathi has been moved extensively throughout the global aquacul-

ture trade via movements of grass carp Ctenopharyngodon idella and

common carp and is now present across in every continent except

Antarctica. It has low definitive-host specificity [23,24], enabling it

to infect a wide range of new hosts in its expanded range [25–27].

It has a simple two-host life cycle where free-living copepods are

the intermediate host and fish the definitive host. Fish obtain

infection by the ingestion of parasitized copepods [28]. Cyprinus

carpio is an important aquaculture species world-wide, with global

production in 2009 worth over US $4Billion [29]. It is also a

highly prized angler-target species in many European countries

[30]. It is, however, perceived as an invasive pest elsewhere [30].

In the study, parasitized and non-parasitized young-of-the-year

C. carpio from a pond (1 ha in area) in Southern England were used

as the model host as (i) Bothriocephalus acheilognathi is alien to

England [31] and this C. carpio population was not known to have

had any previous exposure to the parasite prior to its introduction

to the pond in 2009; (ii) juvenile fishes are generally most

vulnerable to infection by copepod intermediate hosts due to

importance in diet [32]; (iii) losses through infection may yet to

have been significant in the cohort, providing robust estimates of

parasite prevalence and abundance; and (iv) impacts of parasites

tend to be more severe in juvenile fishes compared with adults

[17].

Fish sampling and parasitological examinations
The fish were sampled from the pond in September 2010 using

a micromesh seine net of 25 m length and 1.5 m depth. All

captured C. carpio (parasitized/ non-parasitized) were removed and

taken back to the laboratory. Of these, 70 were used for initial

analysis. These were euthanized by lethal anaesthesia (5% w/v

benzocaine) and the data collected from each fish being their

length (fork, nearest mm), weight (nearest g), their infection status

according to B. acheilognathi following dissection of their intestine,

and the presence of any other parasitic infections (parasitized or

non-parasitized). Of these other pathogens, only very light

infections of common monogenea and protist parasites were

recorded, but these were considered normal and insignificant (i.e.

were not confounding infections). The fish data were then

analysed for mean lengths (6 standard deviation) of all, non-

parasitized and parasitized fish, parasite prevalence (proportion of

parasitized fish, %), parasite abundance (number of parasites per

fish, weight of parasites per fish) and condition of individual fish

(K, where K = 1006W/L3, where L was measured in cm). The

somatic weight of parasitized fish was determined as total body

weight minus parasite weight.

Histopathological observations
Histopathology of the intestines was completed to compare the

intestinal structure and morphology between parasitized with non-

parasitized fish. Regions of the intestine were fixed in Bouins

fixative for 24 hours before transferring to 70% Industrial

Methylated Spirit. Tissues were trimmed, dehydrated in alcohol

series, cleared and then embedded in paraffin wax. Sections of 3 to

4 mm were dried at 50uC, stained using Mayer’s haematoxylin and

eosin, and examined microscopically for pathological changes and

described accordingly.

Stable isotope analysis
A sample of dorsal muscle was taken from a random selection of

individuals within the 70 individuals, with samples used from 17

parasitized and 17 non-parasitized fish in stable isotope analysis.

This provided the values of d15N (indicator of trophic level) and

d13C (indicator of energy source) [33] to reveal the extent of the

trophic differences between the parasitized and non-parasitized

fish. These data were complemented by the stable isotope analysis

of the food items removed from the anterior third of their

intestines. Due to their low sample weights, these food samples

were combined within the parasitized and non-parasitized groups

(6 samples per group). The use of food items in this part of the

intestine was to minimise the chance of analysing food items that

had already been heavily digested, although the taxonomic

identification of these items could not be completed due to

damage from the pharyngeal teeth of the fish. All samples were

dried for 24 hours at 60uC before being processed at the Cornell

Isotope Laboratory, Cornell University, New York, USA.

Experimental observations of growth and feeding in live
fish

Of the remaining C. carpio from the original sample captured

from the wild, these were split into two groups, parasitized and

non-parasitized, according to their gross morphology (parasitized

fish tended to be thinner and with some abdominal distension due

to the parasites) and presence of B. acheilognathi eggs in faeces.

