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Abstract

Background: DNA methylation is an epigenetic modification that plays a crucial role in a variety of biological processes.
Methylated DNA is specifically bound by Methyl-CpG Binding Proteins (MBPs). Three different types of MBPs have been
identified so far: the Methyl-CpG Binding Domain (MBD) family proteins, three BTB/POZ-Zn-finger proteins, and UHRF1.
Most of the known MBPs have been identified via homology with the MBD and Zn-finger domains as present in MeCP2 and
Kaiso, respectively. It is conceivable that other proteins are capable of recognizing methylated DNA.

Methodology/Principal Findings: For the purpose of identifying novel ‘readers’ we set up a methyl-CpG pull-down assay
combined with stable-isotope labeling by amino acids in cell culture (SILAC). In a methyl-CpG pull-down with U937 nuclear
extracts, we recovered several known MBPs and almost all subunits of the MBD2/NuRD complex as methylation specific
binders, providing proof-of-principle. Interestingly, RBP-J, the transcription factor downstream of Notch receptors, also
bound the DNA in a methylation dependent manner. Follow-up pull-downs and electrophoretic mobility shift assays
(EMSAs) showed that RBP-J binds methylated DNA in the context of a mutated RBP-J consensus motif.

Conclusions/Significance: The here described SILAC/methyl-CpG pull-down constitutes a new approach to identify
potential novel DNAme readers and will advance unraveling of the complete methyl-DNA interactome.
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Received May 28, 2011; Accepted September 13, 2011; Published October 3, 2011

Copyright: � 2011 Bartels et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Netherlands Organisation for Scientific Research (NWO) grant VIDI 864-05-002 and the Dutch Cancer Foundation (KWF)
grant KUN 2008-4130. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: H.Stunnenberg@ncmls.ru.nl

. These authors contributed equally to this work.

Introduction

DNA methylation is an epigenetic modification that is essential

for a variety of biological processes. In mammals, DNA methylation

primarily occurs at cytosines in a CpG dinucleotide context. De

novo DNA methyltransferases Dnmt3a and Dnmt3b and mainte-

nance methyltransferase Dnmt1 are responsible for the establish-

ment and maintenance of the DNA methylation mark, respectively.

With the exception of CpG-islands, short regions of high CpG-

density that are often associated with gene promoters, the mam-

malian genome is globally methylated [1]. Most CpG-islands

remain unmethylated during normal development, whereas

aberrant CpG-island hypermethylation is a hallmark of cancer.

CpG-island methylation is generally associated with transcriptional

repression, and more recently gene-body DNA methylation has

been associated with transcriptional activity [2].

Methylated CpGs are specifically bound by methyl-CpG binding

proteins, and three families of MBPs are known in mammals

(reviewed in [3,4]). The MBD family proteins MBD1, MBD2,

MBD4 and MeCP2, bind methylated DNA via the Methyl-CpG

Binding Domain (MBD) [5]. Family members MBD3, MBD5 and

MBD6 are, however, incapable of binding methyl-CpG [5,6]. The

BTB/POZ-Zn-finger proteins Kaiso, ZBTB4 and ZBTB38 bind

methylated DNA via three C2H2 zinc finger motifs [7,8]. Most

recently, the SET and RING finger-assocoiated domain (SRA),

present in UHRF1 and UHRF2, was also identified to specifically

recognize methylated DNA [9,10,11]. Many reports have shown

interactions between MBPs and other proteins or complexes that

function in heterochromatinization and transcriptional repression

(e.g. [12,13,14]), which is thought to account for DNA methylation

associated gene silencing.

NMR and crystal structures of MBD and SRA proteins in

complex with methylated DNA have shed light on the modes of

methyl-CpG binding, which are completely different for the two

types of domains [15,16,17]. Methylated DNA binding by Kaiso

family members may occur via the canonical DNA binding

mechanism of C2H2 zinc-finger proteins, as has been suggested in

[18], however, the DNA binding domain structure of these

proteins has not been resolved yet. Whereas UHRF1 and the

Kaiso-related proteins have high affinity for hemimethylated DNA
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[15,18], the MBD fold binds symmetrically methylated DNA [17].

