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Abstract

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based
approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase b subunit (b-F1-ATPase), a
protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances.
Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, b-F1-ATPase
immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein,
the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple b-
F1-ATPase peptides. There were three b-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and
which were detected with high intensity relative to other peptides and assigned with .95% probability to b-F1-ATPase.
These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak
areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best
linearity (R2 = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of
amounts of injected protein, specifically for the b-F1-ATPase134-143 peptide. Measured stable-isotope enrichment was highly
reproducible for the b-F1-ATPase134-143 peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled
peptides we determined that there is an excellent linear relationship (R2 = 0.99) between measured and predicted
enrichment for percent enrichments ranging between 0.009% and 8.185% for the b-F1-ATPase134-143 peptide. The described
approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle b-F1-ATPase
based on the determination of the enrichment of the b-F1-ATPase134-143 peptide.
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Introduction

There are well-established approaches to measure the protein

synthesis in skeletal muscle using stable-isotope-labeled amino

acids [1]. These approaches are based on the in vivo-metabolic

labeling of proteins followed by the measurement of the stable-

isotope enrichment of, typically, a mixture of proteins using gas

chromatography-mass spectrometry (GC-MS). Measurement of

this enrichment provides the means to determine a global/average

rate of synthesis across proteins in skeletal muscle. Measurement of

the enrichment of a single protein that is present in small amounts

in skeletal muscle cannot, however, be practically performed using

these approaches because of the low mass sensitivity of the GC-

MS. Yet, it is the measurement of the enrichment at the individual

protein level that it is necessary for the determination of the rate of

synthesis of a specific protein.

At any time, muscle requires a continuous supply of energy in

the form of adenosine triphosphate (ATP), which supports various

metabolic processes within muscle and maintains muscle’s

function. The demand for ATP production in muscle increases

several-fold as a result of physical activity. More than 90% of ATP

in skeletal muscle is produced by the enzyme ATP synthase in

mitochondria. The beta subunit of the ATP synthase (b-F1-

ATPase) is important from a functional standpoint because it

forms the catalytic site of the enzyme, and thus has a key role in

determining the capacity for ATP production. In circumstances

associated with reduced capacity for ATP production in muscle,

such as obesity [2] and aging [3], reduced amounts of muscle b-

F1-ATPase have been reported [4,5]. Reduced amounts of b-F1-

ATPase have also been reported in liver and tumors in conditions

associated with hypothyroidism and cancer, respectively [6,7,8].

Understanding the mechanisms behind the reduced levels of b-

F1-ATPase in skeletal muscle requires knowledge of the rates of

synthesis/breakdown of b-F1-ATPase. In addition to maintaining

the quantity of muscle b-F1-ATPase, the rate of synthesis of b-F1-

ATPase plays a key role in maintaining the quality of protein by
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continuously renewing the b-F1-ATPase pool in skeletal muscle.

As a result of the latter process, older and/or damaged molecules

of the protein are replaced by de novo synthesized b-F1-ATPase

molecules. A key part in the overall process of determining the

kinetics of muscle b-F1-ATPase in association with the infusion of

stable-isotope amino acids is the ability to reliably measure the

stable isotope enrichment of b-F1-ATPase. Recently, Bateman

et al. [9] have described a liquid chromatography-tandem mass

spectrometry (LC-MS/MS) approach for the measurement of

amyloid-b stable-isotope enrichment from cerebrospinal fluid.

However, the applicability of this approach and its reproducibility

for the measurement of enrichment of a protein from skeletal

muscle, such as the muscle b-F1-ATPase, has not been evaluated.

Lower protein abundance and turnover rates, ultimately resulting

in lower levels of labeled proteins in skeletal muscle compared to

cerebrospinal fluid, as well as differences in the ionization of

protein-associated peptides and their fragmentation patterns, all

necessitate the need to evaluate the applicability of LC-MS/MS to

specifically measure the stable-isotope enrichment of muscle b-F1-

ATPase.

The overall goal of this research was, therefore, to determine the

reproducibility of an LC-MS/MS method for the measurement of

stable-isotope enrichment of in vivo-labeled muscle b-F1-ATPase.

