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Abstract

Background: There has been much interest in differentiating diseased and normal samples using biomarkers derived from
mass spectrometry (MS) studies. However, biomarker identification for specific diseases has been hindered by
irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-
processing algorithm. Until now, no widely accepted agreement has been reached.

Results: In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE) peaks
from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-
TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE
peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not
detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak
profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we
demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate
(FDR) control approach and that the reproducibility of DE peak detection could thereby be increased.

Conclusions: Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship
among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak
profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable
pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.
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Introduction

Proteomic technologies based on mass spectrometry (MS) [1]

have increasingly become the method of choice for the

identification of biomarkers that are useful for differentiating

diseased and normal samples [2,3,4]. However, similar to

microarray studies [5,6], the use of MS techniques to identify

disease biomarkers has been hindered by irreproducibility [7,8].

For example, the biomarkers identified in four prostate cancer

studies are very different [8]. Recently, Callesen et al. [7] showed

that only 10 of 207 biomarkers reported in 15 MS-based breast

cancer studies were detected in more than 2 studies. This

irreproducibility raises questions about the biological significance

and clinical implications of the detected biomarkers.

Many factors, such as sample processing and operating

procedures for the experiments, can affect the reproducibility of

disease biomarkers [9,10,11,12,13,14,15]. Importantly, the data

pre-processing algorithm chosen to produce peak profiles may

greatly affect biomarker identification [16]. Some studies have

attempted to find the optimum pre-processing algorithm for

detecting peaks [17,18,19]. However, until now, no widely

accepted agreement has been reached. For example, based on

simulated data with predefined true peaks, Cruz-Marcelo et al.

[17] and Emanuele et al. [18] evaluated several algorithms in terms

of both sensitivity (defined as the proportion of true peaks that

were correctly identified) and specificity (defined as the false

discovery rate (FDR)). These two studies reached different

conclusions on the three algorithms that they both evaluated,

which were MassSpecWavelet [20], Cromwell [21] and commer-

cial software produced by Ciphergen Biosystems. Cruz-Marcelo

et al. [17] reported that these algorithms offered high sensitivity

with a low FDR, whereas Emanuele et al. [18] showed that they

had low sensitivity and a low FDR. This conflict could have been

introduced by differences in their simulation data, which in

general tend to be biased to specific scenarios. A solution for

avoiding bias is to adopt real data instead of simulated data.

Unfortunately, with real data, the sensitivity and FDR of an

algorithm cannot be evaluated because the true peaks are

unknown. However, pre-processing algorithms can be compared

in terms of peak detection reproducibility by assessing peak
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overlap. Notably, reproducibility is a critical measure for

validating biological discoveries that is distinct from sensitivity

and specificity [6,22,23,24].

In this study, using real prostate and breast cancer data, we first

evaluated the reproducibility of peak detection among three widely

used pre-processing algorithms that detect peaks dependent on the

average spectrum of all of the spectra (see Methods), including

SpecAlign [25], MassSpecWavelet [20] and Cromwell [21]. More

importantly, we further evaluated the reproducibility of detection

of differentially expressed (DE) peaks (often defined as biomarkers),

which has been a focus of the biological community but have not

been fully evaluated with either simulated or real data. Our results

indicate that the number of peaks detected for a dataset varies

dramatically depending on the pre-processing algorithm. Our

results also revealed two important factors affecting the consistency

of DE peak identification using different pre-processing algo-

rithms. The first factor is that a peak profile may lack DE peaks

found in another profile, which can affect reproducibility before

the selection of DE peaks. The second factor is that a large peak

profile with many peaks may suffer from low statistical power for

identifying DE peaks because of the large scale of the test together

with small sample number [26,27,28,29]. Fortunately, our results

indicate that the power of large peak profiles can be increased by

the stratified FDR control approach [30]. Consequently, DE peaks

selected from small peak profiles tend to be reproducibly detected

in large peak profiles. Based on the analysis of this study, we

suggest that a suitable pre-processing algorithm should be able to

produce peaks sufficient for the identification of useful and

reproducible biomarkers.

