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Abstract

Cell penetrating peptides constitute a potent approach to overcome the limitations of in vivo siRNA delivery. We recently
proposed a peptide-based nanoparticle system, CADY, for efficient delivery of siRNA into numerous cell lines. CADY is a
secondary amphipathic peptide that forms stable complexes with siRNA thereby improving both their cellular uptake and
biological response. With the aim of understanding the cellular uptake mechanism of CADY:siRNA complexes, we have
combined biochemical, confocal and electron microscopy approaches. In the present work, we provide evidence that the
major route for CADY:siRNA cellular uptake involves direct translocation through the membrane but not the endosomal
pathway. We have demonstrated that CADY:siRNA complexes do not colocalize with most endosomal markers and remain
fully active in the presence of inhibitors of the endosomal pathway. Moreover, neither electrostatic interactions with cell
surface heparan sulphates nor membrane potential are essential for CADY:siRNA cell entry. In contrast, we have shown
that CADY:siRNA complexes clearly induce a transient cell membrane permeabilization, which is rapidly restored by cell
membrane fluidity. Therefore, we propose that direct translocation is the major gate for cell entry of CADY:siRNA
complexes. Membrane perturbation and uptake are driven mainly by the ability of CADY to interact with phospholipids
within the cell membrane, followed by rapid localization of the complex in the cytoplasm, without affecting cell integrity
or viability.
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Introduction

Small interfering RNA (siRNA) has great potential as a
therapeutic molecule, due to its high target specificity, efficiency
for gene silencing and its simple design [1,2]. However, the major
limitation for clinical development of siRNA, remains its low
bioavailability and poor cellular uptake associated with the lack of
permeability of the cell membrane to negatively charged nucleic
acids [3-5]. Therefore, the success of siRNA is dependent on
carrier molecules and numerous non-viral strategies have been
proposed to improve the delivery of synthetic small oligonucleo-
tides [6-9]. During the last decade, Cell-penetrating peptides
(CPPs) have been widely used for the delivery of therapeutic
molecules and have been reported to favour the delivery of a large
panel of cargos (plasmid DNA, oligonucleotide, siRNA, PNA,
protein, peptide, liposome, nanoparticle...) into a wide variety of
cell types and in vivo models [10-12]. CPPs can penectrate
biological membranes and introduce biomolecules across the
plasma membrane into the cytoplasm, improve their intracellular
routing, thereby facilitating interactions with the target. CPPs can
be subdivided into two main classes, the first requiring chemical
linkage with the cargo and the second involving the formation of
stable, non-covalent complexes [10-12].
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Since the discovery of the first CPPs about 20 years ago, several
mechanisms for their cellular uptake have been proposed [13,14].
Today it has become clear that there is no universal pathway of cell
entry, but rather that it depends on the physical properties of the
CPP together with factors such as the nature of the cargo, the
concentration used and the presence of specific heparan sulfate
proteoglycans (HSPGs) on the cell surface. For most CPPs, evidence
for several routes has been reported, dependent or not on the
endosomal pathway [10,13-15]. In most cases, the first contacts
between CPPs and the cell surface occur through electrostatic
interactions with components of the extracellular matrix, cell
surface proteoglycans, followed by a remodelling of the actin
network and a selective activation of small GTPases [14,16,17].
These interactions constitute the ‘onset” of internalization and have
a major impact on membrane fluidity, thereby promoting CPP cell
entry via macropinocytosis [18], clathrin-dependent endocytosis
[19], or via membrane perturbation [20-22]. Each mechanism has
its own liabilities. Uptake via endocytosis, as seen for numerous
CPPs such as Tat, Arg9, Transportan and Penetratin, may hamper
biological activity due to the fact that a large proportion of CPP-
cargo is trapped in endosomal compartments and then degraded in
the lysosomes. At higher concentrations, starting from 10 puM,
TAT, Penetratin and Arg9 CPPs have been shown to enter the cell
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via direct penetration, which can induce irreparable membrane
damage and cell death [15,20,22].