We specifically sought to determine if there is a specific b-F1-

ATPase peptide that can provide reproducible measurements to

be used for the determination of b-F1-ATPase enrichment. The

following were evaluated for b-F1-ATPase tryptic-peptides

following isolation of b-F1-ATPase from rat skeletal muscle: 1)

the MS/MS signal linearity in the detection of labeled and

unlabeled fragment ions of b-F1-ATPase peptides over a range of

injected amounts of protein, 2) the reproducibility of the measured

enrichment across b-F1-ATPase peptides, and 3) the linearity in

the measured enrichment determined by using mixtures contain-

ing various ratios of labeled to unlabeled synthetic peptides for the

b-F1-ATPase peptide with the most reproducible measurement of

its enrichment.

Methods

Ethics statement
The study protocol and procedures were reviewed and

approved by the Institutional Animal Care and Use Committee

at Arizona State University (Protocol ID 07-939R).

Selection of the stable-isotope amino acid
L-[2,3,3,4,5,5,5,6,6,6-2H10]leucine, which is a stable-isotope of

the amino acid leucine was selected to label leucine residues in the

b-F1-ATPase for several reasons: 1) leucine is abundant in b-F1-

ATPase and this increases the chances for detecting leucine-

containing peptides that meet our criteria (discussed below); 2) the

specific stable-isotope of leucine has a mass that is large enough to

separate the isotope envelopes between labeled and unlabeled

peptides, allowing for easier identification; 3) although not the

focus of the present study, calculation of the rate of synthesis of a

protein requires determination of the precursor (i.e. leucine)

enrichment, which can be determined in a practical way when

using the selected stable-isotope of the amino acid leucine.

Specifically, in the selected d10-leucine, and as a result of the

transamination reaction, the deuterium attached to the alpha

carbon of the amino acid, as is also the case for the hydrogen for

endogenous leucine, is rapidly exchanged for hydrogen via alpha-

ketoisocaproic acid metabolism in vivo resulting in the production

of d9-leucine inside the cell [10]. That way, both unlabeled and

d9-labeled leucine are introduced intracellularly in the same way

before incorporation into the protein, and under these conditions

enrichment with labeled leucine that has undergone transamina-

tion measured in peripheral blood is the same as that measured in

muscle [1,11], allowing for a convenient and practical determi-

nation of the precursor enrichment.

Animals and infusion protocol
Muscle for the experiments was obtained from two adult male

Sprague-Dawley rats (Charles River, Wilmington, MA). Prior to

the collection of muscle, d10-leucine was infused (50 mg/kg/hour;

Cambridge Isotope Laboratories, Inc., Andover, MA) for seven

hours intravenously in one of the rats to increase the incorporation

of stable-isotope-labeled leucine into muscle b-F1-ATPase, while

the other rat received a comparable rate of infusion of saline.

Muscle homogenization, b-F1-ATPase
immunoprecipitation, SDS-PAGE, and in-gel digestion
procedures

Approximately 100 mg of vastus lateralis muscle was homoge-

nized in ice-cold freshly prepared buffer (1 mL/100 mg tissue;

20 mM Hepes pH 7.6, 1 mM EDTA pH 8.0, 250 mM sucrose,

5 mM NaF, 1 mM Na-pyrophosphate, 1 mM ammonium molyb-

date, 1 mM Na3VO4, 10 ug/ml aprotinin, 10 ug/ml leupeptin,

250uM PMSF) and centrifuged at 14,000 x g for 30 min at 4uC.

Aliquots of supernatant were stored at -80uC. Protein concentrations

in the homogenate were determined by the method of Lowry [12].

Muscle b-F1-ATPase was purified from the whole muscle

homogenate by immunoprecipitation (IP) using a mouse mono-

clonal b-specific antibody coupled to protein G agarose beads for

1 hr at room temperature. After antibody-bead conjugation, 2 mg

of muscle protein and adequate homogenization buffer was added

to the mixture which was incubated overnight on rotation in 4uC.

The beads were subsequently washed four times with ice-cold PBS

(pH 7.4) and the proteins were denatured and eluted from the

beads by incubation for 30 min at 37uC in 15 mL 2X SDS sample

loading buffer [13]. Proteins were then separated by 10% SDS-

polyacrylamide gel electrophoresis (PAGE) and visualized by

Coomassie blue staining (Sigma Chemical Co., St. Louis, MO).

The band corresponding to the weight of b-F1-ATPase

( = 56 kD) was excised from the gel and cut into 1 mm cubes.