Materials and Methods

Cancer datasets
The prostate cancer data, which was downloaded from http://

www.evms.edu/vpc/seldi/, consisted of duplicate spectra for 168

cancer and 81 normal serum samples measured by SELDI-TOF

MS (IMAC-3 chips), with the mass-to-charge (m/z) ratio ranging

from 0 to 200 kDa [31]. The blood samples of diagnosed stage I-

IV patients were procured from the Department of Urology,

Eastern Virginia Medical School and the samples of healthy men

were obtained from free screening clinics open to the general

public (see details in [31]). The serum samples were obtained from

the Virginia Prostate Center Tissue and Body Fluid Bank. The

breast cancer data, which was downloaded from http://bioinfor-

matics.mdanderson.org/pubdata.html, consisted of duplicate spec-

tra for 26 cancer and 14 normal plasma samples measured by

SELDI-TOF MS (IMAC-Cu chip), with the m/z ratio ranging

from 10 to 100 kDa [32]. The blood samples were obtained from

diagnosed stage I-III breast carcinoma patients and healthy

volunteers (see details in [32]). The plasma samples were

conducted at the Nellie B. Connally Breast Center at the

University of Texas M. D. Anderson Cancer Center.

For each pair of duplicate spectra, the two spectra were pre-

processed separately and then averaged to produce a consensus

profile. Considering measurement noise and detection limitations,

we only used those peaks in the m/z range of 1–10 kDa for breast

cancer and 2–40 kDa for prostate cancer in our analyses as in the

original papers [31,32].

Data pre-processing algorithms
As illustrated in Figure 1, SELDI-TOF-MS data are usually

pre-processed by multiple steps including denoising (smoothing),

baseline subtraction, normalisation, peak detection, clustering of

peaks and peak quantification [17]. The three algorithms analysed

in this study detect peaks according to the average spectrum of all

the spectra, and the pre-processing procedures are described

below. The specific parameter settings used for each algorithm can

be found in Text S1.

(1). SpecAlign [25] pre-processes data as follows: a) spectrum

smoothing using the Savitzky-Golay filter; b) subtracting the

baseline estimated by a restrained moving average; c) rescaling

intensities to positive values by making the minimum value 0; d)

normalising intensities to let all spectra have the same total ion

current; e) generating an average spectrum; f) using the fast

Fourier transform (FFT)/peak matching combined method to

align the detected peaks of individual spectra to those identified in

the average spectrum; and g) picking peaks. The default height

ratio that served as the signal-to-noise ratio (SNR) was 1.5.

(2). The MassSpecWavelet package for peak detection [20]

combined with the PROcess package for peak quantification [33]

(denoted MSW/PRO). MassSpecWavelet has been reported to

have high sensitivity with a low FDR for peak detection [17].

However, it does not quantify the detected peaks. Thus, based on

work by Cruz-Marcelo et al. [17], we used PROcess to quantify

peaks detected by MassSpecWavelet. MassSpecWavelet detects

peaks using the continuous wavelet transformation on the average

spectrum of all of the spectra. For each spectrum, PROcess

subtracts the baseline, which is estimated by linear interpolation,

then normalises the intensities using the median area under the

curves of all of the spectra, and finally quantifies the detected peaks

of individual spectra by the local maximum within the predefined

interval. The default SNR for peak detection was 3.

(3). Cromwell [21] pre-processes data by a) computing an

average spectrum; b) denoising the average spectrum by the

undecimated discrete wavelet transform; c) correcting intensities

for the average spectrum by subtracting the baseline, which is

estimated by a monotone minimum curve; d) finding peaks with

local maximal intensities for the average spectrum; e) repeating b)

and c) for each spectrum, normalising intensities with average total

ion current, and quantifying peak intensities using the maximum

within the intervals defining peaks on the average spectrum; and f)

extracting peaks with a user-defined SNR. The default SNR was

set at 5, according to the recommendation of the developers.

