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Abstract

Functional magnetic resonance imaging (fMRI) can be combined with genotype assessment to identify brain systems that
mediate genetic vulnerability to mental disorders (‘‘imaging genetics’’). A data analysis approach that is widely applied is
‘‘functional connectivity’’. In this approach, the temporal correlation between the fMRI signal from a pre-defined brain
region (the so-called ‘‘seed point’’) and other brain voxels is determined. In this technical note, we show how the choice of
freely selectable data analysis parameters strongly influences the assessment of the genetic modulation of connectivity
features. In our data analysis we exemplarily focus on three methodological parameters: (i) seed voxel selection, (ii) noise
reduction algorithms, and (iii) use of additional second level covariates. Our results show that even small variations in the
implementation of a functional connectivity analysis can have an impact on the connectivity pattern that is as strong as the
potential modulation by genetic allele variants. Some effects of genetic variation can only be found for one specific
implementation of the connectivity analysis. A reoccurring difficulty in the field of psychiatric genetics is the non-replication
of initially promising findings, partly caused by the small effects of single genes. The replication of imaging genetic results is
therefore crucial for the long-term assessment of genetic effects on neural connectivity parameters. For a meaningful
comparison of imaging genetics studies however, it is therefore necessary to provide more details on specific
methodological parameters (e.g., seed voxel distribution) and to give information how robust effects are across the choice
of methodological parameters.
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Introduction

Imaging genetics combines genotype assessment with neuroim-

aging to identify structural or functional brain systems that

mediate genetic vulnerability or liability to mental disorders [1].

Due to the proximity to the genetic level, in this intermediate

phenotype approach the penetrance of genetic variation is

regarded to be higher on the neural systems level than on the

level of emergent mental or behavioral phenomena [2,3].

Technically, imaging genetics combines neuroimaging data and

genetic risk variants using random-effects analyses. For functional

imaging data, it has been proposed that in particular the

connectivity features of neural systems are associated to genetic

risk to a higher degree than regional activation data [4].

Using functional magnetic resonance imaging (fMRI), connec-

tivity aspects of brain systems can be described in several ways.

One approach that is frequently applied in imaging genetics

studies is functional connectivity, defined as the ‘‘temporal

correlations between spatially remote neurophysiological events’’

[5]. Currently, two analysis approaches are predominantly used to

examine functional connectivity with fMRI data: seed voxel

correlation analysis and independent component analysis (for an

overview see [6,7,8]). Studies in imaging genetics predominantly

used a seed voxel approach (e.g. [4,9,10,11]). Thereby, the fMRI

signal time course is extracted from a region-of-interest, the so-

called ‘‘seed region’’. Then, the temporal correlation between the

extracted signal and the signals from all other voxels in the brain

volume is determined. This procedure can be both applied to data

acquired during rest and data acquired under controlled

experimental conditions. In the latter, task effects are typically

removed through an appropriate statistical model, that is, regional

activation related to the task is subtracted from the data. Most

studies in imaging genetics so far used data acquired during

experimental conditions (e.g. [12,13,14]).

FMRI data is contaminated by various fluctuations unrelated to

neural activity, for instance residual subject motion, physiological

artifacts, hardware instabilities and magnetic field drifts [6,8,15].

These non-neural signal fluctuations may introduce temporal

coherences that cause an overestimation of functional connectivity

between remote brain regions. Thus, confounding effects have to

be removed before connectivity assessment and comparison

between groups to maximize the variance components of genetic
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risk associated neural systems phenotypes in the total variance

observed between subjects. Several studies, however, showed that

the ‘‘preprocessing’’ of fMRI data has a substantial impact on the

resulting connectivity pattern. The results of seed voxel connec-

tivity analyses are sensitive, for instance, to seed selection [16,17]

and noise reduction algorithms [15,18].