Cubes from each lane were placed into microcentrifuge tubes and

washed with 400 uL of deionized water. Coomassie stain was

removed with 2 washes with 300 uL of 50% acetonitrile (ACN) in

40 mM NH4HCO3 and the gel pieces were dehydrated with

100% ACN for 15 minutes. The ACN was removed and the gel

pieces were further dried in a vacuum centrifuge at 62uC for

30 min. Peptides were released from the gel by trypsin digestion

(250 ng) in 30 ml of 40 mM NH4HCO3 and the samples

maintained at 4uC for 15 minutes. 50 mL of 40 mM NH4HCO3

was added and the digestion was left to continue at 37uC
overnight. The digestion was terminated with 10 ml of 5% formic

acid (FA). Following overnight digestion, the samples were

incubated at 37uC for 30 min and centrifuged for 1 min; the

supernatant was transferred to a clean polypropylene tube.

Another 80 mL of 0.5% FA was added to the gel pieces and the

extraction procedure was repeated. Resulting peptide mixtures

were purified using solid-phase extraction (C18 ZipTip; Millopore)

after sample loading in 0.05% heptafluorobutyric acid:5% FA and

elution with 4 uL 50% ACN:1% FA and 4 uL 80% ACN:1% FA,

respectively. Eluates were combined and the sample volume was

reduced to ,2 mL by vacuum centrifugation. Subsequently, 20 ml

of 0.05% heptafluorobutyric acid/1% FA:2%ACN was added as

loading buffer.

Stable-Isotope Enrichment of b-F1-ATPase
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HPLC-ESI-MS/MS analysis
A hybrid mass spectrometer consisting of a Linear Ion Trap

Mass spectrometer, LTQ, combined with a Fourier Transform

Ion Cyclotron Resonance (FT-ICR) mass spectrometer (LTQ FT

Ultra, Thermo Fisher; San Jose, CA) fitted with a PicoView

nanospray source (New Objective, Woburn, MA) was used to

perform the HPLC-ESI-MS/MS analyses. HPLC separations

were accomplished with a linear gradient as described previously

[14]. Labeled and unlabeled fragment ions of b-F1-ATPase

peptides were quantified in the LTQ analyzer of the LTQ-FT-

ICR instrument.

Initially, a full-scan spectrum was acquired followed by

collision-induced dissociation mass spectra of the 10 most

abundant ions in the survey scan to determine if there were b-

F1-ATPase peptides with a high MS signal and a leucine residue

in the sequence. No labeled-leucine peptides were detected in a

data-dependent analysis, probably as a result of low abundance of

stable-isotope-leucine enriched peptides in b-F1-ATPase. Since,

any peptide with leucine has the potential to contain labeled-

leucine, we therefore predicted that low abundance leucine-

labeled peptides can be detected using a ‘‘targeted’’ mass

spectrometry scan approach, and based on the addition of the

appropriate mass to the mass of each leucine in a detected b-F1-

ATPase peptide. A target list with various potential leucine-

containing peptide m/z values was employed, resulting in

improved efficiency in identifying stable-isotope-leucine enriched

peptides.

Tandem mass spectra were extracted from Xcalibur ‘‘RAW’’

files and charge states were assigned using the Extract_MSN script

which is a component of Xcalibur 2.0 SR2 (Thermo Fisher; San

Jose, CA). The fragment mass spectra were searched against the

IPI_RAT_v3.33 database (http://www.ebi.ac.uk/IPI/) using

Mascot (Matrix Science, London, United Kingdom, version 2.2).

The search parameters for the sample’s protein peptides were as

follows: 10 ppm mass tolerance for precursor ion masses and

0.5 Da for product ion masses; digestion with trypsin; a maximum

of two missed tryptic cleavages; variable modifications of oxidation

of methionine and phosphorylation of serine, threonine, and

tyrosine, and addition of D9 or D10 labeled-leucine. Probability

assessment of peptide assignments and protein identifications were

made through use of Scaffold (version Scaffold-01_06_17,

Proteome Software Inc., Portland, OR).

b-F1-ATPase peptides confirmation and calculation of
enrichment based on b and y fragment ion analysis

Peptides released from the trypsin digestion were considered

only if they met the following criteria: there is a leucine residue in

the amino acid sequence; detected with high intensity relative to

other peptides (top 10 peptides); assigned with .95% probability

to b-F1-ATPase (assessed through Scaffold Proteome Software);

there is no missed cleavage; and there is no methionine in the

sequence (because of methionine oxidation). There were three b-

F1-ATPase unique peptides (i.e. their amino acid sequence

matches only the b-F1-ATPase protein) that met all these criteria:

b-F1-ATPase95-109 (LVLEVAQHLGESTVR; MH+1, mono:

1650.9), b-F1-ATPase134-143 (IPVGPETLGR; MH+1, mono:

1038.6), and b-F1-ATPase282-294 (VALTGLTVAEYFR; MH+1,

mono: 1439.8). The MS/MS peak areas of the following fragment

ions from these peptides were quantified (+1 charge state): b-F1-

ATPase95-109 – b8 (890.5), b9 (1003.6), b11 (1189.7); b-F1-

ATPase134-143 – y6 (672.4), y7 (729.4) and y8 (828.5); b-F1-

ATPase282-294 – b8 (755.5), b9 (826.5), b10 (955.5), b11 (1118.6).

The corresponding fragment ions MS/MS peak areas with +9 Da

mass, containing d9-leucine, from the same peptides were also

quantified. Extracted ion chromatographic peak areas correspond-

ing to d9-labeled and unlabeled fragment ions for the three

targeted b-F1-ATPase peptides were generated for the quantifi-

cation of the amounts of d9-labeled and unlabeled fragments ions

of the peptides in the b-F1-ATPase samples. Mass tolerance was

set at 0.5 Da.

Signal linearity in the detection of labeled and unlabeled
fragment ions

Following procedures described above, a muscle homogenate was

used to create four b-F1-ATPase IP samples, each containing

,2 mg of total muscle protein. Each of the four samples was

separated by SDS-PAGE and each band corresponding to the b-F1-

ATPase was cut and trypsin digested. Following trypsin digestion,

and after the peptide mixtures were purified using solid-phase

extraction, the peptide mixtures were combined to create one

sample containing an amount of b-F1-ATPase corresponding to

,8 mg of muscle protein. This sample was dried, brought to a

volume of 30 uL with loading buffer and injected into the mass

spectrometer at seven different volumes corresponding to 0.2, 0.3,

0.4, 0.5, 0.8, 1.1, and 2.3 mg of muscle protein. The specific peak

areas for d9-leucine-labeled and unlabeled fragment ions indicated

above for the b-F1-ATPase95-109, b-F1-ATPase134-143, and b-F1-

ATPase282-294 peptides were quantified.

Reproducibility of the measured b-F1-ATPase enrichment
Muscle homogenate corresponding to ,2 mg of total muscle

protein was used to perform three separate b-F1-ATPase IP

analyses. Each of the three samples containing immunoprecipi-

tated b-F1-ATPase was loaded on a separate SDS-PAGE gel lane,

and each band was treated as a separate sample. The three

samples were analyzed in separate HPLC-MS/MS runs, using the

same procedures in all three runs. The specific peak areas for d9-

leucine-labeled and unlabeled fragment ions for the b-F1-

ATPase95-109, b-F1-ATPase134-143, and b-F1-ATPase282-294 pep-

tides were quantified. The peptide enrichment was calculated by

dividing the sum of the peak areas of the labeled fragment ions by

the sum of the peak areas of the corresponding unlabeled fragment

ions.

Linearity in the measured enrichment using synthetic
peptides

To evaluate the linearity in the measured enrichment of the

IPVGPETLGR peptide (i.e. b-F1-ATPase134-143), stock solutions

containing leucine-labeled and unlabeled IPVGPETLGR synthet-

ic peptides were prepared. Given the lack of commercially

available d9-leucine, d10-leucine was used to synthesize the

leucine-labeled peptide. D10-leucine-labeled and unlabeled

IPVGPETLGR peptides were synthesized by the Proteomics

and Protein Chemistry Lab facility at Arizona State University,

and dissolved in water. MALDI and LC-MS/MS mass spectrom-

etry analyses confirmed that the synthesized peptides correspond-

ed to unlabeled and d10-leucine-labeled IPVGPETLGR peptides

(Figure S1). Stock solution containing d10-labeled peptide was

serially diluted with stock solution containing the unlabeled

peptide to create a series of eight samples spanning a wide range

of molecular ratios of labeled to unlabeled peptide. Following

solid-phase extraction, and vacuum centrifugation (procedures

described above), loading buffer was added to the samples prior to

their injection into the mass spectrometer. Peak areas for d10-

leucine-labeled and unlabeled y6-y8 fragment ions for the

IPVGPETLGR peptide were quantified. These values were used

to determine the peptide enrichment, and by dividing the sum of

Stable-Isotope Enrichment of b-F1-ATPase
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the peak areas of the labeled fragment ions by the sum of the peak