The output of a pre-processing algorithm is a peak profile for

the dataset, which is composed of the detected peaks and their

corresponding intensities in each spectrum. For simplicity, the

peak profiles produced by SpecAlign, MSW/PRO and Cromwell

are denoted SpecAlign profile, MSW/PRO profile and Cromwell

profile, respectively.

Two peaks with a m/z ratio difference within a shift range may

correspond to the same biological molecule [17,34]. In this study,

we used shift ranges of 60.1%, 60.2% and 60.3%, and the

results were similar. For simplicity, we only present the results

based on the commonly used shift range of 60.3% [17,18,33].

Because the optimisation goals for peak detection are not

defined in real data, the default parameter settings for pre-

processing algorithms are used for detecting peaks in most

applications. However, some studies may tune the SNR to find

more or less peaks [17,18,35,36]. Thus, we similarly tuned the

SNR in our study to compare pre-processing algorithms. In

addition, because a lower SNR may detect more true and useful

peaks, we mainly considered the lower of the two SNRs when

comparing one algorithm with another (see details in the

Discussion).

Detection of DE peaks and consistency scores
Student’s t-test was used to evaluate the significance of the

differences between the intensity means of the cancer and normal

Reproducible Biomarker in SELDI-TOF MS
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samples. For multiple testing correction, we used the Benjamini-

Hochberg procedure to control the FDR at a given level [37].

The consistency of two peak lists was measured by the PO

(percentage of overlaps) score [38]. Supposing list 1 with l1 peaks

and list 2 with l2 peaks share k peaks, then the PO score from list 1

(or 2) to list 2 (or 1) is PO12 = k/l1 (or PO21 = k/l2). Because the PO

score depends on the list lengths, we also calculated the normalised

PO score (nPO), which is defined as the proportion of the observed

score beyond chance to the corresponding maximum potential

score beyond chance [38]:

nPO12~
PO12{E PO12ð Þ

1{E PO12ð Þ ð1Þ

nPO21~
PO21{E PO21ð Þ

1{E PO21ð Þ ð2Þ

where E(PO12) (or E(PO21)) was estimated as the average of the

PO12 (or PO21) scores for 1,000 pairs of peak lists (with lengths l1
and l2) extracted randomly from the two raw m/z lists. Among the

scores for the 1,000 random pairs of peak lists, the p-value of

observing the PO score by random chance was calculated as the

proportion of the scores not less than the observed score.

The PO (nPO) score between two lists of DE peaks was

calculated by the same approach as described above, except that a

DE peak was defined as being shared by two lists only if it was

regulated in the same direction in both peak profiles [38]. E(PO)

was evaluated using DE peak lists randomly extracted from the

two peak profiles. Here, we present the PO (nPO) score from the

shorter list to the longer list and evaluate the degree that the

shorter list is covered by the longer list.

We denote the PO (nPO) score from the peaks detected by

algorithm A to those detected by algorithm B as POAB (nPOAB),

while PODE
AB (nPODE

AB ) is for DE peaks.

Stratified FDR control approach
In large-scale testing with current multiple testing adjustments,

the power might decrease as the number of tests increases

[27,30,39]. To increase the power, a stratified FDR control

approach has been proposed [24]. As a proof of principle, we

analysed whether the consistency of DE peak detection can be

increased by improving the ability to identify DE peaks in large

peak profiles using the stratified FDR control approach, which is

based on the assumption that peaks with large fold change (FC)

values may be more likely to be true DE peaks [40]. First, we

applied the k-means clustering algorithm to partition the peaks

into k groups, by minimising the sum of the squared Euclidean

distance between the FC value for each peak and its nearest cluster

Figure 1. Illustration of a pre-processing procedure. (A) Raw spectrum. (B) Smoothed spectrum. The baseline estimated from the smoothed
spectrum is represented as the gray line. (C) Normalized spectrum. The baseline is subtracted from the smoothed spectrum. Then, the baseline-
subtracted spectrum is normalized. The peaks detected based on the normalized spectrum appear in circles.
doi:10.1371/journal.pone.0026294.g001
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centre [41]. The optimal k was chosen as the partition resulting in

a maximal mean of silhouette values, which measures how similar

a peak is to other peaks in its own group compared with those in

other groups [42]. Then, at a particular FDR control level, we

selected DE peaks in each group. As there is no overlap between

the discoveries from different groups, the FDR of the integrated

results is still less than the given FDR level [30].