In order to improve cellular uptake of charged oligonucleotides,
we have developed an alternative non-covalent strategy for the
delivery of siRNA, based on amphipathic peptides, that has been
reported to improve siRNA delivery ex-vivo into a large panel of
cell lines and m vivo [23,24]. Non-covalent strategies appear to be
more appropriate for siRNA delivery, and yield significant
associated biological response [25-27]. We have recently de-
scribed a new peptide-based delivery system for siRNA using the
secondary amphipathic peptide CADY [24]. CADY is a 20-
residue peptide, “Ac-GLWRALWRLLRSLWRLLWKA-cya”,
that binds non-covalently to siRNA by combining both electro-
static and hydrophobic interactions to form stable nano-complexes
that can enter cells, seemingly independently of endocytosis. We
demonstrated that CADY efficiently delivers siRNA in various cell
lines providing a knockdown response at low nanomolar range
[24,28]. A better understanding of the uptake mechanism of
CADY:siRNA complex is essential in order to further develop this
technology for in vivo and clinical evaluation.

In the present work, the cellular uptake mechanism of CADY:
siRNA particles has been investigated in detail by combining
biochemical and microscopic approaches. Using confocal micros-
copy as a non-invasive and descriptive approach, we report that
CADY:siRNA does not colocalize with endosomal markers
suggesting non-endosomal cellular uptake of the complexes. These
results were further confirmed by transmission electron microscopy.
Moreover we show that although there is an interaction of
CADY:siRNA complex with heparan sulphates, this interaction is
not required for cellular entry. However, monitoring changes in
intracellular calcium levels with the calcium indicator FURA,
reveals that CADY:siRNA complexes induce a transient permea-
bilization of the cell membrane. Taken together, these results suggest
that the main mechanism of cell entry is driven by interactions
between CADY and cell membrane phospholipids and occurs via
membrane perturbation, followed by rapid release in the cytoplasm,
without disrupting cellular integrity or biological viability.

Results

Interaction with cell surface-heparan sulphates is not
required for CADY cellular uptake

The cell membrane is covered with negatively charged
proteoglycans, such as heparan sulphate proteoglycans (HSPGs)
which constitute the first external barrier before the lipid phase of
the membrane. For numerous CPPs, the first step of cellular uptake
mechanism has been reported to be driven by the electrostatic
interaction between the cationic CPPs and the anionic HS-
component of the proteoglycan [10,14]. We have investigated if
this interaction was also required for cellular uptake of the CADY/
siRNA complex. As reported in Figure 1A, the presence of the
HSPG analogue heparin (5 ng/ml), during the transfection of Hela
cells with CADY:siRNA complexes, at molar ratio 40/1, (CADY
and siRNA concentrations of 3.2 uM and 80 nM, respectively),
clearly reduced the GAPDH target protein knock down, suggesting
that the heparin analogue sequestered CADY:siRNA complexes.
This result confirms our previous results, showing that m witro,
CADY:siRNA complexes can interact with HSPGs, implying a
possible initial electrostatic contact at the cell surface [28]. However,
we cannot exclude that the CADY:siRNA complexes are not only
sequestered by heparin, but also dissociated, as shown for higher
HSPG concentrations [28]. To better address this question,
transfection and cellular uptake efficiencies of CADY:siRNA were
compared for three different CHO cell lines: CHOW', CHO™S ™/~
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lacking heparan sulphates, and CHO gl lacking glycosamino-
glycanes (GAGs). The three cell lines were transfected with
CADY: siRNA-FITC at molar ratio 20/1 (CADY and siRNA
concentrations of 1.6 uM and 80 nM, respectively). Analysis of
cellular uptake by FACS, revealed a similar transfection efficiency of
~90% for all three cell types (Figure 1B-D), leading us to conclude
that, in contrast to several CPPs [14,19] the cellular uptake of
CADY:siRNA complexes is not mediated by electrostatic interac-
tions with GAG components. Due to it positive net charge
CADY:siRNA complexes can interact with HSPG, an interaction
which is not required for cellular uptake, but which partially
dissociate the CADY:siRNA complex.