The application of functional connectivity methods to imaging

genetics provided evidence for genetic control over connectivity

features of neural systems. Many of the obtained results though

still have to be replicated in independent samples. Reliability of

fMRI data, however, is influenced by many factors, among others

by the specific implementation of data analysis procedures [19]

thus rendering the replication of promising findings a non trivial

endeavor. Using the examples of seed voxel selection, noise

correction algorithms, and inclusion of seed voxel localization as

covariates on the group level, we demonstrate in the present report

that the choices of freely selectable parameters during data

analyses strongly influence the assessment of the genetic

modulation of functional connectivity features. Rather than

presenting new evidence for intermediate phenotypes of a specific

genetic risk variant, with this proof-of-principle study we show that

for meaningful comparisons of studies in imaging genetics

comprehensive information about the analysis process should be

presented and the impact of arbitrary decisions during the data

analysis on the result and their interpretation should be

considered.

Methods

Ethics Statement
We confirm that the research has been conducted in compliance

with the appropriate ethical guidelines of the declaration of

Helsinki. The study was approved by the local ethics committee at

the faculty of medicine, University of Aachen. All subjects were

written informed about the background of the study and

anonymity of data collection. We confirm that we obtained

informed written consent from all participants involved in the

study.

Subjects
As part of a study on the genetic basis of schizophrenia and

bipolar disorder, 94 healthy subjects were included in the present

analysis. Inclusion criteria were age (18–55 years), right-handed-

ness (as assessed by the Edinburgh Inventory, [20]), no psychiatric

disorders according to ICD-10, no family history of schizophrenia

or bipolar disorder, and Western- or Middle European descent. In

the present study, we exemplarily focus on the modulatory effects

of the single nucleotide polymorphism (SNP) rs1006737 of the

CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium

channel) gene, a susceptibility locus for both bipolar disorder and

schizophrenia [21], on the neural correlates of working memory.

Subjects were divided into three groups according to their

rs1006737 genotype (Table 1). A description of the genetic

analysis can be found elsewhere [22].

FMRI paradigm
Working memory was assessed by a letter variant of the n-back

task. A detailed description of the paradigm can be found

elsewhere [23]. In short, the paradigm consisted of three

conditions: letter fixation as a high-level baseline, 0-back, and 2-

back. In each condition sequences of Latin letters were presented.

During 0-back, responses were required for the target letter ‘‘X’’

and in the 2-back condition, target letters were defined as all letters

which were identical to the one presented two steps before. Four 0-

back blocks (selective attention) were alternated with four 2-back

blocks (working memory) and with eight baseline blocks (letter

fixation) in between conditions. Each condition was preceded by

instructions explaining the respective task.

MRI data acquisition
Data was acquired on a 3 Tesla TIM-Trio MR scanner

(Siemens Medical Systems) at the Forschungszentrum Jülich.

Functional images were collected with a T2*-weighted echo planar

imaging (EPI) sequence sensitive to BOLD contrast (64x64 matrix,

FOV 200 mm, in plane resolution 3.13 mm, 36 slices, slice

thickness 3 mm, TR = 2.25 s, TE = 30 ms, flip angle 90u). Slices

covered the whole brain and were positioned transaxially parallel

to the anterior-posterior commissural line. Two hundred and

seventeen functional images were collected, and the initial three

images were excluded from further analysis to remove the

influence of T1 saturation effects.

FMRI data analyses
SPM5 (www.fil.ion.ucl.ac.uk/spm) standard routines and tem-

plates were used for the analysis of the fMRI data. After slice-

timing, functional images were realigned, normalized (resulting

voxel size 2x2x2 mm3), smoothed (8 mm isotropic Gaussian filter)

and high-pass filtered (cut off period 128 s). After preprocessing, a

quality control of each subjects’ images was implemented to assure

that results of the following functional connectivity analyses are not

atypically influenced by head motion. Movement parameters of all

subjects were in an acceptable range not exceeding 3 mm for each

single subject. Maximum translations and rotations as well as the

averages and standard deviations of the subjects’ movement

parameters within a session did not vary with rs1006737 genotype

in an ANOVA, F,1.45, ps,.240. To determine brain activity,

statistical analysis was performed in a two-level, mixed-effects

procedure. At the individual subject level, a fixed-effects general

linear model (GLM) included three epoch regressors, modelling

the 2-back condition, the 0-back condition, and the instructions, as

well as six regressors modelling head movement parameters.