Results

Reproducibility of peak detection
In the following, the results for each algorithm were based on its

default SNR unless otherwise mentioned. For the prostate cancer

dataset, 31 and 53 peaks were detected by SpecAlign and MSW/

PRO, respectively, and all of them were included in the 420 peaks

detected by Cromwell. Furthermore, we evaluated the reproduc-

ibility of peak detection using the same number of peaks by

decreasing the SNR of one of the two algorithms. However, even

using the lowest SNRs of 1 and 0.1 allowable for SpecAlign and

MSW/PRO, respectively, only 130 and 90 peaks were detected.

Most were included in the peaks detected by Cromwell with POSC

(nPOSC) and POMC (nPOMC) scores as high as 1 (1) and 0.93

(0.93), respectively (Figure 2A). For the comparison between

SpecAlign and MSW/PRO, the POSM (nPOSM) score was 0.84

(0.84). When the SNR was decreased to 1.27, SpecAlign detected

the same number of peaks (53) as MSW/PRO, but the score

decreased to 0.74 (0.73) (Figure 2A).

For the breast cancer dataset, 19 and 47 peaks were identified

by SpecAlign and MSW/PRO, respectively, and all of them were

included in the 287 peaks detected by Cromwell. Furthermore, as

shown in Figure 2B, even after decreasing the SNR to the lowest

allowable values for SpecAlign and MSW/PRO, only 104 and 52

peaks, respectively, were detected, and all of them were detected

by Cromwell. The consistency score between SpecAlign and

MSW/PRO was not high, with a POSM (nPOSM) score of 0.68

(0.68). After the SNR was decreased to 1.181, SpecAlign detected

the same number of peaks (47) as MSW/PRO, and the POSM

(nPOSM) score decreased to 0.55 (0.55) (Figure 2B).

The above results suggest that when using the default SNR for

each algorithm in these two datasets, SpecAlign and MSW/PRO

tend to be less sensitive at peak detection than Cromwell. All of the

detected peaks also tend to be detected by Cromwell. Cromwell

could still capture almost all of the peaks detected by SpecAlign

and MSW/PRO when the SNRs of the latter two less sensitive

algorithms were lowered.

Reproducibility of DE peak detection
We then evaluated the reproducibility of DE peak identification

in peak profiles produced by different pre-processing algorithms.

For the prostate cancer dataset, 27 and 24 DE peaks were selected

from the SpecAlign and MSW/PRO profiles, respectively, with a

10% FDR control. Most of these were also present in the

229 DE peaks identified from the Cromwell profile, and the PODE
SC

(nPODE
SC ) and PODE

MC (nPODE
MC) scores were 0.81 (0.62) and 0.96

(0.92), respectively. Although all of the peaks in the SpecAlign

profile were included in the Cromwell profile, more than 10% of

the selected DE peaks were not included in the DE peaks found in

the Cromwell profile. After the SNRs were decreased for

SpecAlign and MSW/PRO, the consistency between the DE

peaks from these two peak profiles and those of the Cromwell

profile decreased slightly (Figure 3A and 3B). The consistency

between the 27 and 24 DE peaks detected in the SpecAlign

and the MSW/PRO profiles was relatively low, with a PODE
MS

(nPODE
MS ) score of 0.54 (0.31). However, after the SNR was

decreased for SpecAlign, the score increased to 0.79 (0.61) as more

peaks were included in the enlarged SpecAlign profile and were

detected as DE peaks (Figure 3C).

