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Abstract

Background: The associations of glycemic load (GL) and glycemic index (GI) with the risk of cardiovascular diseases (CVD)
are not well-established, particularly in men, and may be modified by gender.

Objective: To assess whether high dietary GL and GI increase the risk of CVD in men and women.

Methods: A large prospective cohort study (EPIC-MORGEN) was conducted within the general Dutch population among
8,855 men and 10,753 women, aged 21–64 years at baseline (1993–1997) and free of diabetes and CVD. Dietary intake was
assessed with a validated food-frequency questionnaire and GI and GL were calculated using Foster-Powell’s international
table of GI. Information on morbidity and mortality was obtained through linkage with national registries. Cox proportional
hazards analysis was performed to estimate hazard ratios (HRs) for incident coronary heart disease (CHD) and stroke, while
adjusting for age, CVD risk factors, and dietary factors.

Results: During a mean follow-up of 11.9 years, 581 CHD cases and 120 stroke cases occurred among men, and 300 CHD
cases and 109 stroke cases occurred among women. In men, GL was associated with an increased CHD risk (adjusted HR per
SD increase, 1.17 [95% CI, 1.02–1.35]), while no significant association was found in women (1.09 [0.89–1.33]). GI was not
associated with CHD risk in both genders, while it was associated with increased stroke risk in men (1.27 [1.02–1.58]) but not
in women (0.96 [0.75–1.22]). Similarly, total carbohydrate intake and starch intake were associated with a higher CHD risk in
men (1.23 [1.04–1.46]; and 1.24 [1.07–1.45]), but not in women.

Conclusion: Among men, high GL and GI, and high carbohydrate and starch intake, were associated with increased risk of
CVD.
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Introduction

Cardiovascular diseases (CVD) are a major cause of death

worldwide. In Europe 54% of women and 43% of men die of

CVD [1]. Hyperglycemia, insulin resistance, and associated

disorders of lipid metabolism (hyperlipidemia) are key determi-

nants of CVD, and these determinants are in turn influenced by

diet [2,3]. High carbohydrate diets may promote hyperglycemia,

and can raise fasting triacylglycerol and reduce HDL levels [4–6],

which may eventually increase the risk of CVD. Postprandial

hyperglycemia is emerging as an independent and clinically

significant risk factor for CVD [7,8]. Therefore, high carbohydrate

diets may increase the risk of CVD.

However, dietary carbohydrates produce different glycemic

responses not only depending on their chemical structure, but also

on particle size, fiber content, and food processing [9]. These

differences between carbohydrate-containing foods can be ex-

pressed in the glycemic index (GI) which is a measure of the

postprandial glucose response [10], and can be considered an

indicator of the quality of food carbohydrates. Glycemic load (GL)

is calculated by multiplying the GI of a food with its carbohydrate

content and represents both quality and quantity of carbohydrates.

The Nurses’ Health Study provided first evidence for an

increased risk of CVD in women consuming high GL or high GI

diets, especially among those who are overweight [11,12]. These

results were confirmed in a study of Dutch women who consumed

a diet with a more modest glycemic load [13]. However, one large

and two smaller studies among men did not reveal any association

between dietary GL or GI and CVD risk [14–16], suggesting effect

modification by sex. Women have a more favorable lipid profile
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with lower fasting LDL and higher HDL levels, and a less

pronounced postprandial lipid response as a result of higher

adipose LPL activity[17]. In view of these and other sex-specific

differences (which also depend on age), the effects of high GI and

GL on CVD risk may differ between men and women[2,18].

So far, only two studies were able to make a direct comparison

between men and women. In an Italian cohort study, both a high

dietary GL and carbohydrate intake from high-GI foods were

associated with an increased risk of CHD among women but not

among men [19]. Similarly, in a Japanese cohort study, dietary GI

was positively associated with fatal stroke risk among women only

[20]. Therefore, the objective of the present study is to assess

whether high dietary GL, GI, and high intakes of carbohydrate

(subtypes), are associated with increased risk of CHD as well as

stroke, in a large cohort of Dutch men and women consuming a

modest glycemic load diet, and whether this association differs

between men and women.

Methods

Ethics Statement
The study complied with the Declaration of Helsinki and was

approved by the Medical Ethical Committee of TNO Nutrition

and Food Research. All participants gave written informed

consent prior to inclusion.