areas of the corresponding unlabeled fragment ions. The

molecular content of the d10-leucine-labeled and unlabeled stock

solutions were calculated based on the weighted amounts of the

leucine-labeled and unlabeled IPVGPETLGR peptides added to

these solutions. Given the lack of purity in the synthesized peptides

used in the preparation of the stock solutions, the calculated

enrichment of the IPVGPETLGR peptide with d10-leucine-

containing IPVGPETLGR peptide in the resultant serial dilutions

represents predicted enrichment.

Statistical analyses
Coefficient of variation (CV) values were calculated to assess the

reproducibility of the enrichment measurements of the b-F1-

ATPase peptides. Regression analysis was conducted to assess the

linear fit between variables of interest. All the statistical analyses

were performed using the MinitabH 15.1 statistical software

(Minitab Inc., State College, PA).

Results

Sequence coverage of immunoprecipitated b-F1-ATPase pro-

tein by top-10 data dependent tandem mass spectrometry

following these procedures was .70% (Figure 1). Figure 2a

illustrates the b and y fragment ions of the representative b-F1-

ATPase134-143 peptide. Figure 2b-c depicts MS/MS scans for

unlabeled and d9-leucine labeled y6-y8 fragment ions of the b-F1-

ATPase134-143 peptide, together with the corresponding extracted

ion chromatographic peak areas from muscle sample collected

from the rat infused with the stable-isotope-labeled leucine. No

peaks were detected for fragment ions with +9 Da mass in muscle

b-F1-ATPase samples from the saline infused rat for any of the

three targeted b-F1-ATPase peptides.

Signal linearity in the detection of labeled and unlabeled
fragment ions

For muscle b-F1-ATPase samples collected from the rat infused

with the stable-isotope-labeled leucine, the MS/MS peak areas

corresponding to the d9-labeled and unlabeled fragment ions of

the three targeted b-F1-ATPase peptides were quantified over a

wide range of amounts of protein/peptides injected into the LC-

MS/MS. Regression analysis was performed between the amounts

of protein analyzed, reflecting the amounts of muscle b-F1-

ATPase, and each of the d9-leucine-labeled and unlabeled

fragment ion peak areas of the three targeted b-F1-ATPase

peptides. Calculated R2 values from the regression analyses for the

b-F1-ATPase95-109 peptide corresponding to d9-labeled MS/MS

peak areas ranged between 0.94 and 0.97, and those correspond-

ing to unlabeled MS/MS peak areas ranged between 0.97 and

0.98. Regression analyses R2 values for the b-F1-ATPase282-294

peptide were between 0.62 and 0.87 for the d9-labeled MS/MS

peak areas, and between 0.71 and 0.75 for the unlabeled MS/MS

peak areas. R2 values for the ATPase134-143 peptide were 0.99

across all d9-labeled as well as unlabeled fragment ions (Figure 3).

The regression analyses also indicated that for both the b-F1-

ATPase95-109 and b-F1-ATPase282-294 peptides the y-intercept of

the regression equations describing the relationship between the

amounts of protein analyzed and fragment ion peak areas were

significantly different from zero (P,0.05) for all d9-labeled and

unlabeled fragment ions. However, none of the y-intercept values

of the regression equations describing the corresponding relation-

ships for the ATPase134-143 peptide were significantly different

from zero (P.0.05).

Reproducibility of the measured b-F1-ATPase enrichment
For each b-F1-ATPase peptide within a replicate the sum of the

peak areas of its d9-leucine-labeled fragment ions was divided by

the sum of the peak areas of its corresponding unlabeled fragment

ions in order to determine the enrichment of the specific b-F1-

ATPase peptide with d9-leucine. The average percent enrichment

based on these replicates for the b-F1-ATPase95-109 peptide was

0.564% 6 0.023% (average value 6 standard deviation), with a

CV value of 4.15%. These same measures corresponding to the b-

F1-ATPase134-143 peptide were 0.482% 6 0.014% and 2.6%,

respectively. For the b-F1-ATPase282-294 peptide the average

percent enrichment was 0.566% 6 0.051% and the CV was

8.98%.