Infection was confirmed at the conclusion of all experiments

through euthanasia and dissection of the intestine, with pre-

dissection infection estimates of infection being 100% accurate.

For the experiments, these fish were then transferred to tank

aquaria (45 l tanks, flow through system) where they were used to

determine their growth and feeding rate, and trophic position

under controlled conditions. These trials were done in tandem,

with 30 fish (n = 15 for both groups) being used for each.

To determine their growth and feeding rates, individual carp

were measured and weighed, separated into randomised pairs

(parasitized vs. parasitized (n = 5), parasitized vs. non-parasitized
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(n = 5) and non-parasitized vs. non-parasitized (n = 5)), and held at

a constant 20uC under a light: dark cycle of 14: 10 hours for 60

days. Other than when being used in feeding rate trials, the fish

were fed ad libitum daily using fish-meal based pellets used

frequently in C. carpio aquaculture (2 mm diameter). The feeding

rate trials were completed in a 24 day period within the growth

trial. Feeding rate was measured through introducing the pellets

into clean bottom tanks at densities of 20, 30, 40, 50, 70 and 100

items per tank (equivalent to 148, 222, 296, 370, 519 and 740

items m22 respectively, where the mean dry weight of an

individual of both items was 0.011 g) and filming the fish feeding

response for 5 minutes. The response of all fishes to each food

density was completed twice to provide replication. At the end of

each filming, any uneaten food was removed immediately. In the

video analysis, the data recorded was the time between the fish

taking its first and fifth food item; feeding rate was then

determined as the number of items taken per second. To identify

the influence of infection on the feeding rate, ANCOVAs were

used that enabled the effects of food density, fish starting length

and the pairing of the fish (parasitized6parasitized, parasitized6
non-parasitized, non-parasitized6parasitized) to be controlled in

Table 1. Infection effects of Bothriocephalus acheilognathi on
the weight of Cyprinus carpio captured from the wild.

Effect Weight (g)

Infection F1,65 = 20.36, P,0.01

Fish length F1,65 = 943.7, P,0.01

Difference between groups (mean 6 S.E.)

Non-parasitized Parasitized 0.1060.02 P,0.01

Fish length was the covariate in the ANCOVA model; corresponding differences
between parasitized and non-parasitized fish are indicated by pairwise
comparisons with Bonferroni adjustments for multiple comparisons.
doi:10.1371/journal.pone.0026365.t001

Figure 1. Histopathology of Cyprinus carpio intestines infected with Bothriopcephalus acheilognathi. (a) Young-of-the-year Cyprinus carpio
parasitized with Bothriopcephalus acheilognathi showing enlarged, transparent and occluded intestine (arrow); (b) attachment of B. acheilognathi
involving the two bothria located on each side of the scolex pinching the intestinal folds (arrow). This forced the apex of the scolex (*) firmly against
the gut wall; (c) pressure exerted by the scolex (*) created indentations within the intestine, with loss of mucosa and pronounced thinning of the gut
wall (arrow); (d) marked inflammatory response to B. acheilognathi infection with an increase in lymphocytes throughout the lamina propria (*); (e) B.
acheilognathi proglottids (*) within the anterior intestine of common carp, causing pronounced intestinal distension, compression of intestinal folds
(arrows) and extensive loss of normal gut architecture; and (f) Atrophy of hepatocytes throughout the liver of parasitized common carp, consistent
with reduced nutritional status.
doi:10.1371/journal.pone.0026365.g001

Infection Consequences of an Introduced Parasite
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the models. At the end of the 60 day period, the fish were

removed, re-measured and weighed. The growth rate of fish in the

two groups was then determined though (i) specific growth rate

(SGR; % d21), calculated by [lnWt+12lnWt]/t]6100, where Wt

and Wt+1 were the individual weights at the start and at the end of

the period respectively, and t was the duration of the experimental

period (60 days); and (ii) incremental fork length (IL; mm d21),

calculated by [Lt+12Lt]/t, where Lt and Lt+1 and t were as per

specific growth rate (substituting L for W).