Population
The EPIC-MORGEN cohort consists of 22,654 men and

women aged 20–65 years selected from random samples of the

Dutch population in 3 towns (Amsterdam, Doetinchem, and

Maastricht) in the Netherlands between 1993 and 1997 [21,22].

All participants gave informed consent prior to inclusion.

Participants underwent a medical examination and filled in a

general and food frequency questionnaire (FFQ). After exclusion

of those who gave no consent to linkage with disease registries

(n = 2097), who had a history of type 2 diabetes (n = 194) or CVD

(n = 526), had missing nutritional data (n = 62), and/or were

ranked in the top or bottom 0.5% of the ratio of reported energy

intake over estimated basal metabolic rate (BMR; n = 210), a total

of 19,608 participants were eligible for analysis (cumulative

exclusion, n = 3,046).

Baseline Measurements
The general questionnaire contained questions on demograph-

ics, presence of and risk factors for chronic diseases. Physical

activity was assessed by a questionnaire, and categorized using the

validated Cambridge Physical Activity Index [23]. Physical activity

data were not available in the correct format for the first year of

the EPIC-MORGEN study. To reduce bias, missing CPAI scores

(25% of total) were imputed by single linear regression modeling

[SPSS MVA procedure]. Missing data were almost absent

(,0.6%) for other potential confounders and intermediates.

Educational level was based on the highest level achieved and

categorized into low, middle and high [22]. Anthropometric and

blood pressure measurements were performed as described

previously [22]. Hypertension was defined as present when one

or more of the following criteria were met: diastolic blood pressure

$90 mm Hg, systolic blood pressure $140 mm Hg, self-reported

antihypertensive medication use, or self-reported presence of

hypertension. Hypercholesterolemia was defined as a self-reported

physician diagnosis. Smoking was categorized into never, former,

and current smoker. Menopause was defined as the absence of

menstrual periods for at least a year (including surgical

menopause). Oral contraceptive (OC) use and postmenopausal

hormone replacement therapy (HRT) use was defined as ever

versus never. At baseline, all participants donated a non-fasting

blood sample. Plasma total cholesterol and HDL cholesterol levels

were determined using standardized enzymatic methods.

Dietary Information
Daily nutritional intake was obtained at baseline from a FFQ

containing questions on the usual frequency of consumption of 79

main food groups during the year preceding enrollment. This FFQ

has been validated against twelve 24-h recalls [24–26]. Pearson

correlations were 0.63 for GL and GI (men and women), 0.74

(men) and 0.76 (women) for carbohydrate, and 0.61 (men) and

0.74 (women) for fiber. The GI of foods was obtained from

international tables using glucose as the reference [27,28]. We

calculated daily GI by multiplying the GI value of each food item

with its carbohydrate content and frequency of consumption, and

dividing the sum of these values over all food items by the total

amount of carbohydrate consumed [29]. Daily GL was calculated

in the same manner but without dividing by the total amount of

carbohydrate consumed [30].

Morbidity and Mortality Follow-up
Data on morbidity were obtained from the Dutch Centre for

Health Care Information, which holds a register of hospital

discharge diagnoses from all general and university hospitals in the

Netherlands starting from 1990. The database was linked to the

cohort on the basis of a validated probabilistic method [31]. The

principal diagnosis, coded according to the Ninth Revision of the

International Classification of Diseases (ICD-9-CM), was used to

define the morbidity endpoints. Information on vital status was

available through linkage with the municipal administration

registries, and causes of death were obtained from Statistics

Netherlands. Causes of death were coded according to ICD-9 for

deaths until 1996 and ICD-10 thereafter. CHD (ICD-9-CM 410

to 414; ICD-10-CM I20 to I25) and stroke (ICD-9-CM 430 to

434, 436; ICD-10-CM I60 to I66) were the main end points of

interest, combining fatal events (primary and secondary cause of

death) and non-fatal events. In addition, we differentiated between

ischemic stroke (ICD-9-CM 433, 434; ICD-10-CM I63, I65) and

hemorrhagic stroke (ICD-9-CM 430 to 432; ICD-10-CM I60 to

I62).