CADY-mediated siRNA delivery is independent of
endocytosis

We previously reported that the presence of the endosomal
inhibitors amiloride, nocodazole or methylbetacyclodextrin did
not affect the efficacy of CADY to deliver siRNA [24]. Previous
results shown that CADY:siRNA complexes are efficiently taken
up by cells in the presence of endocytotic inhibitors. However, one
should keep in mind that none of these inhibitors are 100%
specific for one pathway. Furthermore, there is always a risk that
when inhibiting one pathway, the cells try to compensate by
activating another pathway [29,30]. To circumvent this problem,
we investigated whether CADY transfected siRNA was trapped in
endocytotic vesicles and colocalize with endosomal markers by
confocal microscopy. HeLa cells were transfected with 80 nM
fluorescently labelled siRNA (FITC- or Cy3-siRNA) in complex
with 320 nM CADY, in the presence of markers for different
endocytotic pathways To follow the kinetics of endosomal uptake,
fixed and unfixed cells were analyzed 20, 40, 60 or 120 minutes
after transfection. Rhodamine-labelled transferrin and Lysotracker
were used as a marker for clathrin-mediated endocytosis and
lysosomes, respectively [31-32]. Anti-Rab5 was used as a general
endosomal marker and anti-caveolin as a marker for caveolin-
mediated endocytosis [32-35]. Similar results were obtained for
fixed and unfixed cells. As reported in Figure 2 D-E and Figure 3
D-F (data not shown), neither transferrin, nor Rab5-positive
endosomes co-localised with CADY:siRNA during the time points
observed. Lysotracker co-localized with siRNA-FITC to some
extent after 60 and 120 minutes (Figure 2 G-L). After 60 minutes
of transfection, in the majority of the cells siRNA-Cy3 did not co-
localize with caveolae-positive endosomes. (Figure 3 A-C) That
siRNA/caveolae colocalization could be observed to a small
extent, fits with previous results, indicating that a small fraction of
CADY:siRNA uptake could be mediated by caveolae [24].

Cholera toxin subunit B (CtB) was used as a marker for lipid rafts.
Although, it has been proposed to be taken up by both clathrin- and
caveolin mediated endocytosis [33,36], there is also uptake of lipid
rafts by less defined endocytotic pathways [34]. As reported in
Figure 2 A-C, Alexa594-labelled CtB co-localized to a large extent
with siRNA-FITC between 20 and 120 minutes after transfection.
However, when CtB was taken up in the absence of CADY:siRNA
much smaller entities were observed with different distribution
(Figure 2M). This implies that the co-localisation could be due to a
CADY-mediated uptake of CtB. In contrast, cell entry of transferrin
and lysotracker is not affected by the presence of CADY:siRNA.
(Figure 2 N,O). Taken together; these data further support an
uptake mechanism largely independent of classical endocytosis.

CADY mediates siRNA-transfection independently of the
cellular energy state

The energy status of the cell plays an essential role for efficient
mtracellular translocation of several polycationic CPPs. Indeed, it
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Figure 1. Electrostatic interaction between CADY and HSPGs is not required for efficient transfection. (A) Hela cells were pre-treated
for 30 min with free medium or medium containing 5 pg/ml heparin prior to addition of 80 nM siRNA complexed to CADY at a 1:40 molar ratio. Cells
were incubated in the presence of heparin for 1 hr, then extensively washed in PBS and replaced in DMEN containing 10% FCS. Cells were harvested
after 48 hours and protein levels were analysed by Western blotting. CHO wild type (WT) (B), glycosaminoglycan deficient (gl~’") (C) and heparan
sulfate deficient (HS /") (D) cells were transfected with 80 nM FITC-labeled siRNA complexed to CADY at a 1:20 molar ratio. After 1.5 hrs, cells were

