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Abstract

Background: The rotenone-insensitive internal NADH-quinone oxidoreductase from yeast, Ndi1, has been shown to work as
a replacement molecule for complex I in the respiratory chain of mammalian mitochondria. In the so-called transkingdom
gene therapy, one major concern is the fact that the yeast protein is foreign in mammals. Long term expression of Ndi1
observed in rodents with no apparent damage to the target tissue was indicative of no action by the host’s immune system.

Methodology/Principal Findings: In the present study, we examined rat skeletal muscles expressing Ndi1 for possible signs
of inflammatory or immune response. In parallel, we carried out delivery of the GFP gene using the same viral vector that
was used for the NDI1 gene. The tissues were subjected to H&E staining and immunohistochemical analyses using
antibodies specific for markers, CD11b, CD3, CD4, and CD8. The data showed no detectable signs of an immune response
with the tissues expressing Ndi1. In contrast, mild but distinctive positive reactions were observed in the tissues expressing
GFP. This clear difference most likely comes from the difference in the location of the expressed protein. Ndi1 was localized
to the mitochondria whereas GFP was in the cytosol.

Conclusions/Significance: We demonstrated that Ndi1 expression did not trigger any inflammatory or immune response in
rats. These results push forward the Ndi1-based molecular therapy and also expand the possibility of using foreign proteins
that are directed to subcellular organelle such as mitochondria.
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Introduction

Defects in the mitochondrial NADH-quinone oxidoreductase

(complex I) have been shown to lead to many human diseases

[1,2]. We have developed a gene therapy strategy that utilizes the

NDI1 gene encoding the yeast rotenone-insensitive internal

NADH-quinone oxidoreductase (Ndi1) [2–4]. The principle of

this approach is that the yeast Ndi1 enzyme can replace

functionality of defective complex I in the respiratory chain of

mammalian mitochondria. We showed that injection of recombi-

nant adeno-associated virus (rAAV) carrying the NDI1 gene into

the brain and skeletal muscles of rats and mice resulted in

functional expression of the transgene and that the expressed Ndi1

had protective effects against Parkinsonian symptoms in the

rotenone-treated rats [5] and MPTP-treated mice [6]. More

recent work involved the restoration of vision by delivering the

NDI1 gene into the superior colliculus of a rat animal model of

Leber’s hereditary optic neuropathy [7]. Clearly, Ndi1 acted as a

member of the respiratory chain in the rodent mitochondria and

was able to compensate for the malfunctioning complex I.

A potential obstacle to any gene therapy is possible development

of inflammatory and/or an immune response caused by the vector

or the transgene itself [8,9]. In our case, we use recombinant

adeno-associated virus (rAAV) as the vector which has a high

safety profile as compared to other viral vectors [10–12]. However,

our therapeutic molecule is a yeast protein which could initiate a

severe immune response in mammals. For example, it has been

reported that intravenous administration of foreign transgene

products such as the E. coli lacZ gene and GFP cDNA induced

severe liver injury in mice [13]. Because of this problem, the

consensus is that self-genes should be used for the therapy. There is

no guarantee even for a human gene to be immunologically safe if

it was utilized for therapy of human disease. In a clinical trial of

severe hemophilia B, an injection of human factor IX cDNA into

the human hepatic artery could express factor IX but the

therapeutic level in the blood was retained only for 8 weeks

because of destruction of transduced hepatocytes by cell-mediated

immunity [14]. In contrast, Ndi1 has been shown to persist over a

long period of time. In rodents, we observed the presence of Ndi1

for at least 7 months [15,16]. In Drosophila, this yeast protein

survived throughout the entire life span [17]. It should be noted

that, while the flies do not have an immunoglobulin-based

immune response, their immune system is used as a model for

the human innate immune response. These results led us to believe
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that, despite the fact that Ndi1 is a foreign protein, it should not

pose immune-related problems in higher animals. It is therefore of

interest to investigate the inflammatory and immune response of

Ndi1-expressed organs in rodents not only to confirm the in vivo

observations but also to gain insights into the reason for the

apparent lack of immune problems.

Results

No inflammation was observed with Ndi1 expression in
the muscle and the brain.