Figure 2. Reproducibility of peak detection across pre-processing algorithms. (A) For prostate cancer and (B) for breast cancer.
Reproducibility was evaluated between one algorithm (x-axis label) with various SNRs and another (title) with the default SNR. The default SNRs for
SpecAlign, MSW/PRO and Cromwell were 1.5, 3 and 5, respectively. The filled triangles represent the number of peaks (right y-axis) detected by the
algorithm, which is shown by the x-axis label. All PO (nPO) scores were significantly higher than expected by chance (p,2.2E-11).
doi:10.1371/journal.pone.0026294.g002
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For the breast cancer dataset, with a 10% FDR control, only 2

DE peaks were selected from the SpecAlign profile, and they were

included in the 8 DE peaks selected from the MSW/PRO profile

with a PODE
SM (nPODE

SM ) score of 1 (1). After the SNR was decreased

for SpecAlign, similar results were observed (Figure 3D). However,

no DE peaks were selected from the Cromwell profile.

Two major factors affect the consistency of DE peak
identification

Our analysis revealed two major factors that can affect the

consistency of DE peak identification using different pre-

processing algorithms. The first factor is that some DE peaks

selected from one peak profile may not be included in another

peak profile. For example, for the prostate cancer dataset, with a

10% FDR control, 11 of the 24 DE peaks identified from the

MSW/PRO profile were not included in the SpecAlign profile.

Notably, after the SNR of SpecAlign decreased to 1.27, 6 of these

11 DE peaks were included in the SpecAlign profile and selected

as DE peaks, which led to increased reproducibility (Figure 3C).

Obviously this factor greatly affects the consistency of DE peak

identification. The second factor is that the statistical power of

identifying DE peaks in different peak profiles varies. Thus, some

peaks shared by two peak profiles might be detected as DE peaks

in one profile but not in another. The statistical power can be

affected by many variables, such as peak quantification, the

number of peaks for testing, the sample size, the proportion of true

positives and the FDR control level [6,26,27,28]. Here, we mainly

analysed the effects of the number of tests and sample size on

power.

First, we used an example to illustrate the effect of the number

of tests. In the breast cancer dataset, at a 10% FDR control level,

no DE peaks were detected in the whole Cromwell profile, which

consisted of 287 peaks. However, when considering a subprofile of

the Cromwell profile composed of all the peaks included in the

MSW/PRO profile, 6 DE peaks were detected and they were all

included in the 8 DE peaks identified in the MSW/PRO profile.

Notably, the t-test p-value cutoff for declaring significance based

on the Benjamini-Hochberg FDR procedure [37] was 0.013, but it

decreased to 0.0003 in the whole Cromwell profile, which resulted

in zero power for finding DE peaks (i.e., no DE peaks were found).

Similarly, when considering a subprofile of the Cromwell profile

composed of all of the peaks of the SpecAlign profile, 2 DE peaks

were detected at the 10% FDR control level, and they were

identical to the 2 DE peaks identified from the SpecAlign profile.

To illustrate the effect of sample size, we randomly sampled

subsets at various sample size levels from the prostate cancer

dataset of 249 samples. At each sample size level, we randomly

sampled 100 subsets with the proportions of normal and cancer

samples in each subset held identical to those in the raw dataset.

As the sample size increased, the number of DE peaks selected

with a 10% FDR control in the peak profile produced by each pre-

processing algorithm increased, which indicates that the power to

detect DE peaks increased (Figure 4). Consequently, the

consistency of the DE peaks selected using the different pre-

processing algorithms increased greatly.