extensively washed, trypsinized and analyzed by FACS.
doi:10.1371/journal.pone.0025924.g001

has been shown for several CPPs that their transport through the
plasma membrane is dependent on the transmembrane potential
[21,37-41]. To address these questions, the impact of temperature
and of sodium azide, an inhibitor of mitochondrial oxidative
phosphorylation, was evaluated on CADY transfection efficiency.
HeLa cells were incubated with 80 nM FITC-labelled siRNA
complexed with 1.6 pM CADY at 37°C and 4°C, for 90 min, cells
were then trypsinized and the transfection efficiency was
quantified by FACS. At 4°C, 60% of the cells were FITC positive,
only slightly less than at 37°C (69% positive cells), demonstrating
that metabolically inactive cells are efficiently transfected by
CADY (Figure 4 A,B). In none of the conditions, (37° or 4°C) the
cellular uptake of CADY:siRNA was associated with increased
toxicity, as no major differences were observed in the level of PI
positive cells after treatments (Figure S1). To further determine if
CADY uptake was energy-dependent, HeLa cells were incubated
with increasing concentration of sodium azide (ranging from 0.1 to
10 mM), 30 minutes prior to, and 1 hour after transfection with
CADY:siGAPDH (3.2 uM and 80 nM, respectively), then the
level of GAPDH protein was quantified by Western blotting after
48 hr. Both in the absence and in the presence of sodium azide,
the levels of GAPDH were equally reduced demonstrating that the
transfection efficiency was unaffected by the presence of sodium
azide and that the cellular uptake of CADY:siRNA complexes
does not depend on the energy state of the cell (Figure 4C).
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CADY:siRNA complex induces transient permeabilization
of the plasma membrane

We previously demonstrated that @ vitro CADY:siRNA
complexes strongly interact with phospholipid monolayers [28],
implying that CADY:siRNA complexes can cross the plasma
membrane by direct penetration. To test this hypothesis at the
cellular level, we evaluated the fluctuations of intracellular calcium
during CADY transfection using HeLa cells charged with the
ratiometric fluorescent calcium indicator FURA-2AM. Considering
that the concentration of calcium is lower inside the cell than
outside, permeabilization of the plasma membrane, is associated
with an influx of calcium. Once the cell has repaired the membrane,
the calcium level is restored by active export [42]. 55% of the
observed cells exposed to a 10 second pulse of CADY:siRNA
complexes (1200 nM and 20 nM, respectively) responded by an
immediate influx of calcium (Figure 5 A,E). The response was
transient and calcium levels were fully restored after 100 seconds.
Cells could be pulsed again, yielding the same response, indicating
that the plasma membrane could easily be resealed, thereby
ensuring cellular integrity and viability. 24% of the observed cells
did not return to basal calcium levels after repeated pulses during
the time of observation (Figure 5 A,E). It is possible that these cells
needed longer time to restore their calcium levels, or that they did
not recover after repeated exposure. 21% of the observed cells did
not respond and remained with low basal calcium levels (Figure 5
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Figure 2. Cellular uptake of CADY:siRNA-FITC complexes in the presence of endosomal and lysosomal markers. Hela cells grown on
glass coverslips were transfected with 80 nM FITC-labeled siRNA complexed to CADY at a 1:4 ratio together with either choleratoxin subunit B (CtB)
(A-C), transferrin (D-F) or lysotracker (G-L). Cells were extensively washed and fixed in PFA at indicated time points. (M-O) Non-transfected HelLa

cells treated with CtB, Transferrin and Lysotracker.
doi:10.1371/journal.pone.0025924.9002