Infiltration of cells in tissue is one of the most visible signs of

inflammation and can be visualized by hematoxylin and eosin

(H&E) staining. We did a single injection of rAAV carrying the

NDI1 gene (rAAV-NDI1) or the GFP gene (rAAV-GFP) into the

rat skeletal muscle and examined the sections using H&E staining

1 week or 1 month post-injection. Figure 1A shows representative

images of the staining. Analysis of tissue sections from rAAV-

NDI1-injected muscles showed normal morphology without

inflammatory infiltrate or tissue damage at 1 week as well as at

1 month. In contrast, muscle sections from the area expressing the

GFP protein exhibited distinctly higher staining than control both

in the 1-week and the 1-month samples. The number of infiltrating

cells was counted for each group and compiled into histograms

(Figure 1B). Activation of macrophages is apparent in the muscle

tissue expressing GFP. On the other hand, no difference was

observed between the muscle sections from the Ndi1 group and

the control. We have performed a similar experiment using the

striatum of the rat brain as a target tissue and evaluated the

sections for signs of inflammation 1 month after a single injection

of rAAV-NDI1 or rAAV-GFP (Figure 2A and 2B). The brain is

considered to be an immunologically protected space [18]. This

immune privilege is the result of multiple layers and mechanisms,

including the blood-brain barrier. A main component of the

immune system in brain is microglia that are derived from the

circulating macrophages. Thus, the brain has active immune

defense that shares the same principal characteristics [19]. In fact,

an elevated number of infiltrating cells were clearly seen in the

brain sections expressing GFP. Once again, Ndi1 expression did

not elicit any inflammatory response.

Absence of cytotoxic cellular responses against Ndi1
In addition to the H&E staining that allows for visualization of

inflammation, we carried out immunohistochemistry experiments

using specific antibodies. When the monocytes become activated,

they express a cluster of differentiations such as CD11b. CD11b

molecules are on the plasma membrane of microglia or

macrophage monocyte antigen presenting cells. Representative

images of immunohistochemical staining for CD11b and

expressed Ndi1 are shown in Figure 3. Muscle tissue sections in

which a high level of Ndi1 was observed showed totally negative

staining for CD11b. Muscle sections from the rats that received a

rAAV-GFP injection exhibited good GFP fluorescence. As

expected, the GFP-expressing tissue was positive for the CD11b

staining. The activated monocytes participate in the recruitment of

the T-cell to the site of infection that will eliminate the pathogenic

factors and infected cells. This recruitment can be directly followed

by immunohistochemistry. To assess the adaptive immune

response, we performed immunohistochemistry on the same

samples using antibodies against CD3 (T cell marker), CD4

(helper T cell marker), and CD8 (cytotoxic T cell marker), Figure

S1. The number of cells that were stained by the respective

antibodies was counted and transformed into histograms (Figure 4).

For all cellular markers tested, the expression of GFP led to a

consistent increase in the population of marker-positive cells. The

extent of increase varied from ,2 fold for CD3-positive T cells to

almost 9-fold for CD8-positive T cells in the samples collected 1

month after the delivery of the gene. The presence of these T

lymphocytes was concomitant with the elevation of infiltrating

cells. In the case of the muscle tissues from the Ndi1-expressing

rats, there was no significant difference when compared with the

PBS control in any of the markers examined. These results are in

accordance with those obtained by H&E staining.

Absence of humoral immune response against the Ndi1
protein

It is known that the GFP protein is immunogenic in higher

animals [20] and could pose serious problems if introduced into

the human body. Total lack of immune response in the rats

expressing Ndi1 in the muscle and brain prompted us to examine

if this yeast protein is actually recognized by the host animal as an

antigen. To characterize the humoral immune response against

Ndi1, we injected purified Ndi1 protein into the tail vein of the rats

and analyzed the serum for anti-Ndi1 antibody. Blood samples

were drawn from the animals and assayed for the presence of anti-

Ndi1 antibody by ELISA using 96 wells immulon 2HB plates

coated with purified Ndi1 protein. The antibody against Ndi1 was

detected even when the serum was diluted at 1:5000, indicating

that Ndi1 is indeed highly immunogenic in rats (Figure 5). Using

the same method, we next tested the sera withdrawn from the rats

injected with rAAV-NDI1 in the muscle. Even at a dilution of

Figure 1. H&E staining of coronal sections of rat muscles. Rats
were injected with either PBS, rAAV-GFP, or rAAV-NDI1 in the skeletal
muscles. Muscles (tibialis anteriors) were collected at 1 week (1w) or 1
month (1 m) and were stained with Hematoxylin-Eosin (H&E) solutions
and infiltrated cells were counted. (A) Representative images of muscle
sections from each group after H&E staining. (B) Comparison of the
number of infiltrated cells. The histogram shows the number of small
mononuclear cells per field of view in the sections separated by at least
90 mm (n = 4 for rats, n = 6 for muscle sections from each animal).
Results are expressed as mean 6 SD. ** p,0.01 from the respective
control (Student’s t-test).
doi:10.1371/journal.pone.0025910.g001

No Immune Response by Yeast Ndi1 in Rats
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1:100, no differences were noticed between the animals that were

injected with PBS and those with rAAV-NDI1. Even after 6

months of Ndi1 expression, no detectable amount of anti-Ndi1

antibody was present in the rat sera. The same negative result was

obtained with the rats that received rAAV-NDI1 in the brain

(Figure 5).