Parameter estimate (ß-) and t-statistic images were calculated for

each subject. At the group level, weighted ß-maps of each subject

describing activation differences between the 2-back and the 0-

back condition were entered into a random-effects GLM with

rs1006737 genotype (G/G, G/A, A/A) as between subject factor.

Since sex was unequally represented in each group we included

sex as covariate of no interest.

The aim of the present work was to describe the impact of

different implementations of seed region functional connectivity

analyses on the association of genetic variation with brain

connectivity patterns. In the following, we will first describe one

way how to implement a functional connectivity analysis

Table 1. Sample characteristics: sex, age and education.
According to their rs1006737 genotype subjects were divided
into three groups (G/G, G/A, and A/A). G = Guanine,
A = Adenine (risk allele).

rs1006737 genotype G/G G/A A/A

number of subjects 44 38 12

Sex ratio (men/women) 36/8 24/14 6/6

Age (years) 23.563.3 23.162.8 23.061.0

Education (years) 15.962.8 15.462.5 15.861.6

doi:10.1371/journal.pone.0026354.t001
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(‘‘standard implementation’’). Then, we describe three variations

of the analysis procedure with regard to (i) seed voxel selection, (ii)

implementation of noise regressors, and (iii) the use of individual

seed voxel coordinates as additional covariates. We will show how

these variations influence the effects of genetic risk factors on the

functional connectivity pattern.

Analysis of functional connectivity (‘‘standard

implementation’’). As seed region we chose the right

dorsolateral prefrontal cortex (DLPFC). For each subject, we

selected individual seed voxels within the DLPFC to account for

interindividual differences in functional activation patterns.

Starting at the DLPFC peak activation on the group level at (52,

30, 30), we identified the next local maximum within each subject

for the 2-back vs 0-back contrast at p,.01 uncorrected. To ensure

that the extracted time series were located within the right DLPFC

we applied a DLPFC mask defined by Brodmann area (BA) 9 and

the lateral sections of BA 46 (Wake Forest University, WFU,

PickAtlas software, www.fmri.wfubmc.edu). Additionally, we

limited the next local maximum procedure to clusters extending

20 voxels. Seed time series were extracted as the first eigenvariate

in a sphere of 6 mm radius as implemented in SPM5. Task related

variance was removed by applying an effects-of-interest correction

with the F-contrast set on the six movement parameters. Statistical

analysis was performed in a two-level, mixed-effects procedure. At

the individual subject level, the fixed-effects GLM included the

extracted seed time series from the right DLPFC, two regressors

for the 2-back and 0-back conditions, one regressor modelling the

instruction period and six regressors modelling head movement

parameters. To account for noise, two additional noise regressors

were created by extracting time series for each subject from the

first eigenvariates of masks covering medial cerebrospinal fluid

regions (CSF) or white matter (WM). For extraction of the noise

time series results were not thresholded (p,.99). Parameters of the

GLM were calculated for each subject and ß-maps of the seed time

series (connectivity maps) were analysed on the second level. On the

second level, we conducted region-of-interest (ROI) analyses for

the bilateral DLPFC and the bilateral hippocampal formation

(HF). All statistical maps were thresholded at p = 0.05, corrected

for multiple comparisons applying the family-wise error (FWE)

correction implemented in SPM5.

Analysis 1: Influence of seed voxel selection. There are

several possibilities to select seed voxels in the right DLPFC. In the

‘‘standard implementation’’, we started at the group activation

maximum in the right DLPFC and identified for each subject in

the first level activation maps the next local maximum. Another

algorithm to select individual seed voxels is searching in every

subject’s first level activation map (2-back.0-back) for the global

maximum within the DLPFC mask at p = 0.01, uncorrected (e.g.