Improving reproducibility by increasing statistical power
As shown above for the breast cancer dataset, the complete lack

of statistical power for identifying DE peaks in some large peak

profiles is an important factor affecting the consistency of DE peak

detection. As a proof of principle, we demonstrated that the ability

to find DE peaks in the Cromwell breast cancer profile could be

improved by the stratified FDR control approach, which can

increase the consistency between the identified DE peaks and

Figure 3. Reproducibility of DE peak detection across pre-processing algorithms. (A), (B), (C) for prostate cancer and (D) for breast cancer.
Reproducibility was evaluated between one algorithm (x-axis label) with various SNRs and another (title) with the default SNR. The default SNRs for
SpecAlign, MSW/PRO and Cromwell are 1.5, 3 and 5, respectively. The DE peaks were selected with a 10% FDR control. The filled diamonds represent
the number of DE peaks (right y-axis) detected using the algorithm shown by the x-axis label. All PODE (nPODE) scores were significantly higher than
expected by chance (p,7.0E-3).
doi:10.1371/journal.pone.0026294.g003
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those selected from the SpecAlign and MSW/PRO profiles. Using

the k-means clustering algorithm as described in the Methods, the

287 peaks detected in the Cromwell profile were clustered into 2

groups. One group contained 259 peaks with low FC values, and

the other group contained 28 peaks with high FC values. With a

stratified FDR level of 10%, a total of 16 DE peaks were detected,

which included most of the DE peaks detected in the Spec-

Align and MSW/PRO profiles using the default SNRs with a

PODE
SC (nPODE

MC) and PODE
MC (nPODE

MC) of 1 (1) and 0.75 (0.74),

respectively. By lowering the SNRs for SpecAlign and MSW/

PRO, similar results were generally obtained (Figure 5). However,

after the SNR decreased to 1 for SpecAlign, the PODE
SC (nPODE

SC)

score was only 0.5 (0.47). This result indicates that the stratified

FDR control approach can greatly increase detection power, but

there is still some room for improvement.

However, with the Cromwell prostate cancer profile, the

stratified and simple FDR control approaches had the same

power (i.e., they detected the same DE peaks). This result may be

because the power of the simple FDR control approach to identify

DE peaks was already high.

Comparison with biomarkers reported in the original
breast cancer study

A total of 5 DE peaks were reported in the original study of the

breast cancer dataset [32]. Briefly, the pre-processing procedure

used in the original paper included the Savitzky-Golay filter,

baseline subtraction, normalisation to the same total ion current

and extracting peaks with SNR no less than 3.0, and the DE peaks

were selected with a t-statistic score .3.5. We evaluated whether

these 5 DE peaks could be reproduced using the three pre-

processing algorithms with their default SNRs. When the

SpecAlign algorithm was used, only 2 of these 5 DE peaks were

detected as peaks and then detected as DE peaks at the 10% FDR

control. Using the MSW/PRO algorithm, all 5 DE peaks were

identified as peaks and then detected as DE peaks. Using the

Cromwell algorithm, all 5 DE peaks were detected as peaks, but

none was selected as a DE peak at the FDR level of 10% by the

simple FDR control approach. However, all 5 DE peaks were

included in the 16 DE peaks selected using the Cromwell

algorithm at the FDR level of 10% when using stratified FDR

control.

Discussion

Reproducibility is of fundamental importance for the validation

of biological discoveries from high-throughput data. In MS

studies, pre-processing algorithms may greatly affect biomarker

discovery. Using biological data for cancer, our study showed that

the number of peaks identified in a dataset varies depending on the

pre-processing method. It also revealed that the consistency of DE

peak identification is affected by two important factors, the

absence of some DE peaks in another peak profile and the reduced

statistical power of DE peak identification in profiles with a large

number of peaks but a small number of samples. Our findings

indicate that DE peaks selected from small peak profiles tend to be

reproducibly detected in large profiles when sufficient power for

identifying DE peaks in large profiles is achieved through powerful

statistical approaches, such as the stratified FDR control approach.