Linearity in the measured enrichment using synthetic
peptides

Linearity in the measured enrichment was evaluated only for

the b-F1-ATPase134-143 peptide (i.e. IPVGPETLGR), because it

was the only peptide that showed acceptable linearity in the signal

intensity in the detection of labeled and unlabeled fragment ions

(based on the results reported in the ‘‘Signal Linearity in the

Detection of Labeled and Unlabeled Fragment Ions’’ section). The

measured percent enrichment (i.e. sum of y6-y8 labeled fragment

ions peak areas/sum of y6-y8 unlabeled fragment ions peak

areas*100) in the LC-MS/MS-analyzed samples prepared to

contain synthetic IPVGPETLGR peptides enriched with synthetic

IPVGPETLGR peptides that contained labeled leucine ranged

between 0.009% and 8.185%. Regression analysis indicated

Figure 1. Coverage map of tryptic peptides of b-F1-ATPase from rat muscle. The muscle was analyzed using the procedures described in
the text. Detected peptides are depicted in bold font letters. The amino acid sequence underlined identifies the representative tryptic b-F1-ATPase134-

143 peptide (i.e. IPVGPETLGR). Percent coverage is 77%.
doi:10.1371/journal.pone.0026171.g001

Stable-Isotope Enrichment of b-F1-ATPase

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e26171



Figure 2. Representative IPVGPETLGR peptide of muscle b-F1-ATPase and LC-MS/MS spectra for IPVGPETLGR peptide enriched with d9-
leucine. Tryptic peptide IPVGPETLGR, corresponding to b-F1-ATPase134-143, showing the b and y fragment ions (A); depiction of tandem mass spectrum for
fragment ions of the IPVGPETLGR peptide showing the y6-y8 unlabeled fragment ions (left) and the corresponding extracted ion chromatographic peak
areas of these ions (right) used for the quantification of the enrichment of the IPVGPETLGR peptide (B); depiction of spectra for fragment ions of the
IPVGPETLGR peptide showing the d9-leucine-labeled fragment ions (i.e. same fragment ions as in (B) shifted by 9 m/z) (left) and the corresponding
extracted ion chromatographic peak areas of these ions (right) used for quantification of the enrichment of the IPVGPETLGR peptide (C). Fragment ions
either not containing leucine (i.e. b7) or containing leucine (i.e. b8, b9) in the sequence are also shown (B). Such ions, although they contain leucine and their
enrichment can theoretically be quantified (i.e. b8), were not taken into consideration because their relative low abundance (,10% of parent ion).
doi:10.1371/journal.pone.0026171.g002

Stable-Isotope Enrichment of b-F1-ATPase
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excellent linear relationship between the measured and predicted

IPVGPETLGR percent enrichment throughout the range of the

prepared samples (Figure 4).

Discussion

The overall goal of this study was to evaluate the reproducibility

of an LC-MS/MS approach to quantify the enrichment of in vivo-

labeled muscle b-F1-ATPase based on the enrichment of its tryptic

peptides. Measurement of this enrichment is a key methodological

step in order to evaluate the translational regulation of b-F1-

ATPase by means of stable-isotope methodology. The described

approach is based on immunoprecipitation of b-F1-ATPase,

separation of b-F1-ATPase by 1-D SDS-PAGE, and determina-

tion of the enrichment of fragment ions of selected b-F1-ATPase

peptides using LC-MS/MS.

An important finding of the present study is that two (i.e. b-F1-

ATPase95-109 and b-F1-ATPase282-294) of the three tryptic b-F1-

ATPase peptides that met our initial criteria to be used for the

determination of the reproducibility of b-F1-ATPase peptide

enrichment demonstrated low, and in some cases unacceptable

(i.e. R2 = 0.62), linearity in the signal intensity with which amounts

Figure 3. b-F1-ATPase134-143 peptide fragment ions peak areas as a function of the amount of protein analyzed. D9-leucine-labeled
fragment ions (left) and corresponding unlabeled fragment ions (right) were quantified in association with various amounts of muscle protein
processed. Data were analyzed using regression analysis. Corresponding R2 values are shown for each fragment ion. The y-intercept of the regression
equations is not significantly different from zero (P.0.05).
doi:10.1371/journal.pone.0026171.g003
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of labeled and unlabeled fragment ions were detected. For these