[9]). We compared the effect of different implementations of seed

voxel selection on the results of genetic analyses using a second

level 2x3 ANOVA model with the factors method (next local

maximum vs. global maximum) and rs1006737 genotype (G/G,

G/A, A/A). Sex was included as covariate of no interest. We

analysed the interaction between method and rs1006737 genotype

to assess regions in which a possible effect of genotype is indicated

differently by both methods.

Analysis 2: Influence of the implementation of different

noise regressors. Since signal fluctuations from non-neural

processes can cause an overestimation of functional connectivity, it

is important to remove confounding effects prior to connectivity

assessment. In the ‘‘standard implementation’’ of the connectivity

analysis, we included noise regressors derived from time courses in

WM and CSF. In this analysis, we assessed which effect the

additional implementation of a global normalization procedure

has on the results of genetic modulation. Global normalization, as

implemented in SPM5, was performed by image-wise

multiplicative intensity normalization. In every image, each

voxel was divided by the mean intensity over all voxels and

multiplied by the mean intensity of the first image. We compared

the effect of different implementations of noise regressors on the

results of genetic analyses using a second level 2x3 ANOVA model

with the factors method (without global normalization vs with

global normalization) and rs1006737 genotype (G/G, G/A, A/A).

Sex was included as covariate of no interest. We analysed the

interaction between method and rs1006737 genotype to assess

regions in which a possible effect of genotype is indicated

differently between both methods.

Analysis 3: Influence of seed voxel coordinates as

covariates on the group level. Both on the first and the

second level, there are various possibilities to include additional

covariates that account for confounding effects, for instance to

correct for non-neural effects (e.g. scanner instabilities) or for

interindividual differences between subjects (e.g. volume of specific

brain regions). In this analysis, we assessed the effect of the

additional inclusion of individual seed voxel coordinates as

covariates of no interest in a second level linear regression

model coding an additive gene-dosage effect of rs1006737

genotype (G/G,G/A,A/A). Sex was also included as

covariate of no interest in both models.

Results and Discussion

In the following we first present the results of the three analyses

in which we exemplarily demonstrate the influence of different

implementations of functional connectivity analyses on the

assessment of genetic effects. Then, we discuss the implications

of this methodological variability on imaging genetics studies. We

will argue that researchers have to make explicitly clear why they

make specific choices in the analysis process and which impact

these choices have on the assessment of genotype effects.

Analysis 1: Influence of seed voxel selection
The spatial distribution of the DLPFC seed regions is depicted

in Fig. 1. The seed points from the global maximum

implementation varied largely in their location along the y- and

z-axes. A k-means cluster analysis with the x, y, and z MNI

coordinates as spatial input variables showed that the seed points

were clustered around two centroids located in the posterior

(MNI coordinates 48, 29, 31) and anterior DLPFC (MNI

coordinates 35, 56, 7), with a total Euclidian distance of 3.8 cm

between both clusters. While the posterior cluster was located at

the strongest DLPFC group activation maximum, the anterior

cluster corresponded to another local activation maximum within

the right DLPFC (at MNI coordinates 34, 58, 10). In contrast, the

seed points identified with the next local maximum approach in

the ‘‘standard implementation’’ were more homogeneous. In

particular, the seed points did not originate from different local

activation maxima.

We found a significant interaction of method and rs1006737

genotype in the left anterior HF (MNI coordinates 236, 210,

220; Z = 4.41; pcor = 0.002) (Fig. 2). The analysis of the parameter

estimates of rs1006737 genotype groups for each method showed

that the interaction occurred because one method (the next local

maximum approach in the ‘‘standard implementation’’) showed a

linear gene-dosage effect, supporting the fronto-hippocampal

dysconnectivity hypothesis of schizophrenia [24], while the other

method (the global maximum approach) did not. (Of note, the

term ‘‘dysconnectivity’’ also encompasses increased functional

Connectivity Analyses in Imaging Genetics
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coupling between brain regions, in contrast to the term

‘‘disconnectivity’’ which only implies decreased coupling). These

results demonstrate that different procedures to select seed voxels

do not only effect the seed voxel distributions but significantly

influence the subsequent analyses on the group level.