The analyses in this study could be extended to other MS-based

proteomic technologies. For example, for tandem mass spectrom-

Figure 4. Average number of DE peaks and average PODE

(nPODE) score at various sample sizes for prostate cancer. The
default SNR was used for each pre-processing algorithm. At each
sample size, the average number of DE peaks detected at a 10% FDR
control was calculated based on 100 randomly sampled subsets. The
filled squares, triangles and diamonds represent the average number of
DE peaks (right y-axis) detected using SpecAlign, MSW/PRO and
Cromwell, respectively.
doi:10.1371/journal.pone.0026294.g004

Figure 5. Reproducibility of DE peak detection across pre-
processing algorithms. Using Cromwell at the default SNR, the
stratified FDR control approach detected 16 DE peaks at the 10% level.
For SpecAlign and MSW/PRO, the simple FDR control approach was
used to select DE peaks. All PODE (nPODE) scores were significantly
higher than expected by chance (p,0.013). For a detailed description of
the figures see the legend to Figure 3.
doi:10.1371/journal.pone.0026294.g005
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etry (MS/MS), the use of different pre-processing algorithms for

peak detection and different search engines for matching proteins

could produce varied protein profiles [43]. Thus, the two factors

revealed in this study could also affect the consistency of biomarker

detection in MS/MS studies.

Based on a simulation study, Cruz-Marcelo et al. [17] suggested

that the combination of MassSpecWavelet and PROcess offers

high sensitivity with a low FDR for peak detection. However,

based on our analysis of the reproducibility of peak and DE peak

detection based on two real datasets, the MSW/PRO algorithm

(i.e. the combination of MassSpecWavelet and PROcess) tended to

detect fewer peaks than Cromwell, which indicated that it might

be less sensitive for peak detection and might miss some DE peaks

detectable by using Cromwell. In addition, we evaluated the

reproducibility of the three average spectrum-dependent algo-

rithms used in this study with the widely used commercial software

ProteinChip Software 3.2.1 and Biomarker Wizard (denoted as

Ciphergen) for the breast cancer dataset. The required raw data

from the original study were not available for Ciphergen to

evaluate the prostate cancer dataset. The results showed that the

Ciphergen algorithm tended to be more sensitive for peak

detection than SpecAlign or MSW/PRO, and most of the peaks

detected by these three algorithms also tended to be detected by

Cromwell (see details in Text S1 and Figure S1); similar results

were for DE peak detection (Text S1 and Figure S2). Notably,

these results based on limited real data and those based on

simulated data may only weakly reflect the performance of these

pre-processing algorithms on data with different characteristics.

Thus, we still cannot conclusively state that a specific algorithm is

optimal for pre-processing all data. Nevertheless, based on our

results, we can suggest a guideline for selecting a suitable pre-

processing algorithm. To find useful and reproducible biomarkers,

the algorithm should be able to produce sufficient peaks and

achieve high sensitivity in peak detection. One problem is that a

large peak profile is likely to include more random signals (false

peaks), which may decrease the power of the subsequent detection

of DE peaks in this profile. However, this problem can be

alleviated by the use of statistically powerful approaches such as

the stratified FDR control approach. In addition, increasing

sample size can improve the power and, consequently, the

reproducibility of DE peak detection. Thus, when sufficient power

can be achieved through a powerful statistical approach or a large

sample size, Cromwell can capture more biomarkers than the

other pre-processing algorithms analysed in this study.

The fact that some DE peaks selected from one peak profile are not

identified as peaks in another profile may suggest that these DE peaks

have relatively low intensities. Thus, they might be less interesting in

clinical applications. However, many biologically interesting mole-

cules relevant to diseases are low-abundance proteins in human

biofluids such as serum and plasma [44]. Some low-abundance

proteins, such as the prostate-specific antigen (PSA) for prostate

cancer [44] and human epidermal growth factor receptor 2 (HER2)

for breast cancer [45], have been selected as clinical biomarkers.

Discovering such low-abundance biomarkers is an important

application of MS-based proteomic technologies [46,47].

In addition to the factors revealed in this study, other factors

may also affect the reproducibility of DE peak detection. For

example, molecular isotopes with different charges could induce

an improper alignment of spectra and produce multiple peaks in a

spectrum [48], which could reduce the power and eventually the

reproducibility of DE peak detection. Dijkstra et al. [48] proposed

an algorithm to reduce the number of multiple-charge peaks for

the underlying molecules, and this may increase the power and

reproducibility of DE peak detection.