two peptides, there was proportionally less increase in MS/MS

fragment ion signal intensity with increased amounts of protein/

peptides injected into the LC-MS/MS. On the other hand, there

was an excellent linearity (i.e. R2 = 0.99) in the signal intensity with

which labeled and unlabeled amounts of fragment ions were

detected for the b-F1-ATPase134-143 peptide. Also, none of the y-

intercept values of the regression equations describing the MS/MS

fragment ion intensities as a function of the amounts of protein/

peptide injected into the LC-MS/MS was significantly different

from zero for the b-F1-ATPase134-143 peptide. The latter finding

further underscores an accurate detection of generated amounts of

labeled and unlabeled fragment ions for the b-F1-ATPase134-143

peptide over a wide range of labeled and unlabeled amounts of

protein analyzed. Although the specific reason(s) for the lack of

linear function in the signal intensity with which labeled and

unlabeled amounts of fragment ions were detected for the b-F1-

ATPase95-109 and b-F1-ATPase282-294 peptides are not known,

visual inspection of their MS/MS spectra showed poor quality

spectra in association with greater noise when compared to the

MS/MS spectra of the b-F1-ATPase134-143 peptide.

The results obtained with respect to the percent enrichment of the

b-F1-ATPase134-143 peptide in the reproducibility experiments

(‘‘Reproducibility of the Measured b-F1-ATPase Enrichment’’

section) are similar to those when the percent enrichment (0.470%

6 0.012%) and CV (2.6%) for the b-F1-ATPase134-143 peptide were

calculated based on the data obtained across the various amounts of

the protein/peptide analyzed in the MS/MS signal linearity

experiment (‘‘Signal Linearity in the Detection of Labeled and

Unlabeled Fragment Ions’’ section). The latter findings enhance the

results obtained from the reproducibility experiments for the b-F1-

ATPase 134-143 peptide and provide additional evidence for an

excellent reproducibility in the measurement of in vivo-labeled muscle

b-F1-ATPase enrichment using LC-MS/MS when this measurement

is based on the enrichment of the b-F1-ATPase 134-143 peptide. The

presence of more than one leucine residues that can be labeled with

d9-leucine in both the b-F1-ATPase95-109 and b-F1-ATPase282-294

peptides could be the reason for the poorer reproducibility of the

enrichment measurement using those two peptides. There was also

greater average percent enrichment measured using the b-F1-

ATPase95-109 and the b-F1-ATPase282-294 peptides compared to that

measured using the b-F1-ATPase 134-143 peptide that is attributed to

the existence of isobaric peptides for the b-F1-ATPase95-109 and the

b-F1-ATPase282-294. The probability of having a singly labeled

leucine in any given peptide increases with the number of amino acid

(i.e. leucine) residues that can incorporate labeled leucine, and the b-

F1-ATPase95-109 and the b-F1-ATPase282-294 peptides both contain

more than one leucine residues in their sequence.

Previously published approaches to measure the enrichment of

proteins labeled in vivo with stable isotopes in animal models [15]

were done in conjunction with high isotopic enrichment of the

proteins (i.e. feeding the animals highly enriched isotopes for very

long periods of time), none of which is practical in short-term (i.e.

only hours-long) animal or human experiments. Also, contrary to

the circumstance related to the determination of the enrichment of

a protein with a fast turnover rate such as the amyloid-b in human

cerebrospinal fluid [9], the slow turnover rate, and thus the lower

abundance of labeled b-F1-ATPase molecules in muscle, consti-

tutes a challenge to reproducibly measure the stable-isotope

enrichment of muscle b-F1-ATPase, and in a way that is practical

when investigating its kinetics in animals or humans. The present

study builds on the previously described approach [9], and extents

the methodology as well as its applicability to a muscle protein.

Evaluation of the reproducibility of the measurement of the stable-

isotope enrichment of peptides of a specific muscle protein using

LC-MS/MS is prerequisite for the use of any peptide-based

approach that is employed to measure the kinetics of such protein

in association with stable-isotope infusion experiments in animals

or humans. Our results show that the stable-isotope enrichment of

in-vivo-labeled muscle b-F1-ATPase can reliably be measured

based on the determination of the enrichment of the b-F1-

ATPase134-143 peptide.