The 30 fish used for analysis of their trophic position were held

under the same husbandry conditions as the fish used for feeding

and growth rate. These fish were however, fed ad libitum daily for

120 days to allow for assimilation and turnover of their new food

sources into their tissues. After the end of the period, the fish were

removed, euthanized, muscle samples taken for stable isotope

analysis, with these complemented by analysis of pellet samples

(n = 6 samples for analysis). These were analysed as per those

already described for stable isotope analysis.

Statistical analyses
Data to determine if differences in the length, weight, condition,

feeding rate and the stable isotope values of d15N and d13C between

parasitized and non-parasitized fish were significant in both wild and

captive conditions were initially tested for normality and log

transformed where necessary. Parametric tests were then used to

test for significant differences in mean values using ANOVA;

ANCOVA was used where covariates had to be controlled in the

analyses, such as the allometric effect of body length. The ANCOVA

models were only considered valid and used subsequently when the

assumptions were met that variances were equal between the groups

(Levene’s test, P.0.05), there was no interaction between the

covariates and the groups (homogeneity of the regression slope;

P.0.05) and where the test results were significant, post-hoc power

analysis indicated statistical power.0.80. Where error is provided

around mean values, they represent 95% confidence limits unless

stated otherwise. All statistical tests were completed in SPSS v. 16.0

and assessed at a= 0.05.

Results

Parasitized vs. non-parasitized fish in the wild
The mean length and weight of the 70 C. carpio analysed initially in

the laboratory was 29.264.3 mm and 0.4960.21 g respectively; of

these, 32 were parasitized with B. acheilognathi (parasite prevalence

45.7%). Parasite abundance ranged between 1 and 7 cestodes in the

intestine (mean 2.061.7 cestodes), with their total weight per fish

(burden) ranging between 0.004 and 0.069 g (mean 0.01560.016 g)

which comprised between 0.56 and 11.95% of fish total body weight

(mean 2.9863.31%). The relationship between cestode burden and

fish length was not significant (R2 = 0.11; F1,30 = 0.93, P.0.05).

There was no significant difference in the mean lengths of parasitized

(29.964.5 mm) and non-parasitized fish (28.764.1 mm) (ANOVA

F1,68 = 0.83, P.0.05). There was, however, a significant difference in

the condition of parasitized (0.01760.0018) fish compared with non-

parasitized fish (0.0196.00019) (ANOVA F1,68 = 21.28, P,0.01).

Comparing the somatic weight of parasitized and non-parasitized

fish whilst controlling for the effect of fish length revealed parasitized

fish weighed significantly less than the non-parasitized fish (Table 1).

All of the parasitized fish revealed evidence of gross pathological

changes in the intestines due to the parasite(s) (Figure 1). The

intestinal tracts of these hosts were enlarged, thin-walled and

occluded (Figure 1a), and in many fish, the intestinal wall was

sufficiently stretched to be transparent, allowing the individual

body segments (proglottids) of B. acheilognathi to be seen within the

gut lumen. The cestodes were attached to the intestine in the

region posterior to the bile duct opening, primarily occupying the

anterior third of the intestine, although proglottids also extended

into the lower half of the tract. Pathological changes to the

intestinal tract could be broadly divided into those caused by

scolex attachment and those associated with the body of the

cestodes. During attachment, the bothria (located on each side of

the scolex) were used to engulf the intestinal folds (Figure 1b). This

provided a firm site of attachment, forcing the apex of the scolex

against the gut wall (Figure 1b). This led to compression and

thinning of the intestine, and formation of localised pits that

extended as far as the muscularis (Figure 1c). Pinching of intestine

between the bothria caused focal haemorrhaging, localised

necrosis of the mucosa and an increase in the number of

lymphocytes within the lamina propria (Figure 1d). This was often

accompanied by the loss and degeneration of epithelium.