Other approaches might also improve the power of selecting DE

peaks with FDR control for multiple testing. For example, by only

considering peaks with large changes between diseased and normal

samples, the power could increase as the number of tests decreases

[40]. However, this approach considers only a portion of the total

tests, and some true positives may be lost. In contrast, the stratified

FDR control approach considers all of the tests. However, its

performance depends on the criteria for data stratification. In

addition to the simple k-means clustering algorithm used in this

study, other stratification approaches, such as hierarchical cluster-

ing, could be used. Currently, finding the optimal stratification

remains an open question [30,49,50,51] that warrants further study.

In this study, we analysed the consistency of biomarkers

identified in different peak profiles for a single MS dataset pre-

processed by different algorithms. Usually, the sample handling

protocol is identical for all samples in a study (see the detailed

sample handling protocols for the two datasets used in this study in

[31] and [32]). In this situation, the computational normalization

can be applied to reduce the unknown variability of samples

[52,53]. Notably, a more challenging task is to analyse the

reproducibility of biomarker discovery across different studies

(datasets) for a disease [9,11]. It is known that intensities of

proteins depend on sample handling protocols. For example, the

clotting time can affect the intensities of proteins related to the

clotting of blood [15]. The computational normalization can not

correct such variability. Therefore, the establishment of standard

operating procedures for serum and plasma collection is very

important for enhancing the reproducibility of SELDI data and

thereby for improving the reproducibility of biomarker discovery

across different studies [54]. Alternatively, an experimental

normalization approach using known protein (peptides) can be

applied to correct the variability induced by sample handling

[55,56]. Notably, the known proteins (peptides) need to be

carefully selected to balance the trade-off between reducing the

variability of the types of proteins to which they belong and

increasing the intensity bias of the other types of proteins [57]. In

addition, the consistency between biomarker lists identified from

different studies is usually measured by counting the overlaps, such

as in this study. However, observing low overlap across biomarker

lists identified from different high-throughput datasets is highly

likely because the sample sizes of current studies are often

insufficient to fully capture large biological variations [6,26].

Because complex diseases are often characterised by many

functionally correlated molecular changes [58,59], we have

proposed consistency scores for evaluating the reproducibility of

disease biomarker discovery at the systems biology level [38,60]. In

the future, by applying these consistency scores, we plan to

evaluate the reproducibility of DE peaks detected in different MS-

based studies for a disease, an approach that is currently limited by

the fact that few MS datasets for cancer are publicly available [61].

Supporting Information

Figure S1 Reproducibility of peak detection between
the average spectrum-dependent algorithms and Ci-
phergen for the breast cancer dataset. The reproducibility

was evaluated between one algorithm (x-axis label) with various SNRs

and another (title) with the default SNR. The default SNRs for

SpecAlign, MSW/PRO, Cromwell and Ciphergen were 1.5, 3, 5 and

5, respectively. The filled triangles represent the number of peaks

(right y-axis) detected by the algorithm shown by the x-axis label. All

PO (nPO) scores were significantly higher than expected by chance

(p,7.5E-12).

(TIF)
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Figure S2 Reproducibility of DE peak detection be-
tween the average spectrum-dependent algorithms and
Ciphergen for the breast cancer dataset. For Ciphergen

with the default SNR, the stratified FDR control approach

detected 7 DE peaks at the level of 10%. For SpecAlign and

MSW/PRO, the simple FDR control approach was used to select

DE peaks. All PODE (ncPODE) scores were significantly higher

than expected by chance (p,9.0E-3). For a detailed description of

the figures see the legend to Figure 3 in the main text.

(TIF)

Text S1 Parameter settings of pre-processing algo-
rithms for peak detection and quantification; reproduc-
ibility between the three average spectrum-dependent

algorithms and ProteinChip Software 3.2.1 and Bio-
marker Wizard.
(DOC)
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