Statistical Analysis
GL, GI, and intakes of nutrients were adjusted for total energy

intake by means of the regression residual method [32]. Person-

years of follow-up were calculated from the date of return of the

questionnaires to the date of CHD or stroke, emigration, death or

January 1 2008, whichever came first. Selected confounding

variables were incorporated into multivariate Cox proportional

hazard models stratified by sex. First, HRs were adjusted for age

(continuous; model M1). Next, CVD risk factors were added:

smoking, packyears (continuous), education, BMI (continuous),

physical activity, hypertension, and OC use (in women; model

M2). In the third model, total energy (continuous), and energy-

adjusted intake of alcohol (#10 g/day, .10–25 g/day, .25–

50 g/day, .50 g/day), vitamin C, fiber, saturated, monounsatu-

rated, and polyunsaturated fat (continuous) were added. Models

for GI were also adjusted for carbohydrates and protein

(continuous), while models for sugar and starch were mutually

adjusted. Finally, we evaluated the effect of potential intermediate

factors, by including total cholesterol and HDL-cholesterol

(continuous; model M4). Nonlinear associations were explored

by inclusion of quadratic terms, and were all non-significant

(P.0.11). Interactions with sex, BMI, age, and menopausal status
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were tested using the likelihood ratio test. In a sensitivity analysis

we excluded energy under-reporters (energy intake-to-BMR ratio

of less than 1.14) [33]. The proportional hazard assumption was

checked visually using log-minus-log plots with no deviations

detected. Data were analyzed with SAS (version 9.2; SAS Institute

Inc., Cary, NC) for Windows.

Results

Daily mean (6 SD) energy-adjusted dietary GL was lower in

men (121.8621.0) than in women (125.2619.8), while dietary GI

was similar (Table 1). The main contributors to GI were bread

(18%), milk products (18%), alcoholic and non-alcoholic beverages

(16%), potatoes (16%), and fruit (13%). Daily GL was largely

determined by consumption of bread (35%), potatoes (14%) and

sweets (13%). On average, men consumed more alcohol and less

vitamin C, were more often diagnosed with hypercholesterolemia,

and had lower HDL-cholesterol levels. Men and women in the

highest quartile of dietary GL consumed more carbohydrates,

sugar and starch, less protein and fat, more fiber and vitamin C,

and less alcohol than did those in the lowest quartile. They were

also younger and had a lower BMI, they were less highly educated

and smoked less, and, especially men, were less likely to be

hypertensive (data not shown).

During 233,697 person-years of follow-up, 581 CHD cases and

120 cases of stroke occurred among men, whereas 300 CHD cases

and 109 stroke cases occurred among women.

GL was positively associated with the risk of CHD in men, with

an HR of 1.12 (95% CI: 1.03–1.21) per SD increase, after

adjusting for established CVD risk factors (model M2, Table 2),

while no association was found in women (HR: 1.01; CI: 0.90–

1.14). Including nutritional factors (model M3) slightly augmented

the risk in men (HR: 1.17; CI: 1.02–1.35) and women, but the risk

in women remained non-significant (HR: 1.09; CI: 0.89–1.33).

Dietary GL was not associated with an increased stroke risk in men

(HR: 1.22; CI: 0.89–1.66) or women (HR: 0.91; CI: 0.65–1.27),

although the effect size in men was similar to that observed for

CHD risk. After adjustment for CVD risk factors and nutrients, GI

was related to stroke risk in men only (HR: 1.27; CI: 1.02–1.58;

versus HR in women: 0.96; CI: 0.75–1.22), while no association

was observed with CHD risk, neither in men nor women.

Total carbohydrate intake and starch intake were positively

associated with CHD risk in men (Table 3), with HRs per SD

increase of 1.23 (CI: 1.04–1.46) and 1.24 (CI: 1.07–1.45),

respectively, but not in women. Sugar intake was associated with

a slightly higher, although non-significant, risk of CHD in men.

Inclusion of total and HDL cholesterol as potential intermediates

in the model (model M4), attenuated the HRs for CHD in men

(HRs were reduced 10–50%) while not reducing the HRs for

stroke (Table 2 and 3).

Separating stroke subtypes, both GL and GI were positively

associated with risk of ischemic stroke as well as hemorrhagic

stroke in men, but the association was only statistically significant

for GI and ischemic stroke risk (HR: 1.34; CI: 1.01, 1.80). No

association between GL or GI and stroke subtypes was observed in

women. However, the low number of cases (69 in total, 25 among

men) precludes an accurate analysis of hemorrhagic stroke risk.