Recently Jaleel et al. [16], have reported an MS/MS approach

to determine the stable-isotope enrichment of muscle proteins

labeled in vivo. This approach involves two separate steps, with the

first being the identification of a protein that is separated by two-

dimensional gel electrophoresis using LC-MS/MS, and the second

the measurement of the enrichment of the identified protein using

GC-MS/MS. Protein enrichment in the latter step is determined

by measuring the stable-isotope enrichment of an amino acid

following hydrolysis of the identified protein. Besides using a single

MS/MS step in the analysis of a pre-selected peptide, the

approach described herein is based on the measurement of the

stable-isotope enrichment of a unique peptide of the muscle

protein. This is important, because when determination of protein

enrichment is based on the determination of the enrichment of its

amino acids the accuracy of the measured enrichment depends on

the purity of the isolated protein in the sample (i.e. contamination

of the amino acids of the protein of interest by hydrolyzed amino

acids from unrelated proteins). A major advantage of the approach

described herein is, therefore, the specificity in the determination

of the enrichment of the protein of interest.

It is noted that the stable-isotope of the amino acid leucine

evaluated in the present study contains nine deuterium atoms,

which ensures practically zero d9-leucine b-F1-ATPase enrich-

ment at the initiation of the infusion period. Therefore, a single

muscle biopsy performed at the end of the period of interest

[17,18,19] in combination with frequent peripheral blood

sampling can be used to accurately describe the rate of synthesis

Figure 4. Relationship between measured and predicted
enrichment for the synthetic peptide IPVGPETLGR. D10-leucine
labeled and unlabeled IPVGPETLGR synthetic peptides were mixed at
eight different molar ratios, processed, and analyzed by LC-MS/MS. The
peak areas for d10-leucine-labeled and unlabeled y6-y8 fragment ions
for the IPVGPETLGR peptide were quantified. Peptide percent
enrichment was calculated by dividing the sum of the peak areas of
the labeled fragment ions by the sum of the peak areas of the
corresponding unlabeled fragment ions. Data between measured and
predicted percent enrichments were analyzed using regression analysis.
doi:10.1371/journal.pone.0026171.g004
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of b-F1-ATPase. Because the same peptide (IPVGPETLGR) is

observed in muscle from both rats (b-F1-ATPase134-143) and

humans (b-F1-ATPase134-143) [13], measurement of b-F1-ATPase

enrichment based on the enrichment of this peptide is readily

applicable to human experiments. Although we have specifically

been interested in b-F1-ATPase, this approach can be applied in

the determination of the enrichment of any protein from skeletal

muscle that has been labeled in vivo, and after evaluating the

existence of a peptide that can reliably be used to describe the

enrichment of the protein of interest. With respect to the

applicability of the approach described herein only the abundance

of the protein of interest in the sample is a concern. In the present

study, 2 mg of muscle protein (i.e. 20 mg of wet muscle) are

sufficient for the determination of b-F1-ATPase enrichment.

However, a larger muscle sample can increase the overall amount

of labeled proteins found in smaller quantities in skeletal muscle.

In this regard, and although in the present studies mitochondrial

b-F1-ATPase was immunoprecipitated from whole muscle ho-

mogenate, isolation of the mitochondria can enrich the protein

homogenate with mitochondrial proteins that are targeted for

quantitative determination several fold [20].

In conclusion, our results show that the reproducibility of the

determination of the stable-isotope enrichment of a protein using

LC-MS/MS may vary based on the specific peptide chosen to

describe the protein enrichment. The b-F1-ATPase134-143 peptide

provides reproducible results for the determination of the stable-

isotope enrichment of in vivo-labeled muscle b-F1-ATPase.

Although we have been interested in the enrichment of b-F1-

ATPase, this approach can be extended in the study of numerous

other proteins from skeletal muscle.

Supporting Information

Figure S1 MALDI and LC-MS/MS mass spectrometry
analysis of synthetic peptides. Synthetic IPVGPETLGR

peptides, corresponding to the tryptic peptide of the b-F1-ATPase

(i.e. b-F1-ATPase), were prepared to contain unlabeled and d10-

labeled-leucine. The top part shows MALDI spectra for the

unlabeled synthetic peptide (A) and the labeled-leucine synthetic

peptide (B), the latter shifted by 10 Da. The bottom part shows

LC-MS/MS spectra for fragment ions for the unlabeled synthetic

peptide (C) and the labeled-leucine synthetic peptide (D), the latter

shifted by 10 Da. These mass spectrometry data provide evidence

that the synthesized peptides correspond to unlabeled and d10-

leucine-labeled IPVGPETLGR peptides.

(TIF)
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