G,E). To verify that the increase in intracellular calcium was the
result of an extracellular influx not that of intracellular release from
the endoplasmic reticulum, cells were loaded with FURA-2AM
followed by extensive washes and incubation in calcium-free
medium. Under these conditions, no increase in intracellular
calcium was observed upon treatment with CADY:siRNA com-
plexes (Figure 5 D,E). To exclude the possibility that cells showed no
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calcium influx due to decreased transfection efficiency in the
absence of calcium, HeLa cells were transfected with FITC-labelled
siRNA in the presence or absence of calcium. 90 min after
transfection cells were trypsinized and the transfection efficiency
was quantified by FACS. As reported in Figure 5 -G no difference
was observed between cells transfected with calcium (77% of FITC
positive cells) and without calcium (79% of FITC positive cells).

October 2011 | Volume 6 | Issue 10 | e25924
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Figure 3. Cellular uptake of CADY:siRNA-Cy3 complexes in the presence of endosomal markers. Hela cells grown on glass coverslips
were transfected with 80 nM Cy3-labelled siRNA complexed to CADY at a 1:4 molar ratio. After 1 hr, cells were fixed in PFA and stained with anti-

caveolin (A-C) or anti-Rab5 (D-F).
doi:10.1371/journal.pone.0025924.9003

CADY:siRNA complex cellular uptake through direct CADY:siRNA nanoparticles avidly associated with cells and after
30 minutes were bound with the cell surface as well as inside the

cell, and after 2 hours more nanoparticles were found accumu-
lating in the cytoplasm (Figure 6A and data not shown). The
particles were not observed to induce endocytosis at the cell
surface. Each nanoparticle contains several siRNNA molecules, and
although the CADY peptide is not visible, we can estimate each
particle to be around 100 nm (indicated by arrows in Figure 6B
and C), in line with our previous observations by dynamic light

translocation

In order to better understand the mechanism behind the
membrane permeabilization observed by FURA labelling and to
directly visualize cellular uptake of CADY:siRNA complexes,
transfected cells were analyzed by transmission electron micros-
copy. HeLa cells were transfected with CADY:siRINA-gold (molar
ratio 20/ 1, with concentrations of 1.6 uM and 80 nM respectively)
during 30 minutes or 2 hours prior to fixation, Gold-labelled
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Figure 4. CADY transfection in energy depleted cells. Hela cells were pre-incubated for 30 min at 37°C (A) or 4°C (B) prior to addition of
80 nM FITC-labeled siRNA complexed to CADY at a 1:20 molar ratio. After 1.5 hr incubation at indicated temperatures, cells were washed, trypsinized
and analysed by FACS. (C) Hela cells were pre-treated with medium containing variable concentrations of sodium azide (NaNs) for 30 mins prior to
addition of 80 nM siRNA complexed to CADY at a 1:40 molar ratio. Cells were incubated for 1 hr in the presence of NaNs, then extensively washed,
trypsinized and resuspended in medium containing 10% FCS. Cells were harvested after 48 hours and protein levels were analyzed by Western

blotting.
doi:10.1371/journal.pone.0025924.9004
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Figure 5. CADY:siRNA complexes induce cellular influx of calcium. Hela cells were incubated with 5 uM FURA-2AM followed by washes in
HEPES-Krebs-Ringer (HKR) buffer (A-C,E) or HKR buffer without calcium (D,E). The ratio of 340(ca-bound FURA-2aMY/380(FURA-2aM) MM EXCitatory
wavelengths was recorded upon addition of 20 nM siRNA complexed to CADY at a 1:20 molar ratio. HelLa cells were transfected with 80 nM FITC
labeled siRNA complexed to CADY at a 1:20 molar ratio in the presence (F) or absence (G) of calcium. After 90 mins, cells were washed, trypsinized