All interactions of GL or GI with sex, BMI (below and above

25 kg/m2), age (median split), or menopausal status were not

statistically significant. Only the interaction between GI and age

for men was borderline significant (p = 0.07). Subgroup analysis by

age (median 43.1 years) showed a stronger association of GI with

CHD risk in the younger men (1.27; CI: 0.98–1.64) than in older

men (0.98; CI: 0.88–1.10). Similar results were found for GL with

HRs of 1.45 (CI: 1.01–2.06) and 1.14 (CI: 0.98–1.33; interaction

p-value 0.55) respectively. The opposite was observed among

women with a negative, non-significant, association of GL and GI

with CHD risk in the younger women (0.80; CI: 0.47–1.38 and

0.89; CI: 0.61–1.30, respectively), and a positive, non-significant,

association of GL and GI with CHD risk in the older age group

(1.13; CI: 0.91–1.40 and 1.12; CI: 0.95–1.31, respectively).

Table 1. Baseline Characteristics* of the EPIC-MORGEN
cohort According to Sex.

Men Women

Variable

N (n,[%]) 8855 [45.2] 10753 [54.8]

Glycemic Load (g/d) 121.8 (21.0) 125.2 (19.8)

Glycemic Index 55.4 (4.1) 55.2 (3.6)

Age (yrs) 43.0 (11.0) 42.1 (11.3)

BMI (kg/m2) 25.4 (3.5) 24.7 (4.2)

Physical Activity (%)

Inactive 12.0 9.5

Moderately Inactive 31.3 31.8

Moderately Active 28.3 30.1

Active 28.5 28.7

Education (%)

Low 32.6 35.3

Middle 40.1 43.7

High 27.4 21.1

Smoking (%)

Never 31.3 37.8

Former 30.9 27.3

Current 37.9 34.9

Hypertension (%) 30.5 31.8

Hypercholesterolemia (%) 18.7 8.5

Total cholesterol (mmol/l) 5.3 (1.1) 5.3 (1.1)

HDL-cholesterol (mmol/l) 1.19 (0.30) 1.51 (0.37)

Menopausal status (% post) 23.4

OC use (%) 84.7

HRT use (%) 12.0

Dietary intake{

Energy (kcal/d) 2603 (666) 1984 (496)

Carbohydrates (g/d) 221.9 (30.1) 226.2 (29.9)

Sugar (g/d) 105.7 (29.1) 111.7 (29.6)

Starch (g/d) 115.4 (22.7) 114.4 (23.1)

Protein (g/d) 74.6 (10.2) 74.4 (10.9)

Total Fat (g/d) 75.6 (10.5) 78.2 (10.9)

Polyunsaturated Fat (g/d) 14.8 (3.7) 15.2 (3.7)

Monounsaturated Fat (g/d) 29.1 (4.8) 30.1 (5.1)

Saturated Fat (g/d) 31.0 (5.2) 32.4 (5.5)

Dietary Fiber (g/d) 22.8 (5.0) 22.8 (4.6)

Alcohol (g/d) 10.4 (13.3) 9.0 (15.4)

Dietary Vitamin C (mg/d) 92.4 (38.2) 108.8 (43.5)

*Mean (SD); {all nutritional variables were adjusted for total energy intake,
except energy. BMI = body mass index; OC = oral contraceptives; HRT =
hormone replacement therapy.
doi:10.1371/journal.pone.0025955.t001
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Sensitivity analyses, replacing BMI by waist-hip-ratio or waist

circumference did not appreciably affect the results. Associations

did not change after adjustment for menopausal status or HRT

use, removing OC use from the multivariate model or after

exclusion of people with prevalent cancer (n = 492). The

exclusion of CVD cases occurring in the first two years of

follow-up, or of energy under-reporters (n = 4267), augmented

the effects of GL on CHD risk in men (HR: 1.24; CI: 1.06–1.44;

and 1.31; CI: 1.11–1.54) but not in women. Finally, restriction of

the analysis to fatal outcome, confirmed the results showing a

positive association of GL with CHD in men only (HR: 1.79; CI:

1.23–2.60).