For several MBPs sequence context dependent binding to

methylated DNA has been described. MeCP2 prefers methylated

sites flanked by A/T tracts, which in part is explained by tightening

of the minor groove by these tracts [16,19]. The Kaiso-family

members and MBD1 bind methylated DNA in a sequence-specific

manner only, and the nucleotides surrounding the methyl-cytosine

directly contribute to binding affinity [18,20]. With the recent

discovery of hydroxymethyl-cytosine in genomic DNA of certain

tissues, the question raised whether this modification is also

recognized by MBPs. It was shown before that hydroxylation of

methyl-cytosine interferes with binding of the MBD of MeCP2 [21],

and in accordance recently it was reported that full-length MBD1,

MBD2 and MBD4 do not bind sequences containing hydro-

xymethyl-cytosine [22]. In contrast, the SRA domain of UHRF1

binds methylated and hydroxymethylated DNA with similar affinity

[23].

The earliest studies on identification of MBPs were performed

two decades ago and describe the detection of methyl-DNA

binding activities in nuclear extracts by EMSAs and Southwest-

ern assays [24,25]. MeCP2 was the first MBP that was

subsequently purified by traditional biochemical approaches

[25]. The definition of the MBD domain of MeCP2 [26], led

to the identification of the other MBD family members via

homology searches for this domain [5,27]. Similarly, ZBTB4 and

ZBTB38 were identified via homology searches for Kaiso-like Zn-

fingers [8], after characterization of Kaiso [7]. The latter was, like

MeCP2, initially discovered as a methyl-DNA binding activity in

nuclear extracts and biochemically purified. The last decade

major developments in mass-spectrometry-based proteomics have

taken place, enabling the identification and quantification of

thousands of proteins in complex mixtures. High-throughput

interactomics approaches are now also starting to be applied in

methyl-DNA interactome research. In a recent study, SILAC-

based screening was performed to identify proteins whose binding

to nucleosomes is regulated by methylation of DNA and/or

histones [28]. Nucleosome interacting proteins were purified from

SILAC-labeled nuclear extracts and enrichment on modified

versus unmodified DNA/nucleosomes was quantitatively deter-

mined in mass spectrometry. The results revealed many pro-

teins and complexes that can read the chromatin modification

status.

We here follow a similar SILAC-based approach for the

identification of potential novel methyl-DNA binding proteins. As

outlined above, most of the known DNAme readers have been

identified via homology searches. Other DNAme readers may

exist that were thus far unidentified due to the lack of unbiased

screening methodology. It is conceivable that ‘novel’ protein

folds, as well as known DNA binding motifs, may allow for

recognition of methylated DNA. Indeed, an example of the latter

phenomenon is the Kaiso-family, that binds methylated DNA via

canonical C2H2 zinc-fingers. Thus, possibly other known DNA

binding motifs bind methylated DNA in sequence context

dependent or independent ways. We here describe a screening

method to explore the methyl-DNA interactome, by combining

SILAC labeling and quantitative mass spectrometry with methyl-

CpG pull-downs. We show the results of a methyl-CpG pull-

down/SILAC experiment with U937 nuclear extracts and DNA

oligos based on a human CpG-island. Among various known

DNAme readers we uncovered RBP-J as a methylation

dependent binder to the DNA used in the pull-down. Follow-

up experiments showed that RBP-J binds to methylated DNA in

a sequence specific manner, namely in the context of a mutated

consensus sequence.

Results

A SILAC-based assay to identify novel methyl-CpG
binding proteins

To identify novel DNAme readers, we set up a methyl-CpG

pull-down assay combined with SILAC, schematically depicted in

Fig. 1A. In this assay, proteins are captured from a protein extract

by DNA coupled to beads, and quantitatively analyzed by mass

spectrometry. In a forward experiment, fully methylated synthetic

DNA is used as a bait for MBPs in a heavy-labeled nuclear extract,

whereas unmethylated DNA is used in a light (normal) extract. In

a reverse experiment, methylated DNA is used in a light extract

and unmethylated DNA in a heavy extract. Both pull-down

fractions (heavy and light) are mixed, and proteins that directly or

indirectly specifically bind to methylated DNA in vitro will be

identified by high heavy/light ratios in the forward experiment

and low heavy/light ratios in the reverse experiment in subsequent

mass spectrometry analyses.

We performed a methyl-CpG pull-down with U937 nuclear

extracts in forward and reverse using oligos containing part of the

sequence of the human GSTP1 CpG-island (Fig. 1B); its

hypermethylation is characteristic in prostate cancer [29]. Proteins

that showed at least 1.5 fold enrichment or exclusion on methylated

DNA in both forward and reverse experiments are presented in

Table S1. A list of all identified proteins with accompanying forward

and reverse heavy/light ratios is given in Table S4. To visualize the

results, we generated a scatter-plot of forward and reverse heavy/

light ratios of all identified proteins (Fig. 2A). Proteins that

specifically bind to methylated DNA cluster in the lower right

quadrant, whereas proteins that are repelled by methylation of the

DNA reside in the higher left quadrant of the scatter-plot. MBD2

was most strongly enriched on methylated oligonucleotides and

showed forward and reverse ratios of 12.89 and 0.08, respectively.