and analysed by FACS.
doi:10.1371/journal.pone.0025924.g005

scattering [28]. There is a clear disorganisation of the cell
membrane, seemingly due to the high affinity of CADY:siRNA
particles for phospholipids. In closer detail, particles interacting
directly with the cell membrane were identified (arrowheads in
Figure 6B), as well as internalized particles in the cytoplasm with no
surrounding membrane (arrows in Figure 6B). However, a small
fraction of the nanoparticles, often grouped together in larger
complexes, was found inside large vesicles (asterisk in Figure 6C),
indicating that there can be a difference in the uptake depending on
the size of the particles. Interestingly, the CADY:siRNA particles
seemed to interact with the vesicle membrane as it often was not
intact, and with several surrounding complexes on the outside.
These data support the previous observations of a non-endocytic
and direct penetrating mechanism of CADY.

Discussion

Understanding cellular uptake of cell penetrating peptides
remains a major task in order to improve their potency and
promote their i vivo application. During the last decade extensive
studies have revealed that several factors including the nature and
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the structure of the CPP, their mode of application (covalently-
linked or self-assembled with the cargo), the nature of the cargo,
play a major role in the cellular uptake mechanism [10-15].
Today, it is clearly established that different cell entry routes can
existed simultaneously or sequentially depending on the CPP. In
the present work, we have investigated in detail, the cellular uptake
mechanism of the secondary amphipathic peptide CADY, a
potent non covalent carrier for siRNA delivery [24]. In many
cases, analysis of CPP cellular uptake has been performed with
labelled-CPP in the absence of the cargo, therefore results can be
misguiding. We have focused on the cellular behavior of the cargo
upon CPP-delivery, following fluorescently labeled-siRNA within
the cell and their associated biological response, rather than
monitoring free CADY molecule. We propose that the major
route for CADY:siRNA cell entry occurs by direct membrane
translocation rather than by endocytosis, followed by a rapid
release of the siRNA within the cytoplasm.

For several CPPs the first contact with the cell surface involves
mteractions with HSPG components that trigger cellular uptake.
In contrast, in the case of CADY:siRNA, although the complex is
able to interact with heparan sulphates, this interaction is not
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Figure 6. Electron micrographs of membrane interaction and internalization of CADY:siRNA nanoparticles. Hela cells were incubated
with complexes of nanogold-labeled siRNA (80 nM) complexed to CADY at a 1:20 molar ratio for 2 h. Interaction of CADY:siRNA-nanogold complexes
as dense particles with plasma membrane (A, arrowheads in B), translocation into cells (arrows in B) and localization in endosomal vesicle

(asterisk in C) or free in cytosol (arrows in C).
doi:10.1371/journal.pone.0025924.g006

required for cell entry, as also suggested for other CPPs [43].
However, the presence of HS can alter the stability of the particles
and reduce efficiency at low complex molar ratios (5/1; 10/1), but
can also result in the dissociation of large particles and limit
aggregation at the cell surface as confirmed by EM measurements.

CADY:siRNA complex does not follow an endosomal route.
Indeed, siRNA delivered into the cells by CADY does not co
localize with classical endocytotic markers such as transferrin,
Rab5 and Caveolin, but localizes mainly in the cytoplasm and not
in vesicles as observed by electron microscopy. The results are in
perfect agreement with the fact that efficiency of CADY:siRNA
mediated knockdown of the target gene is not altered in the
presence of endocytotic inhibitors [24].