The seed points identified with the global maximum approach

belonged to two different activation maxima within the right

DLPFC possibly representing different functions. For our data the

next local maximum method is therefore the more appropriate

implementation of a seed-based connectivity analysis. However,

for other data sets the global maximum approach yielded similar

seed distributions that we obtained with the next local maximum

method [23]. It is thus not possible to give a general advice which

method of seed voxel selection is most appropriate under any

condition. However, since the seed voxel selection has an impact

on the results of subsequent group comparisons, imaging studies

should present, at least as supplementary information, the spatial

distribution of their seed voxels. This allows for a better

comparison between studies and helps to understand whether

conflicting findings result from methodological differences in the

Figure 1. Seed Voxel Localization. Top: Frequencies of MNI-coordinates in the X, Y, and Z dimension for right DLPFC seed regions identified with
the global maximum and the next local maximum starting at 52, 30, 30. Bottom: Individual seed-region localization in the right DLPFC for the
functional connectivity analyses based on the global maximum (left) and the next local maximum approach (right).
doi:10.1371/journal.pone.0026354.g001

Connectivity Analyses in Imaging Genetics
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implementation of the connectivity analysis or are attributed to

variability of genetic effects or sampling error.

Analysis 2: Implementation of noise regressors
The average functional connectivity patterns of the two

preprocessing approaches, the ‘‘standard implementation’’ without

global normalization and the one with additional global

normalization are shown in Fig. 3. Both correlation profiles

illustrate the functional integration of the network activated during

the working memory task even after removal of task related

variance. Strongest association with the seed time series emerged

in the bilateral DLPFC, superior medial frontal cortex, the inferior

parietal lobule, basal ganglia, and the cerebellar hemispheres.

Without global normalization most time-series in cortical as well as

subcortical brain regions were positively correlated with the right

DLPFC, indicating common noise of seed and target time series

still present after inclusion of WM and CSF regressors to control

for noise. The global normalization reduced common noise and

increased the specificity of the functional connectivity pattern.

Accordingly, brain regions deactivated during 2-back, the

ventromedial prefrontal cortex and middle temporal areas, while

still positively associated with the DLPFC in the ‘‘standard

implementation’’, showed negative correlations only after global

normalization on the first level.

Even though we did not find a significant interaction of

preprocessing method and rs1006737 genotype, the different noise

regressors influence the statistics of the subsequent group

comparison insofar as results become significant using one

procedure but not the other (Fig. 4). Even more important, the

interpretation of the results obtained in the random-effects

analyses changes according to the underlying correlation profile.

For example, in both analyses we found a linear increase of

connectivity with increasing genetic risk. However, while in the

‘‘standard implementation’’ one would argue that the medial

temporal area is decoupled in GG carriers and that coupling

increases with genetic risk (GG,GA,AA), after global normal-

ization the results suggest a different interpretation. Medial

temporal areas are anticorrelated with the DLPFC and at

increasing genetic risk this negative coupling is downregulated to

zero. Both interpretations might be valid, however, one should

consider the impact of different noise reduction algorithms on the

obtained results. While the ‘‘standard implementation’’ procedure

results in artificial increased connectivity due to the influence of

uncontrolled common noise, global normalization introduces

artificial anti-correlations in the data (see also [18]).

Analysis 3: Influence of seed voxel coordinates as
covariates on the group level

Coding an additive gene-dosage effect of rs1006737 genotype in

a linear regression model, we found a significant linear decrease in

regional brain activation in the right posterior DLPFC with increasing

number of risk alleles (MNI coordinates 54, 10, 38; Z = 4.02;

pcor = 0.019, see Fig. 5). In the ‘‘standard implementation’’ of the

functional connectivity analysis we found, at the same location, a

significant decrease in functional coupling with the DLPFC seed

region in rs1006737 risk-allele carriers (MNI coordinate 54, 8, 38;

Z = 3.89; pcor = 0.035). The most obvious interpretation might be

that hypoactivity in the posterior DLPFC is caused by hypocon-

nectivity to core regions of the working memory network, that is,

to the strongest activation cluster in the DLPFC. Both analyses,

the analysis of regional activation and functional connectivity,

seem to give complementary results, relating hypoactivity to

dysconnectivity within the right DLPFC.