Moreover, we identified the known DNAme readers Kaiso,

MeCP2, UHRF1 and MBD4, as well as almost all subunits of the

MBD2/NuRD complex in the lower right quadrant of the scatter

plot with ratios of enrichment higher than 1.5 (Fig. 2A, Table S1),

indicating that they are methyl-specific binders to our DNA. These

results provide proof of principle of our approach and also show the

usefulness of the method in the elucidation of protein complexes.

MBD3, which does not bind specifically to methylated DNA [5,13],

was identified with forward and reverse ratios close to one (Table

S4), which indicated background binding. MBD1, that has both

MBD and CXXC domains, of which the first shows sequence

specificity [20], was not identified in our experiment. This may be

related to low MBD1 protein levels in U937 cells [30]. CGGBP1

was the only protein that showed an exclusion ratio above 1.5 in

forward and reverse (Fig. 2A, Table S1), and was therefore

identified as repelled by DNA methylation. Indeed, it has been

described to bind specifically nonmethylated, but not methylated,

59-(CGG)(n)-39 repeats in the promoter of the fragile X mental

retardation gene [31,32]. Altogether, the results demonstrate that

our approach successfully identifies proteins and protein complexes

recruited or repelled by DNA methylation.

Interestingly, RBP-J/CBF1, the primary mediator of Notch

signaling, was found to specifically bind the methylated DNA, as it

displayed a high ratio in the forward pull-down and a low ratio in

the reverse pull-down (Fig. 2B). The RBP-J interacting protein

SPEN was identified in the experiment as well (Table S1 and Fig.

S1). To confirm our findings using a different read-out instead of

mass spectrometry, we repeated the pull-downs with methylated

and unmethylated DNA followed by western blotting with MBD2

(positive control) and RBP-J specific antibodies. Again, recruit-

ment of MBD2 and RBP-J to the methylated DNA but not to the
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unmethylated DNA was observed (Fig. 2C, upper and middle

panel). To address whether RBP-J binds directly to the methylated

DNA, cleared lysates of E. coli expressing GST-tagged full-length

human RBP-J [33] were used as input for the pull-downs. In the

absence of potential human interacting proteins, GST-RBP-J was

specifically recruited to the methylated DNA (Fig. 2C, lower

panel). Thus, RBP-J binds directly and specifically to the

methylated DNA.

RBP-J is identified as a sequence context specific methyl-
CpG binding protein

To further explore DNA methylation dependent binding of

RBP-J we performed electrophoretic mobility shift assays. Two

different DNA oligonucleotides were used: the GSTP1 oligonu-

cleotide used in the methyl-CpG pull-downs and an oligonucle-

otide termed GAM12 that contains 12 consecutive 59-(CAG)-39

repeats [25]. GST-tagged full-length human MBD2b was used as

a positive control for DNAme dependent binding [34]. MBD2b

contains the MBD domain, but lacks a 149-amino acid N-terminal

domain containing the glycine-arginine rich region in comparison

with MBD2a. GST-tagged full-length human RBP-J [33] was used

for investigation of RBP-J binding to methylated DNA. RBP-J

comprises three structurally integrated domains; the amino (NTD)

and carboxy (CTD) terminal domains and a beta-trefoil domain

(BTD) inserted in between them [35]. The NTD and BTD

cooperate in DNA binding by specific interactions with base pairs

in the major and minor grooves and formation of a positively

charged surface that interacts non-specifically with the DNA

backbone [35].

Purified recombinant MBD2b and RBP-J were tested for DNA

binding. As expected, both MBD2b and RBP-J were able to shift

the methylated GSTP1 DNA (Fig. 3A, lane 1–2 and 5–6). For

RBP-J, also binding to the unmethylated GSTP1 DNA was

observed, however, this binding was much weaker as compared to

binding to the methylated DNA. Multiple molecules of either

MBD2b or RBP-J bound to the methylated GSTP1 DNA

sequence, as multiple shifts were visible per lane. Antibodies

against MBD2 and RBP-J were used to supershift the complexes

(lane 3–4, 7–8 and 9–10). Only one of two different antibodies

against RBP-J was able to supershift (lane 7–8), presumably related

to recognition of the native protein. Thus, our EMSA results

demonstrated direct and specific binding of RBP-J to methylated

DNA.