CADY:siRNA entry is controlled by the ability of the peptide to
interact directly with the lipid moiety of the cell membrane and to
induce a temporary membrane destabilization. Several studies
have reported that high concentration of CPPs may trigger direct
translocation or physical endocytosis [14,20,21,44]. In the case of
amphipathic peptides forming stable nanoparticles with their
cargoes, such as MPG [23,45], PEP [46] and now CADY (this
work), clustering of the peptides around the cargo induces a high
local CPP concentration at the cell membrane which favors
cellular uptake through a mechanism independent of endocytosis
even at low concentrations. The major driving force of CADY:
siRNA cellular uptake is associated with structural dynamics and
polymorphism of the peptide. Secondary structure as well as
structural polymorphism of CPPs play a major role in cellular
uptake of CPP/cargo complexes and in the balance between
efficiency and toxicity as also reported for antimicrobial peptides
[39-41,47]. In contrast to other amphipathic peptides (MPG or
PEP-1) that specifically interact with charged phospholipids and
require an intact membrane potential to enter the cell [20,37],
CADY inserts spontaneously into monolayers containing either
uncharged or charged phospholipids, irrespective of cholesterol
concentration [28], which explains why membrane potential is not
required to favour membrane crossing. Fura experiments demon-
strated that CADY induces temporary membrane disorganization

@ PLoS ONE | www.plosone.org

which is followed by rapid resealing leaving the cells intact and
biologically active. This is in perfect agreement with the CPP’s
associated increase in membrane fluidity, and their ability to
trigger membrane repair response [20,39,40,48].

Materials and Methods

Peptide synthesis and siRNA

CADY peptide (GLWRALWRLLRSLWRLLWKA-cya) was
synthesized as described previously [24]. CADY peptide was
resuspended at a concentration of 2 mg/ml in water containing
2% dimethylsulfoxide, sonicated for 10 minutes and further
diluted in water to a 100 uM stock solution. The siRNA and
fluorescently labeled siRNA (5'-FAM) were obtained from
Eurogentec (Belgium). The different sequences are as follows: for
anti-GAPDH: 5’ -CAUCAUCCCUGCCUCUACUTT- 3’ (sense
strand) and for anti-CICBl: 5" -GAAAUGUACCCUCCA-
GAAATT 3’ (sense strand). The stock concentration of siRNA
was prepared at 5 pM in 50 mM Tris, 0,5 mM EDTA buffer.

Cell culture

The human cervical carcinoma cell line HelLa was obtained from
ATCC. The Chinese hamster ovary cell lines CHOW', CHO"™ ™/~
and CHO®" ™/~ were a kind gift from Pr. U. Langel. All media were
obtained from Gibco. HeLa cells were maintained as monolayer
cultures in Dulbecco’s modified Eagle’s medium (DMEM) Glutamax
supplemented with 10% fetal calf serum (FCS) and 1% antibiotics.
CHO cells were maintained as monolayer cultures in F-12
supplemented with 10% FCS and 2 mM L-glutamin.

CADY-mediated siRNA knock down analysis by Western
blotting

CADY:siRNA complexes were formed at 37°C for 30 minutes
in 0,5xPBS at a concentration of 9600 nM and 240 nM,
respectively. In a 35 mm dish, HeLa cells at 60% confluency

were overlaid with 200 pl preformed complexes, incubated for
5 minutes, prior addition of 400 ul DMEM. After 4 hours of
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incubation, 1 ml of media containing 16% FCS was added. Cells
were harvested by trypsination 48 hours after transfection and
lyzed in buffer containing 50 mM Tris-HCI pH 7.5, 150 mM
NaCl, 2 mM EDTA, 0.1% NP40 and 0.1% deoxycholate
including 1 xComplete Protease Inhibitor Cocktail (Roche). Cell
lysates were kept on ice for 30 minutes, mixed every 5 minutes
and centrifuged at +4°C for 15 minutes at 10,000g. Supernatants
were collected and protein concentrations were determined using
the Bradford assay. 10 pg cell extracts were separated by 12%
sodium dodecyl sulfate-polyacrylamide gel. Proteins were trans-
ferred onto a nitrocellulose membrane, blocked in PBS+4% milk
for 1 hour, followed by overnight incubation at +4°C with rabbit
anti-actin (Sigma) and mouse anti-GAPDH (Santa Cruz). After
washes in PBS+ 0.05%Tween, the membrane was incubated
either with anti-rabbit-HRP and anti-mouse-HRP (GE Health-
care) followed by chemiluminescence detection (Perkin Elmer) or
fluorescent detection with anti-rabbit-DyLight800 and ant-
mouse-DyLight680 (Thermo Scientific) followed by detection
using Odyssey (Li-Cor Biosciences).