Although the seed voxel selection method based on the next

local maximum approach yielded a relatively homogeneous

distribution, a post-hoc analysis of the spatial distribution of the

seed voxels in the three rs1006737 genotype groups showed a

trend for differences in seed region localizations along the y-

dimension at different rs1006737 genotype (ANOVA, F(2,

90) = 2.96, p = .057), which was significant if tested for a linear

association with rs1006737 genotype (GG,GA,AA, r = .24,

p = .023). After we additionally included the MNI-coordinates of

the individual seed voxels in the x-, y-, and z-dimensions as

covariate of no interest in the linear regression model we did not

find a significant association of rs1006737 genotype with the

functional connectivity in the DLPFC (maximum MNI coordi-

nates in right DLPFC 52, 6, 38; Z = 3.01; pcor = 0.380). What was

initially interpreted as a reasonable association of genetic risk with

interindividual variability in the time-domain – the functional

connectivity parameter – is rather a statistical artefact resulting

Figure 2. Influence of Seed Voxel Localization on the Comparisons of Genetic Groups. Left: Interaction between the factors method (next
local maximum vs. global maximum) and rs1006737 genotype (G/G, G/A, A/A) in the left anterior HF. Right: A post-hoc analysis of the parameter
estimates of each risk group separately for both methods. A significant linear gene-dosage effect is found only with one method of seed region
selection, the next local maximum approach.
doi:10.1371/journal.pone.0026354.g002
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from interindividual and between group variability in the spatial

domain – the localization of seed voxels. Due to the ‘‘autocorre-

lation’’ component present in the current seed region connectivity

analyses, each connectivity map obtained on the individual subject

level contains strongest signals in voxels close to the seed, even at

homologous voxels in the contralateral hemisphere. Thus, if there

is between subject variance in seed region localization, this

variance will contaminate the results of the random-effects analysis

of functional connectivity, e.g. the comparison of subjects at

different rs1006737 genotype. We therefore strongly recommend

controlling for between subject variance of seed voxel localization

by including e.g. MNI coordinates in the random-effects analyses.

Further, including seed voxel coordinates in the random-effects

analysis should by no means depend on statistical significant

differences of seed localizations between groups. The magnitude

and spatial extent of the ‘‘autocorrelation’’ effect is unclear, and

may substantially vary between subjects, experimental paradigm,

brain region, and the technical implementation of the functional

connectivity analysis. For example, small average differences in the

space of the seed voxels might translate into large effects with

regards to the functional connectivity parameter in a specific voxel

if the ‘‘autocorrelation’’ effect is peaked and regional specific.

Loosing three degrees of freedom should be acceptable in order to

obtain more valid interpretations of the functional connectivity

results especially with the larger samples of subjects typically

examined in imaging genetic studies.

General Discussion
The results of functional connectivity analyses depend on a

number of freely selectable technical parameters [6,8]. Using the

Figure 3. Influence of Noise Regression Methods on Connectivity Patterns. Functional connectivity group results (using one sample t-tests)
with respect to the right DLPFC for the ‘‘standard implementation’’ of the connectivity analysis (top) and the additional global signal correction by
application of the global normalization procedure (bottom). Yellow-red: positive correlations with seed voxel, green-blue: negative correlations with
seed voxel.
doi:10.1371/journal.pone.0026354.g003

Figure 4. Influence of Noise Regression Methods on the Comparisons of Genetic Groups. A linear increase with with rs1006737 genotype
in functional coupling between the right DLPFC (seed voxel) and the right hippocampus is detected for both noise reduction algorithms. However,
the interpretation of the changes depending on the underlying correlation profile. While in the ‘‘standard implementation’’ one would argue that the
hippocampus is decoupled in GG carriers and that coupling increases with genetic risk (GG,GA,AA), after global normalization the results suggest
that medial temporal areas are anticorrelated with the DLPFC and at increasing genetic risk this negative coupling is downregulated.
doi:10.1371/journal.pone.0026354.g004