Surprisingly, MBD2b but not RBP-J bound to methylated

GAM12 DNA (lane 13–14 and 15–16). MBD2 is known to bind

methyl-CpG via the MBD domain largely independent of the

surrounding DNA sequence composition. RBP-J evidently does

not bind methylated DNA irrespective of DNA sequence.

Therefore, we set out to determine the binding sequence of

RBP-J in the GSTP1 DNA. Methyl-CpG pull-downs were

performed with DNA corresponding to the first half and second

half of GSTP1 (Fig. 3B). Also, DNA corresponding to the first half

and containing a single instead of double CpG was tested, as well

as oligonucleotide GAM4, containing 4 consecutive 59-(CAG)-39

repeats. RBP-J only bound to the first part of GSTP1 DNA, and

binding did not depend on the presence of a double CpG (Fig. 3B).

Thus, the methylation dependent RBP-J binding site is present in

the first half of the GSTP1 DNA. Our results show that RBP-J is a

sequence context dependent DNAme binding protein.

RBP-J binding to a mutated consensus is methylation
dependent

RBP-J is the main mediator of Notch signaling (reviewed in

[36]), and is an extensively studied transcription factor. The DNA

binding consensus has been well described. One of the first reports

on RBP-J determined the consensus motif by a combination of

approaches, including enrichment of RBP-J bound oligonucleo-

tides from a pool of random oligonucleotides [37]. The consensus

sequence was established as 59-ag/ccGTGGGAActa/t-39, of

which the middle hepta-nucleotide sequence is the core recogni-

tion motif. We then asked whether and how the observed

methylation dependent binding of RBP-J relates to the known

consensus motif. For that purpose we designed a CpG-scan

throughout the consensus motif; at every guanine or cytosine in

the motif, a CpG was created by replacing the upstream or the

downstream base by a cytosine and a guanine, respectively. The

resulting 6 mutated motifs and the consensus were tested for RBP-

J binding in EMSAs in unmethylated and methylated states

(indicated in Fig. 4, lane 7–8 contain the consensus).

DNA containing the consensus was bound by RBP-J and

methylation did not affect binding (Fig. 4, lane 7–8). The CpG

creating mutations weakened binding to various degrees; two

motifs almost completely lost RBP-J binding (lane 9 and lane 11).

Importantly, RBP-J binding to motif 59-GCGGGAA-39 was

greatly increased by CpG methylation (Fig. 4 lane 9 and lane

10, Fig. S2), whereas binding to other mutated motifs was not

affected by methylation. Thus, replacing the thymine preceding

the triple guanine by methyl-cytosine in the RBP-J consensus

creates a strong RBP-J binding motif. The thymine residue is

essential for RBP-J binding, however, a methylated cytosine can

functionally substitute for the thymine. Indeed, the same motif that

was identified as a methylation dependent binding site for RBP-J

in our CpG-scan experiment, is present twice in the first half of the

GSTP1 sequence (59-GCGGGA-39 at position 3 and 13). Our

observations are summarized in Fig. 5. The RBP-J binding motif is

well described and the core sequence is 59-GTGGGAA-39.

Substitution of the thymine by cytosine in the consensus abolishes

RBP-J binding, however, methylation of this cytosine restores

binding. Presumably, the structural resemblance of thymine and

methyl-cytosine allows for interchangeability of these residues, and

the mode of binding by RBP-J is similar.

Discussion

Here we report the application of a methyl-CpG pull-down

assay combined with SILAC as a new approach to identify

Figure 1. A SILAC-based approach to identify novel methyl-CpG binding proteins. (A) Schematic depiction of the methyl-CpG pull-down
assay combined with SILAC. Synthetic DNA is coupled to beads to capture binding proteins from a nuclear extract. Shown is a forward experiment, in
which fully methylated DNA is used in a heavy-labeled extract and unmethylated DNA in an unlabeled extract. In a reverse experiment unmethylated
DNA is used in a heavy-labeled extract, whereas methylated DNA is used in an unlabeled extract. After several washing steps and elution, both pull-
down fractions are combined and analysed by mass spectrometry. Proteins that directly or indirectly specifically bind to the methylated DNA are
identified by the quantitative ratios between heavy and light form. (B) DNA used in the methyl-CpG pull-down. The DNA fragment contains part of
the sequence of the GSTP1 CpG-island, sites for primer annealing and a methylation-sensitive restriction site. After ligation a mixture of fragments
with different lengths is obtained, which is subsequently biotinylated and methylated. Methylation is checked by a methylation-sensitive digestion
followed by quantitative PCR.
doi:10.1371/journal.pone.0025884.g001