Pathological changes were most extensive in regions containing

the largest proportion of mature proglottids (Figure 1e). These

regions were characterised by intestinal occlusion, mechanical

distension and compression of the intestinal folds (Figure 1e), with

congestion, pressure necrosis and atrophy of the mucosa. Heavy

parasite burdens led to a complete loss of normal gut architecture

within affected regions. The severity of these changes was

associated with total cestode mass rather than the number of

individual parasites. Histopathological observations of the liver

revealed atrophy of hepatocytes in a number of the heavily

parasitized fish (Figure 1f).

Stable isotope analysis revealed that the parasitized fish had

mean values of d15N and d13C that were significantly different

from non-parasitized fish (Table 2; Figure 2). This was also

reflected in significant differences in the d15N and d13C of the food

items in the anterior third of their intestines (items in parasitized

vs. non-parasitized fish: mean d15N 12.9860.81, 14.3160.69,

ANOVA F1,4 = 5.11, P,0.05; d13C 231.0760.87, 231.5660.91,

ANOVA F1,4 = 4.11, P,0.05). For parasitized fish, increased

Table 2. Stable isotope analysis of Cyprinus carpio parasitized
by Bothriocephalus acheilognathi.

(a) d15N

Effect Mean d15N

Group (infection/ not parasitized) F1,31 = 2.70, P,0.05

Fish length F1,31 = 18.64, P,0.01

Group 6 fish length F1,31 = 1.59, P.0.05

Difference between treatments (mean 6 S.E.)

Not parasitized Parasitized 0.7960.24%, P,0.05

(b) d13C

Effect Mean d13C

Infection/ not parasitized F1,31 = 4.70, P,0.05

Fish length F1,31 = 21.63, P,0.01

Group 6 fish length F1,31 = 1.59, P.0.05

Difference between treatments (mean 6 S.E.)

Not parasitized Parasitized 20.9160.29%, P,0.05

ANCOVA outputs comparing (a) d15N and (b) d13C for the natural population of
young-of-the-year C. carpio consisting of two groups: (i) fish parasitized with B.
acheilognathi and (ii) not parasitized. Corresponding differences between
groups, indicated by pairwise comparisons with Bonferroni adjustments for
multiple comparisons, are shown.
doi:10.1371/journal.pone.0026365.t002
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parasite burdens were significantly associated with reduced values

of d15N (polynomial regression: R2 = 0.75; F2,13 = 19.90, P,0.01),

but this was not apparent for d13C (linear regression R2 = 0.15;

F1,14 = 2.44, P.0.05) (Figure 3).

Parasitized vs. non-parasitized fish in controlled
conditions

When the 30 parasitized (n = 15) and non-parasitized (n = 15)

fish were held in tanks for 60 days at a constant 20uC and fed ad

libitum with fish-meal pellets, the parasitized C. carpio grew

significantly slower than their non-parasitized conspecifics in both

length and weight (Table 3). Although all fish had equal access to

the food resources, the feeding rate (items s21) of non-parasitized

fish was significantly higher than for parasitized fish, irrespective of

the infection status of their paired conspecific (Table 4). Of the

final 30 C. carpio held for 120 days at a constant 20uC and fed ad

libitum daily with fish-meal pellets, there were no significant

differences in the mean d15N and d13C values for parasitized and

non-parasitized C. carpio at the end of the period (Table 5,

Figure 2).

Discussion

The growth and condition of C. carpio parasitized with B.

acheilognathi was compromised, with wild fish and those subse-

quently held in controlled conditions being of reduced condition

and slower growing when compared with non-parasitized

conspecifics. This was consistent with both the pathological

damage to the intestinal tract of parasitized fish that was likely

to have impaired its normal function and the reduced feeding rate

of hosts that appeared to impede their ability to capture similar

food items as non-parasitized fish in the wild. This was reflected in

their diet that generally comprised items of lower trophic status

Figure 2. Stable isotope biplots of Cyprinus carpio parasitized
(N) and non-parasitized (#) with Bothriocephalus acheilognathi
(means and 95% confidence limits shown). (a) the cohort of
young-of-the-year Cyprinus carpio from the wild and (b) fish from the
same population but held in captivity and fed ad libitum for 120 days.
Values are estimated marginal means from ANCOVA where the effect of
fish length was controlled (c.f. Table 4, 5). Also shown are the mean
values of (a) food items in the stomach contents of parasitized (m) and
non-parasitized fish (n), and (b) the fish meal pellets fed ad libitum to
the captive fish (m). Note the different values between (a) and (b) used
on the x- and y-axes.
doi:10.1371/journal.pone.0026365.g002