Table 2. Glycemic Load, Glycemic Index, and the Risks of Coronary Heart Disease and Stroke Among 8,855 Men and 10,753
Women*.

CHD Stroke

Men Women Men Women

Cases 581 300 120 109

GL M1: age 1.01 (0.93–1.09) 0.97 (0.86–1.08) 0.99 (0.83–1.17) 0.94 (0.78–1.14)

M2: M1 + CVD risk factors{ 1.12 (1.03–1.21) 1.01 (0.90–1.14) 1.06 (0.89–1.27) 0.97 (0.80–1.18)

M3: M2 + nutrients{ 1.17 (1.02–1.35) 1.09 (0.89–1.33) 1.22 (0.89–1.66) 0.91 (0.65–1.27)

M4: M3 + intermediates1 1.14 (0.99–1.32) 1.05 (0.86–1.28) 1.23 (0.90–1.69) 0.90 (0.65–1.26)

GI M1: age 1.05 (0.97–1.13) 1.08 (0.96–1.22) 1.10 (0.92–1.30) 1.07 (0.88–1.30)

M2: M1 + CVD risk factors{ 1.09 (1.01–1.17) 1.03 (0.92–1.16) 1.12 (0.95–1.32) 1.02 (0.84–1.24)

M3: M2 + nutrients{I 1.03 (0.93–1.14) 1.08 (0.93–1.25) 1.27 (1.02–1.58) 0.96 (0.75–1.22)

M4: M3 + intermediates1I 1.02 (0.92–1.13) 1.07 (0.92–1.24) 1.27 (1.02–1.58) 0.95 (0.75–1.22)

*Adjusted Hazard Ratios (with 95% CI) per SD of GL (20.5) and GI (3.9).
{Adjusted for age, smoking (never, past, current), packyears, education (low, middle, high), BMI, physical activity (inactive, moderately inactive, moderately active,
active), hypertension (yes, no), and OC use (ever, never).
{Additional adjustment for total energy, and energy-adjusted nutrients: alcohol (#10, 10–25, 25–50, .50 g/day), vitamin C, dietary fiber, and saturated,
monounsaturated, and polyunsaturated fat. 1Model 3, additionally adjusted for plasma total cholesterol, and HDL-cholesterol.
IModels M3 and M4 for GI were also adjusted for energy-adjusted carbohydrate and protein intake. Among the 229 stroke cases, 115 cases of ischemic stroke (68
among men), and 69 (25 among men) cases of hemorrhagic stroke were recorded. GL correlated strongly with carbohydrate intake (Pearson r.0.91), while GI did not
(r,0.35).
CHD = coronary heart disease; GL = dietary glycemic load; GI = dietary glycemic index; M = model; HDL = high-density lipoprotein.
doi:10.1371/journal.pone.0025955.t002

Table 3. Total Carbohydrate, Sugar, and Starch, and the Risks of Coronary Heart Disease and Stroke Among 8,855 Men and 10,753
Women*.

CHD Stroke

Men Women Men Women

Cases 581 300 120 109

Carbohydrates M1: age 0.99 (0.92–1.08) 0.93 (0.83–1.04) 0.94 (0.79–1.12) 0.90 (0.74–1.08)

M2: M1 + CVD risk factors{ 1.12 (1.03–1.21) 1.00 (0.89–1.12) 1.01 (0.84–1.21) 0.94 (0.78–1.14)

M3: M2 + nutrients{ 1.23 (1.04–1.46) 1.04 (0.82–1.33) 1.01 (0.70–1.45) 0.91 (0.61–1.35)

M4: M3 + intermediates1 1.20 (1.02–1.43) 1.00 (0.79–1.28) 1.02 (0.70–1.47) 0.90 (0.60–1.34)

Sugar M1: age 0.96 (0.89–1.05) 1.01 (0.90–1.14) 0.96 (0.80–1.15) 0.93 (0.77–1.12)

M2: M1 + CVD risk factors{ 1.03 (0.95–1.12) 1.08 (0.97–1.21) 0.99 (0.83–1.19) 0.96 (0.80–1.16)

M3: M2 + nutrients{I 1.17 (0.99–1.38) 1.10 (0.86–1.41) 1.00 (0.70–1.44) 0.96 (0.65–1.44)