SILAC-Based Screen for Methyl-CpG Binding Proteins

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e25884



SILAC-Based Screen for Methyl-CpG Binding Proteins

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e25884



potential novel DNAme readers. Using a DNA sequence that is

based on the GSTP1 CpG-island and U937 nuclear extracts, we

recovered several known MBPs and almost all subunits of the

MBD2/NuRD complex as methylation specific binders. More-

over, we found RBP-J to bind to this DNA in a methylation

dependent way. Follow-up pull-downs and EMSA experiments

showed that RBP-J binding to methylated DNA is sequence

context dependent. RBP-J binds the consensus motif - 59-

GTGGGAA-39; replacement of thymine by cytosine abrogates

binding, however methylation of this cytosine restores binding.

SILAC-based proteomic screening has been used before in the

identification of proteins that interact with specific DNA sequences

[38], modified peptides and nucleosomes [28,39]. The implemen-

tation of SILAC-based quantitative mass spectrometry allows for

sensitive and rapid screening, and generally requires only a single-

step capturing or purification prior to measurement (reviewed in

[40]). In a recent study, the effects of DNA and histone methyla-

tion on the nucleosome interactome were investigated [28].

Unmethylated versus DNA methylated versions of nucleosome

positioning elements, assembled into nucleosomes as well as in

naked form, were used in pull-downs. Various proteins displayed

methylation dependent binding to only one of the nucleosome

positioning elements, thus recognizing CpG methylation in a

sequence-specific manner. The most prevalent domains present in

these proteins were zinc finger domains and homeoboxes. RBP-J

was not identified as a methylation dependent binding protein in

this study, which presumably can be attributed to the used DNA

sequences. Therefore, the usage of various DNA sequences and

extracts from diverse cell types is likely to identify a new group of

sequence context-specific methylation dependent binding proteins

with diverse DNA binding domains.

We hypothesize that methyl-cytosine functionally substitutes the

crucial thymine in the RBP-J consensus motif, creating a

structurally similar platform for binding. This phenomenon has

been described before. Methylated DNA binding protein (MDBP),

a protein originally purified from human placenta, was shown to

bind DNA in a sequence-specific and DNA methylation depen-

dent manner [41,42]. Subsequently, methylation independent

binding by MDBP in vitro was detected to sites that contain

thymine residues replacing methyl-cytosine residues [43]. Meth-

ylation-dependent binding sites were located in mammalian genes

[44,45] and methylation independent sites were identified in

polyoma virus, cytomegalovirus and hepatitis B virus enhancers,

and in a c-Myc intron [44,46,47,48,49,50]. MDBP was identified

to be regulatory factor for X box (RFX)1 [51], and to be part of a

family of closely related proteins with similar DNA binding

properties [52,53]. Another example of thymine and methyl-

cytosine substitution in DNA binding sites concerns ZBTB4.

Recently, site-selection assays (SELEX) and methyl-SELEX were

used to identify the preferred binding sites of ZBTB4 on

unmethylated DNA and methylated DNA, respectively. It

appeared that ZBTB4 binds to the sequence: 59-CMGCCAT-39

(M being methyl-cytosine) [18]. The second best binding site has

been defined as 59-CTGCCAT-39, in which a thymine replaces

the methyl-cytosine. Whether interchangeability of thymine and

methyl-cytosine in in vitro DNA binding assays applies to specific

factors and to what extent this phenomenon occurs in vivo remains

to be investigated.

The mutated RBP-J consensus site, containing a methyl-

cytosine instead of a thymine, is a bona-fide RBP-J binding site

in vitro, and presumably RBP-J binding to this site is structurally

identical to binding to the normal consensus. From our EMSA

results, for example as shown in Fig. 4, one might speculate that in

vitro a thymine containing consensus maybe the preferred binding

site of RBP-J over a methyl-cytosine containing consensus. As we

have not performed EMSAs with cold competitor DNA, we

cannot conclude whether thymine or methyl-cytosine containing

sites are the better target. An interesting issue is whether the

mutated consensus is used by RBP-J in vivo. If so, the DNA

methylation status of this site determines RBP-J binding and

consequently its Notch responsiveness. Such a DNA methylation

dependent on/off switch would add a new layer of regulation to

Notch signaling. So far, we did not find evidence for methylation

dependent binding in genome-wide binding maps of mouse RBP-J

in C2C12 cells (unpublished results S.J.J. Bartels and H.G.