Discussion

It has been well established that the Ndi1 enzyme from yeast

can be integrated into the oxidative phosphorylation system in the

mitochondria of animals and serves as a functional replacement

for complex I. Successful use of Ndi1 was reported not only for

rodents [4–7,15,21] but also for other species such as Caenorhabditis

elegans [22], Drosophila [17] and rabbit [23]. Long term expression

of Ndi1 in the host mitochondria was indicative of no major issues

with the host defense system against this foreign protein. Our

earlier work on the assessment of the inflammatory potential of

Ndi1 hinted that there was no positive response in the mouse brain

where Ndi1 was present [15]. However, because the brain has an

atypical immune system that might explain the absence of

detectable immune response, it was important to test using tissues

such as skeletal muscles that are abundantly encircled by the

circulatory network and therefore have a high interaction with the

immune system. In the current study, we were able to demonstrate

no inflammatory or immune responses in rat muscles, thereby

aiding in establishing a safe and effective protocol for introducing

the Ndi1 enzyme in mammals.

The Ndi1 protein turned out to be highly immunogenic in

rodents, which is no surprise in light of the fact that this yeast

protein does not have sequence similarity with any of the known

rodent proteins. Therefore the absence of immune response to the

Figure 2. Evaluation of infiltrated cells in the rat brain. Rats were injected with PBS (control), rAAV-GFP, or rAAV-NDI1 in the striatum of rat
brain. The brain samples were collected 1 month post-injection. (A) Representative images of brain sections from each group after H&E staining. (B)
Comparison of the number of infiltrated cells. The histogram shows the number of infiltrating cells per field of view in the sections separated by at
least 90 mm (n = 4 for rats, n = 6 for brain sections from each animal). Results are expressed as mean 6 SD. ** p,0.01 and * p,0.05 from the
respective control (Student’s t-test).
doi:10.1371/journal.pone.0025910.g002

Figure 3. Representative images of macrophage staining of
tissue sections from rat muscles. Rats were injected with PBS, rAAV-
GFP, or rAAV-NDI1 in the skeletal muscles and muscle samples were
collected 1 month post-injection. Coronal sections of the muscle from
the animals injected with PBS (Control), rAAV-NDI1 or rAAV-GFP were
stained with anti-CD11b antibody (A, D, and G, red) or with anti-Ndi1
antibody (E, green). Muscle sections from the rats injected with rAAV-
GFP were examined for the fluorescence of the GFP protein (H, green).
A green channel image for the control (B) is also shown. Merged images
of the red and green channels are also shown (C, F, and I) Scale
bar = 75 mm.
doi:10.1371/journal.pone.0025910.g003

No Immune Response by Yeast Ndi1 in Rats
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Ndi1 did not reconcile with its immunogenicity in the animals.

This paradigm may well be explained by its cellular location.

According to our own observations, Ndi1 expressed in the host

cells, both in vitro and in vivo, is exclusively localized to

mitochondria [15,24,25] (see also Figure S2). To be precise, we

were not able to detect Ndi1 in the cytosol using the specific

antibody either by histochemical analysis of the tissues or by

Western blotting of the cytosolic fraction of the cells expressing

Ndi1. This point was also supported by our current results using

GFP. The delivery of the GFP gene was carried out using the same

rAAV vector and the same promoter as those for the NDI1 gene.

Unlike Ndi1, however, the GFP protein was expressed in the

cytosol (Figure S2) and did elicit an immune response in the host

animal tissues. Our results with GFP suggested a distinct but

rather mild infiltration of inflammatory cells into the muscle or

brain. It was not severe enough to cause substantial damage to the

tissues. Nevertheless, this development of an immune response

against GFP is regarded as a potential obstacle to using this protein

as a reporter molecule for gene therapy [20].

It should be noted that segregation of a protein in a subcellular

compartment such as mitochondria does not totally eliminate the

possibility of recognition of that protein by the immune system.

For example, it was reported that peptides derived from

mitochondrially encoded proteins can act as histocompatibility

antigens [26]. One such protein identified was the ND1 subunit of

complex I [27]. Also, antibodies against mitochondrial proteins are

found in patients with certain autoimmune diseases [28]. Exactly

how the mitochondrial antigens are displayed on the surface of

cells is not clearly understood. In the case of Ndi1, at least in our

animal experiments, no immune response was observed in the

target tissues and no antibody was detected in the serum when the

gene was delivered using the rAAV vector.