M4: M3 + intermediates1I 1.15 (0.97–1.36) 1.05 (0.82–1.35) 1.01 (0.70–1.46) 0.95 (0.63–1.42)

Starch M1: age 1.03 (0.95–1.12) 0.89 (0.79–1.00) 0.97 (0.81–1.16) 0.96 (0.79–1.16)

M2: M1 + CVD risk factors{ 1.09 (1.01–1.19) 0.90 (0.80–1.01) 1.02 (0.86–1.23) 0.99 (0.82–1.19)

M3: M2 + nutrients{I 1.24 (1.07–1.45) 0.94 (0.76–1.17) 1.07 (0.76–1.50) 0.88 (0.62–1.25)

M4: M3 + intermediates1I 1.22 (1.04–1.42) 0.92 (0.74–1.14) 1.07 (0.76–1.51) 0.87 (0.61–1.24)

*Adjusted Hazard Ratios (with 95% CI) per SD of carbohydrates (30.1), sugar (29.5), and starch (22.9).
{Adjusted for age, smoking (never, past, current), packyears, education (low, middle, high), BMI, physical activity (inactive, moderately inactive, moderately active,
active), hypertension (yes, no), and OC use (ever, never).
{Additional adjustment for total energy, and energy-adjusted nutrients: alcohol (#10, 10–25, 25–50, .50 g/day), vitamin C, dietary fiber, and saturated,
monounsaturated. 1Model M3, additionally adjusted for plasma total cholesterol and HDL-cholesterol. IModels M3 and M4 for sugar and starch were mutually
adjusted.

doi:10.1371/journal.pone.0025955.t003
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Discussion

Our main finding is that in this Dutch cohort consuming a

modest GL diet, a high dietary GL and GI, and high total

carbohydrate and starch intake, were associated with an increased

CVD risk in men. In men, GI was associated with an increased

stroke risk, while GL, carbohydrate and starch intake were

associated with an increased CHD risk. Among women, no

significant associations were observed.

Apart from a recent Swedish cohort study showing no significant

associations of GL and GI with CVD in women [34], most studies

have suggested an association of dietary GI and GL with CVD risk

for women and not for men [11–16,19,20]. Our results suggest the

opposite with positive associations for GI and GL among men, but

not women, although it should be noted that the interactions of GI

and GL with sex were not statistically significant. These

discrepancies may be explained by differences between the study

populations. First, differences in diet and dietary contributors to GI

and GL between the study populations may contribute to these

results. Higher carbohydrate consumption and GL are observed in

the American, Italian and Japanese studies [11,12,16,19,20] and

particular foods like pasta and rice contribute more strongly to GL

in these studies than ours. However, dietary differences are unlikely

to fully explain our results because studies in Dutch and Swedish

cohorts with similar GL and contributors to GL also show results

opposite to those in the current study [13–15].

Second, there are differences in the general characteristics and

risk factors for chronic disease between the study populations.

CVD risk among women may be influenced by OC and HRT use,

and modified by menopausal status. In addition, the strongest

associations of GL and GI with CVD risk were generally observed

among overweight women [11–13,16]. However, we could not

detect an interaction with BMI, and adjustment for menopausal

status, OC and HRT use did not influence our results. Finally,

participants in our study were 20–66 years old (average 43 years)

at baseline, considerably younger than in the other studies where

average age is above 50 years. In a subgroup analysis comparing

older and younger men, we observed a stronger association of GL

and GI with CHD risk in the younger age group (average age 34

years) than in the older age group (average age 52 years), while our

results suggest the reverse among women. Our results on the older

age group are in reasonable agreement with the results found for

similarly aged men and women in earlier studies. Thus, although

the interaction with age did not reach statistical significance, it

could potentially explain our results in comparison with previous

studies. Moreover, the finding that younger men may be more

sensitive to high GL and GI is an important message given the

prevalence of obesity in adolescents and the role of nutrients

contributing to high glycemic load in current dietary behavior in

younger generations.