Figure 3. Relationship of (a) d15N and (b) d13C and parasite
burden in Cyprinus carpio parasitized with Bothriocephalus
acheilognathi. The solid line represents the significant relationship
between d15N and parasite burden according to polynomial regression
(cf. Results).
doi:10.1371/journal.pone.0026365.g003

Infection Consequences of an Introduced Parasite
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(d15N). Whilst this trophic difference was reversible in controlled

conditions when the fish were fed identical diets, their growth

remained impaired, suggesting a range of infection consequences

for hosts. In addition to these measured effects of parasitism by B.

acheilognathi, it was likely that the infected fish had other

physiological disturbances that could not be measured here. In

entirety, it would be questionable as to whether these compro-

mised hosts could have survived a winter period due to their poor

condition, emphasizing that sub-lethal infection consequences may

eventually lead to lethal ones. These findings were consistent with

the prediction that hosts would be severely compromised by

infection due to their lack of previous experience with the parasite.

The relationship of host growth with infection can be complex

when parasites are trophically transmitted, as individual fish that

initially have high ingestion rates and so faster growing may be

more vulnerable to eating parasitized intermediate hosts, with

infection only then reducing the host growth rate [34]. Here,

however, there was no evidence to suggest faster growing

individuals were those that became parasitized. Given that the

parasitized C. carpio were young-of-the-year and of small body size

(,35 mm at the commencement of the study), then their reduced

growth may be more related to their intolerance of infection rather

than reflecting a change in resource allocation to ensure

reproduction prior to death [10,15]. In some cestode parasites,

increased host growth is observed following infection, such as in

those that castrate their hosts that enable increased energy

allocation to somatic growth [14,35,36]. Whilst this was not

evident here, immature hosts were being studied, with C. carpio

usually maturing at lengths of at least 110 mm and often during

their third year of life [37]. Nevertheless, the findings in this study

were consistent with other studies on impacts of B. acheilognathi on

naı̈ve hosts that suggest detrimental effects including intestinal

abrasion and disintegration, blockage and perforation of the

intestinal tract, emaciation and anemia in chronic infections,

decrease in intestinal, hepatic and pancreatic enzymes, and

decrease in haemoglobin content [26,38–40].

Whilst native parasites are increasingly recognized as important

in controlling host populations and the structure of communities

[41,42], how introduced parasites may control host populations is

unclear. Studies on captive fishes parasitized with introduced

parasites such as B. acheilognathi usually report very high mortality

rates [28]. Although these studies may be of limited utility to wild

populations given that in aquaculture high transmission rates and

virulence may occur through unnaturally high stock densities [43],

wild studies on other naı̈ve host: introduced parasite systems have

suggested similar consequences. For example, the effects of the

introduced parasitic fly Philornis downsi on the ground finch Geospiza

Table 3. Infection effects of Bothriocephalus acheilognathi on
the growth of Cyprinus carpio.

(a)

Effect
Specific growth
rate (% d21)

Infection F1,27 = 4.88, P,0.05

Fish weight F1,27 = 6.01, P,0.02

Pairing of parasitized/ non-parasitized fish F1,27 = 0.98, P.0.05

Difference between groups (mean 6 S.E.)

Non-parasitized Parasitized 0.6460.29, P,0.05

(b)

Effect
Incremental fork
length (mm d21)

Infection F1,27 = 6.43, P,0.02

Fish length F1,27 = 0.18, P.0.05

Pairing of parasitized/ non-parasitized fish F1,27 = 1.06, P.0.05

Difference between groups (mean 6 S.E.)