Connectivity Analyses in Imaging Genetics
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examples of seed voxel selection, noise regression and seed voxel

localization as covariate on the second level, in the present report

we demonstrated that the choice of these parameters strongly

influences the interpretation of genetic effects on the neural

systems’ functional integration. Based on the present results, we

can give three recommendations which should be considered in

future connectivity analyses in this field: (i) provide detailed

information about the extraction and spatial distribution of the

seed voxels, (ii) if there is variability in seed voxel localization

always, even without statistically significant differences between

groups, introduce seed voxel coordinates as covariates on the

second level, (iii) carefully interpret the direction and strength of

obtained connectivity parameters.

With the present work, we did not intend to present a general

and comprehensive overview of pitfalls in functional connectiv-

ity analyses. We rather wanted to show, as a proof-of-principle,

how strong the assessment of genetic control over the neural

systems’ connectivity features depends on the technical imple-

mentation of the data analysis. For other genetic risk variants

and for other tasks the effects of the described analysis

parameters very likely are qualitatively and quantitatively

different. However, for the purpose of the present analysis, we

believe that it is not important which risk variant or which task

is chosen, but to show that variability caused by different

implementations of the functional connectivity analyses per se

has considerable influence on the significance and the nature of

described effects. While there is clear support for the choice of

some parameters (e.g. the selection of seed voxels using a next

local maximum approach or the correction for variability of

seed voxel coordinates in a second level model), for other

parameters (e.g. noise correction) an unambiguous choice is

most of the time not possible. It should be noted, that fMRI data

is usually analyzed for a broad range of parameters but usually

only few results make it into publication. However, more

information should be presented on the stability of effects with

variation of technical parameters. A systematic assessment of the

impact of different implementations of functional connectivity

analyses, however, is practically only possible on an automated

level. We therefore developed a prototype of an easy to use

toolbox based on the SPM software package that allows for

systematic assessment of the different above suggested imple-

mentations of seed voxel connectivity analyses. This toolbox is

freely available on request.

The impact of arbitrary selectable technical parameters during

the data analysis of associations of genetic variability with

variability in the neural systems’ functional integration is especially

important in the context of replication studies. Although the

application of functional connectivity methods without doubt

yielded promising insights on the neural mechanisms linked to

genetic variation, many of the results still have to be replicated in

independent samples. High fidelity replication, however, requires

precise knowledge on how the imaging data was processed and

how stable the obtained results were with regard to technical

variations during the data analysis. In the long run, meta-analyses

can offer the appropriate tools to combine effects of risk-genes on

brain connectivity across different studies and independent

samples and to identify those results that are concordant or

discordant with others [19]. Pooling statistical results from

different studies, however, again requires detailed information

about how the data was processed. It is crucial to combine imaging

results that were analyzed in a similar way, not to combine

statistical significant results obtained by different preprocessing

strategies. In conclusion, seed-voxel functional connectivity

analyses are powerful tools to assess the impact of genetic variation

on the neural connectivity of brain function. For a lasting impact

on the field it is important to prove the stability of their results over

a range of methodological parameters.
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Figure 5. Influence of Seed Voxel Coordinates as Covariates on the Group Level. Reduction of genotype effects after entering seed-voxel
localization as covariate on the second level. Left: A linear decrease in regional activation is found with number rs1006737 risk alleles in the right
DLPFC (blue). A similar gene-dosage dependent effect in functional connectivity was found at the same location (red). After controlling for differences
in the spatial distribution of seed-voxel localization with introduction of the MNI coordinates in the x-, y-, and z-dimension as covariate on the second
level the associations of genotype with DLPFC connectivity was reduced and non-significant at p..05 corrected.
doi:10.1371/journal.pone.0026354.g005
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