The sustained Ndi1 expression we have observed in rodents

represents the best argument that the yeast protein does not cause

immunological complications. However, striking differences of

organ function and structure between rodents and human can

limit the translation of the experimental results in rodents to

humans. To help bridge that gap, it is necessary to conduct

research using non-human primate as a next step. We have

collected preliminary data using monkeys and obtained the same

negative immune response (Figure S3). More future experiments

should help establish the NDI1 gene as a novel therapeutic gene

with clinical potential.

Materials and Methods

Ethic Statement
All surgical procedures for the brain and skeletal muscle were

performed in accordance with the animal care and the Scripps

Research Institute animal ethic committee (08-0065-2).

Surgical injection
Rats (Sprague-Dawley, male) were anesthetized with 3%

isoflurane in O2 flow. In brains, injections were done into the

striatum. The antero-posterior (AP) and media-lateral (ML)

stereotaxic coordinates for the striatum were calculated from the

Figure 4. Immune cells distribution within the injected area of
the rat muscle. Rats received an injection of rAAV-GFP or rAAV-NDI1
in the skeletal muscles. Muscle samples were harvested either 1 week
(A) or 1 month (B) after the injection. Immunohistochemistry was
performed on coronal sections of rat muscles expressing the GFP and
the Ndi1 protein. Antibodies against immunological marker proteins,
CD3, CD4, CD8, CD11b, were used and positively stained cells were
counted (n = 4 for rats, n = 6 for brain sections from each animal).
Results are expressed as mean 6 SD. ** p,0.01 and * p,0.05 from the
respective control (Student’s t-test).
doi:10.1371/journal.pone.0025910.g004

Figure 5. Evaluation of the presence of antibodies against Ndi1
protein in the rat serum. Rats were injected with rAAV-NDI1 either in
the skeletal muscles or the brain. One group of rat received an injection
of purified Ndi1 protein in the tail vein. Blood samples of each group of
rats (n = 4) were drawn and the presence of anti-Ndi1 antibodies was
assessed by using ELISA. A 96 wells plate was coated with purified Ndi1
protein and the sera were tested from the following groups (serum
dilution in parenthesis): a, Ndi1 protein injected into tail vein (1/5000);
b, PBS injected muscle, 1 week (1/100); c, rAAV-NDI1 injected muscle, 1
week (1/100); d, PBS injected muscle, 1 month (1/100); e, rAAV-NDI1
injected muscle, 1 month (1/100); f, PBS injected brain, 1 week (1/100),
g; rAAV-NDI1 injected brain, 1 week (1/100); h, PBS injected brain, 1
month (1/100); i, rAAV-NDI1 injected brain 1, month (1/100). Data are
presented as mean 6 SD.
doi:10.1371/journal.pone.0025910.g005

No Immune Response by Yeast Ndi1 in Rats
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bregma. The dorso-ventral (DV) coordinate was calculated from

the dural surface. The injection target had the following

coordinates: AP 0.2 mm; ML 62.8 mm; DV 5 mm. Delivery of

the NDI1 gene and the GFP gene was carried out using serotype 5

rAAV vectors. The volume of injection was 3 ml of rAAV-NDI1 or

rAAV-GFP (3.161012 genome copy/ml, Applied Viromics). In

muscles, 5 ml of rAAV-NDI1 or rAAV-GFP were injected. For

non-virus control, PBS of the same volume was used instead of the

rAAV particles. All injections were performed on 7-week old rats.

ELISA experiments
In order to detect antibodies generated against the Ndi1 protein,

blood was drawn at the times indicated in the figure legend. ELISA

was performed using immulon-2HB 96 wells plates (Thermo

Scientific, MA) coated with purified Ndi1 (50 ng/well) over night

at 4uC in PBS 5% fetal bovine serum (FBS). The sera were diluted at

1:100 in PBS 10% FBS, 0.1% Tween 20 and incubated for 2 hours

at ambient temperature. After washes with PBS 0.1% Tween 20,

secondary anti-rat antibodies (1/3000) coupled with horse radish

peroxidase were incubated for 45 minutes. Fifty-ml of Super

AquaBlue ELISA substrate (eBioscience) was added to each well

and absorption was monitored at 405 nm using a plate reader

(Molecular Device). For a positive control, serum of rats injected

with the purified Ndi1 protein was used. Briefly, at day 0, 50 mg of

Ndi1 protein was mixed with 200 ml of complete Freund’s adjuvant

(FA) and injected subcutaneously. At days, 14, 39 and 60, 25 mg of

Ndi1 mixed with incomplete FA was injected. Blood was drawn at

day 71 and the serum was extracted by centrifugation.