Our results are the first to show that dietary GI and GL are

associated with an increased risk of CVD among men. Only in a

small Finnish cohort study, a positive association of GL and GI

with myocardial infarction risk among men was observed, but

these associations were only significant among overweight or

physically less active men [35]. In addition, a recent prospective

cohort study indicated that replacing dietary saturated fatty acids

with high-GI carbohydrates is associated with a higher risk of

myocardial infarction particularly among men [36]. Altogether,

our findings and the aforementioned studies suggest that high

dietary GI and GL also increase risk of CVD among men. More

observational studies are required to replicate our findings and to

come to a final conclusion on the associations of dietary GI and

GL with CVD risk among men and women.

In men, dietary GL increased CHD risk, while dietary GI

increased stroke risk. However, the effect size of the association of

dietary GL with stroke risk was similar to that of GI, but did not

reach statistical significance (Table 2). So far, positive associations

of GL or GI with stroke risk have only been observed among

women, and a high stroke risk was either associated with GL

[12,13] or GI [20]. The slightly different associations of GI and

GL with stroke could to some extent be explained by different

associations for stroke subtypes. Two previous studies [12,14]

showed that a high dietary GL and carbohydrate intake were

particularly associated with an increased risk of hemorrhagic

stroke, but not ischemic stroke. Associations of dietary GI were

similar for ischemic and hemorrhagic stroke. These studies suggest

that a high carbohydrate intake and thus a high GL is

predominantly associated with risk of hemorrhagic stroke. Since

the vast majority of stroke cases are ischemic strokes, this may have

attenuated the association of GL with stroke. Our data suggest that

in men, the GI component of GL is responsible for the (non-

significant) positive association of GL with stroke risk, while the

carbohydrate component of GL appears to be responsible for the

increased CHD risk. Up to now, associations of carbohydrate

intake and CVD risk have not been reported for men.

Contradictory results were obtained for women, with either no

associations found [11,13,20], or positive associations [12,19]. Our

data suggest that total carbohydrate, starch, and GL, are equally

strong predictors for CHD risk in men, whereas only GL and GI

are predictors for stroke risk.

Randomized trials have shown that low-GI and low-GL diets

affect plasma concentrations of LDL-cholesterol, HDL-cholester-

ol, total cholesterol, triglycerides and markers of inflammation and

thrombosis, as well as insulin resistance, in ways that would be

expected to reduce CVD risk [37–42]. The importance of lipid

intermediates in determining CVD risk was also reflected in our

analyses showing that the association between carbohydrate

determinants and CHD risk was reduced by including plasma

total cholesterol and HDL-cholesterol in the multivariate models.

In contrast, associations with stroke risk were not reduced.

Associations of CVD risk factors, such as hyperlipidemia and

hypertension, with CHD and stroke risk have been shown to differ

[43–45], and may be explained by etiological differences between

CHD and stroke.

A strength of our study is its prospective design and large sample

size. Residual confounding can not be excluded, but is made less

likely by the large number of risk factors that we adjusted for.

Misclassification of dietary exposure is a valid concern in studies

that rely on self-report. Moreover, the FFQ was not specifically

designed to measure dietary GL and GI. However, the Dutch

EPIC FFQ has been validated showing good agreement with 24-h

recalls for most food groups as well as for dietary GL and GI [24–

26]. A previous study showed that underreporting influenced

associations of dietary GI and GL with risk of diabetes [46].

Although, a broad exclusion of potential energy-underreporters

did augment the effects of GL and GI on CVD risk in men, it did

not result in a positive association of GL or GI with CVD risk in

women. There has recently been some criticism with respect to the

reliability and individual variability of GI [47]. Overall, GI

appears to be a valid predictor of the glycemic response, also to

mixed meals [48,49]. Even though not every food with a low GI

may be equally beneficial, GI represents a useful functional

property that can help guide dietary choices that should also take

total available and unavailable carbohydrate consumption into

account [50].

To our knowledge, this is the first study to show that, also

among men, dietary GL and GI may be associated with an
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increased CVD risk, but these findings need to be further

replicated. Dietary GL, and carbohydrate and starch intake were

associated with increased CHD risk, while dietary GI was

associated with increased stroke risk in men. No associations were

observed for women. Also considering earlier studies carried out in

more aged study populations, dietary GL and GI emerge as

potentially important determinants of CVD risk for both men and

women. Notably, increments of 1 SD in dietary GL, GI, and

carbohydrate were shown to be achievable in practice[51].

Therefore, reducing dietary GL and GI should be part of the

nutritional advice for a healthy lifestyle.
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