Non-parasitized Parasitized 0.1160.04, P,0.02

ANCOVA outputs of (a) specific growth rate and (b) incremental fork length of
C. carpio held and fed ad libitum for 60 days at 20uC. Starting fish weight and
length were the respective covariates in the ANCOVA model; corresponding
differences between parasitized and non-parasitized fish are indicated by
pairwise comparisons with Bonferroni adjustments for multiple comparisons.
doi:10.1371/journal.pone.0026365.t003

Table 4. Infection effects of Bothriocephalus acheilognathi on
the feeding rate (items s21) of Cyprinus carpio.

Effect Feeding rate

Infection F1,237 = 7.41, P,0.01

Food density F1,237 = 11.77, P,0.01

Individual fish F1,237 = 2.09, P.0.05

Fish length F1,237 = 0.84, P.0.05

Pairing of parasitized/ non-parasitized fish F1,237 = 0.73, P.0.05

Difference between groups (mean 6 S.E.)

Non-parasitized Parasitized 0.5560.20, P,0.01

Fish length, number of food items released and individual fish were the
covariates in the ANCOVA model; corresponding differences between
parasitized and non-parasitized fish are indicated by pairwise comparisons with
Bonferroni adjustments for multiple comparisons.
doi:10.1371/journal.pone.0026365.t004

Table 5. Stable isotope analysis of Cyprinus carpio infected
with Bothriocephalus acheilognathi and held in controlled
conditions.

(a) d15N

Effect Mean d15N

Group (infection/ not parasitized) F1,27 = 0.05, P.0.05

Fish length F1,27 = 2.01, P.0.05

Group 6 fish length F1,27 = 1.58, P.0.05

Difference between treatments (mean 6 S.E.)

Not parasitized Parasitized 0.0460.18%, , P.0.05

(b) d13C

Effect Mean d13C

Infection/ not parasitized F1,27 = 3.42, P.0.05

Fish length F1,27 = 1.94, P.0.05

Group 6 fish length F1,27 = 1.58, P.0.05

Difference between treatments (mean 6 S.E.)

Not parasitized Parasitized 0.2960.28%, P.0.05

ANCOVA outputs comparing (a) d15N and (b) d13C for young-of-the year
Cyprinus carpio held in captivity for 120 days and fed ad libitum on fish-meal
pellets, where the fish consisted of two groups: fish parasitized with
Bothriocephalus acheilognathi and not parasitized. Corresponding differences
between groups, indicated by pairwise comparisons with Bonferroni
adjustments for multiple comparisons, are shown. NS = not significant; *P,0.05,
**P,0.01.
doi:10.1371/journal.pone.0026365.t005
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fortis in the Galápagos Islands was to significantly increase morality

rates [44,45]. Across Europe, dramatic population declines have

occurred in natural populations of native crayfish (e.g. Astacus

astacus), oysters (Ostrea edulis) and eels that can all be attributed, in

varying degrees, to introduced pathogens and the lack of immunity

in the naı̈ve hosts through the lack of co-evolution [2]. This co-

evolution between host and parasite is thus important in building

resistance and tolerance of the host to infection, especially as this

has a strong genetic component, particularly through genes in the

MHC (major histocompatibility) complex [46]. Moreover, mod-

erately heterozygous fish have been shown to be less resistant and

tolerant to infection by an ectoparasite than those that were highly

heterozygous or homozygous [47], with rapid evolution in

response to parasitism demonstrated in a range of freshwater host

species, including some fishes, that appears to have protected some

populations from the virulent effects [16].

In summary, in this host-parasite system lacking co-evolutionary

processes, pathological impacts on parasitized hosts were marked,

with additional trophic consequences that resulted in reduced

growth and condition of individuals even in a controlled

environment and ad libitum feeding. This is consistent with findings

in other host: parasite relationships where there has been no co-

evolution that suggest catastrophic impacts can occur in the host

population [16]. In the case of C. carpio, their global importance to

aquaculture [29] and recreational fisheries [30] suggest that in

addition to the infection consequences outlined here, then there

may also be important socio-economic impacts to consider.
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