H&E staining
Sample sections (10 mm for the muscles and 30 mm for the

brains) were stained in hematoxylin for 45 sec., rinsed in deionized

water, and finally stained in eosin for 1 sec. After coloring, the

sections were dehydrated through successive 3-minute ethanol

bathes (70%, 95%, and 100%). A final step in xylene achieved the

staining procedure. Each slide was mounted using Permount

mounting medium (Fisher Scientific).

Immunohistochemistry
For histological studies, animals were perfused with PBS

followed by cold 4% (wt/vol) paraformaldehyde (pH 7.4). Skeletal

muscles and brains were harvested and post-fixed for 1 hr in the

same buffer and were then placed into OCT (optimum cutting

temperature) compound before being frozen on dry ice. Sections

were cut at 10 mm thickness for muscles and 30 mm for brains

using a cryostat (Microm HM550, Thermo Scientific, MA).

Immunohistochemistry for Ndi1 (1:250), CD3 (1:500), CD4

(1:2000), CD8 (1:500), CD11b (1:500), was carried out on slide

sections. The slices were blocked using Image-iT FX (Invitrogen)

for 3 hours. Sections were then incubated overnight at 4uC with

the primary antibodies in TBS, 10% horse serum, 0.1% triton X-

100. The Ndi1 antibody was revealed with a specific horseradish

peroxidase conjugated goat anti rabbit IgG (1:1000; Calbiohem)

and the TSA Plus fluorescein system kit (PerkinElmer). The CD3,

CD4, CD8, CD11b antibodies were revealed with a secondary

antibody Rhodamine Red-X (Molecular Probes; 1:600). The slides

were examined using a fluorescent inverted microscope (Zeiss).

Statistical analysis
Statistical analysis of the data was performed using the Student’s

t-test. Results are expressed as the mean 6 standard deviation

(SD). Statistical significance is described in figure legend.

Supporting Information

Figure S1 Representative images of rat skeletal muscle
sections stained for immunological markers and trans-
gene products. The animals received either rAAV-GFP or

rAAV-NDI1 in the skeletal muscles as described in the text, and

the tissue sections were subjected to immunohistochemistry either

1 week (panel A) or 1 month (panel B) after the injection. The red

color represents immunostaining with the antibody against

immunological marker proteins (from the top; CD3, CD4, CD8

and CD11b) and the blue color displays nuclear staining using

DAPI. In each panel, the green color in the middle column is the

fluorescence from GFP and the green color in the right column is

immunostaining with antibody against Ndi1. In all images the red

and green channels are merged.

(TIF)

Figure S2 Cytosolic distribution of the GFP protein and
localization of the Ndi1 protein in mitochondria, both
expressed in the rat skeletal muscle. The animals received

either rAAV-GFP or rAAV-NDI1 in the skeletal muscles as

described in the text. The tissue sections were subjected to

immunohistochemical analysis. (A) The red channel represents

staining for a mitochondrial marker protein. The green channel is

either the green fluorescence from GFP or immunostaining with

antibody against Ndi1. (B) Profiles of staining intensity of the red

(mito) and the green (GFP or Ndi1) channels were plotted for a

110 mm span of the coronal muscle sections.

(TIF)

Figure S3 Preliminary results showing lack of immune
response in the monkey brain expressing yeast Ndi1.
Two squirrel monkeys (female, weighing between 0.5 and

0.6 kg) received rAAV-NDI1 in the substantia nigra (SN) of one

hemisphere of the brain at the following coordinate: Antero-

Posterior: +5.7 mm from bregma, Lat: +2.5 mm from bregma,

DorsoVentral: –17.5 mm from the dura mater. Brain samples

were collected 2 months post-administration and were subject-

ed to histochemical analysis. In both animals, a high level of

Ndi1 expression was observed in the SN. (A) H&E staining.

Monkey brain slices were stained with hematoxylin and eosin.

The total number of H&E-positive cells per a field of view was

counted using ImageJ software and the results were compiled in

a histogram. a) the injection point, b) the SN in the hemisphere

that received rAAV-NDI1, c) the SN in the other hemisphere

that was not injected with the virus (control). Scale

bar = 100 mm. (B) Immunohistochemical staining. Monkey

brain slices were stained with antibodies against Ndi1 and

each of the immunological marker proteins, CD4, CD8,

CD11b or CD20. Representative images were taken from

areas of a needle track and the SN expressing Ndi1. Scale

bar = 200 mm.

(TIF)
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