FACS analysis

In a 35 mm dish, cells were overlaid with 200 pl pre-formed
CADY:siGAPDH-FITC complexes (4800 nM and 240 nM re-
spectively in 0,5 XxPBS), incubated for 5 minutes, and then 400 ul
of DMEM were added. After 1,5 hours of incubation, cells were
washed with PBS, trypsinized for 5 minutes, washed and
resuspended in PBS containing propidium iodide (2,5 pg/ml).
FITC and propidium iodide fluorescence were immediately
measured by flow cytometry using Facscalibur (Becton Dickinson)
by acquiring 50000 cells.

Co-staining of endosomal and lysosomal markers with

fluorescently labeled siRNA

CADY:siRNA (5'- FAM) complexes were formed at 37°C for
30 minutes in 0,5xPBS at a concentration of 960 nM and
240 nM, respectively. In a 15 mm dish with a glass cover slip,
HeLa cells were treated with lysotracker, CtB or transferrin at the
time of transfection, either followed by analysis of live cells, or by
fixation in 4% paraformaldehyde at indicated timepoints. Labeling
of Rab) and caveolin positive endosomes using mouse anti-rabd
and rabbit anti-caveolin (BD Bioscience) were performed post-
fixation after membrane perforation using 0,5% TritonX-114.
Cells were analysed using a Zeiss Axioplan2/LSM 510 META
Confocal microscope.

Measurement of intracellular calcium levels
30000 HeLa cells were seeded on a 35 mm glass bottom
fluorodish the day before measurement. Cells were incubated with
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Cellular Uptake of Peptide-Based Nanoparticles

5 uM FURA-2AM (Invitrogen)+0,08% pluronic (Invitrogen) in
HEPES-Krebs-Ringer (HKR) buffer (125 mM NaCl, 5 mM KCl,
1.2 mM MgSO4, 1 mM CaCly,x2H,0, 1.2 mM KHyPO,,
25 mM Hepes, 6 mM Glucose pH 7.4) for 1 hour. The medium
was replaced with HKR buffer or HKR buffer without calcium
and incubated further for 1 hour. 20 nM siRNA complexed to
CADY at a 1:20 molar ratio was added then the ratio of
fluorescence emission at 510 nm following excitation at 340 nm
and 380 nm was measured using an inverted Zeiss Axiovert 200
microscope equipped with an LCI plan-neofluar 25x/0,8
objective and a Cool SNAP CCD camera.

Visualization of siRNA nanoparticles by transmission
electron microscopy

The thiol group at 5" end of siRNA was tagged with nanogold
(NG) cluster (Monomaleimido Nanogold, Nanoprobes, NY, d
1.4 nm) and the conjugate purified as described earlier [49]. NG-
labeled siRNA was complexed with CADY as described for FAM-
siRNA above and HeLa cells incubated with the resulting
nanoparticles for 30 min or 2 h. The specimens were fixed with
glutaraldehyde and the nanogold label on siRNA was revealed as
described earlier for peptide [49].

Supporting Information

Figure S1 Cytotoxicity in CADY transfected cells. Hela
cells were pre-incubated for 30 mins at 37°C (A) or 4°C (B) prior
to addition of 80 nM FITC-labeled siRNA complexed to CADY
at a 1:20 molar ratio, followed by 1.5 hr incubation at indicated
temperatures. Cells were washed, trypsinized, stained with
propidium iodide (PI) and analysed by FACS. 11% and 14% of
non transfected and transfected cells respectively were PI positive
at 37°C. 24% and 28% of non transfected and transfected cells
respectively were PI positive at 4°C.
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