Stunnenberg). With the generation of more genome-wide binding

profiles for RBP-J in various cell types, the contribution of the

mutated consensus to RBP-J binding and gene regulation can be

assessed. The here described SILAC-based screen enables

unraveling of the complete methyl-DNA interactome, and

subsequent in vitro assays and the generation of in vivo genome-

wide binding maps will clarify the roles of potential novel DNAme

readers. By using such a systematic approach, our understanding

of the DNA methylation code and its interpretation by DNAme

readers will be greatly increased.

Materials and Methods

Cell culture and SILAC labeling
U937 cells (ATCC) were cultured in RPMI medium containing

10% fetal bovine serum and 1% penicillin/streptomycin (Gibco/

Invitrogen) at 37uC in 5% CO2 atmosphere. For SILAC labeling,

RPMI (-Arg, -Lys) medium (Gibco/Invitrogen) containing 10%

dialyzed fetal bovine serum (Gibco/Invitrogen) and 1% penicillin/

streptomycin was supplemented with either 13C6
15N4 L-arginine

and 13C6
15N2 L-lysine (Isotec) or non-labeled L-arginine and L-

lysine (Sigma). Cells were cultured in SILAC medium for at least 8

doublings to ensure full incorporation of the labeled amino acids.

Nuclear extracts
The procedure for nuclear extract preparation was derived from

[54]. In short, PBS washed cells were resuspended in 2.5 volumes

hypotonic buffer (10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM

MgCl2, 0.1 mM EDTA pH 8, 10% glycerol, 1 mM DTT, 1 mM

PMSF, and complete protease inhibitors (Roche)), incubated for

30 min on ice, and lysed in a Dounce homogenizer (B type pestle).

After centrifugation for 20 min at 2000 g, supernatant was

removed and pelleted nuclei were washed twice with PBS. Nuclei

Figure 2. RBP-J preferentially binds a methylated CpG-island sequence in vitro. (A) Results of a methyl-CpG pull-down/SILAC experiment
with U937 nuclear extracts. Forward and reverse pull-downs were performed, and forward heavy/light ratios of identified proteins were plotted
against their reverse heavy/light ratios in a scatter-plot. Proteins that bind specifically to the methylated DNA show high ratios in the forward
experiment and low ratios in the reverse experiment and therefore cluster in the lower right quadrant. Background binders appear around the centre
of the axes with ratios close to one in both experiments. (B) RBP-J specifically binds to the methylated GSTP1 CpG-island DNA. Shown are MS signals
of peptides from MBD2 (upper panel) and RBP-J (lower panel) from both forward (left) and reverse (right) experiments. L, light; H, heavy. (C) RBP-J
directly binds to the methylated GSTP1 CpG-island DNA. Methyl-CpG pull-down experiments were performed, using western blotting as a read-out.
Upper and middle panel: pull-down with U937 nuclear extract and probing for MBD2 (positive control) and RBP-J. Lower panel: pull-down with
cleared lysate of E. coli expressing GST-tagged human RBP-J and probing for RBP-J.
doi:10.1371/journal.pone.0025884.g002
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were then resuspended in 1 volume hypertonic buffer (20 mM

HEPES pH 7.9, 420 mM NaCl, 1.5 mM MgCl2, 0.1 mM EDTA

pH 8, 10% glycerol, 1 mM DTT, 1 mM PMSF, and complete

protease inhibitors), rotated for 1 h at 4uC, and centrifuged for

30 min at 100,000 g. The resulting supernatant/nuclear extract

was frozen in liquid nitrogen and stored at 280uC.

Methyl-CpG pull-down assay
Oligos used in pull-down experiments are listed in Table S2.

PAGE purified oligos were annealed and phosphorylated. After

ligation DNA fragments containing up to ten multimerized oligos

were retrieved with lengths up to 600 bp. The fragments were

subsequently biotinylated by incorporation of biotin-14-dATP

(Invitrogen) at the 39end of the forward strand using Klenow

Fragment (39-59exo-) (New England Biolabs), and purified on

Illustra NAP10 columns (GE Healthcare). For MeCpG pull-

downs, DNA was methylated by M.SssI (New England Biolabs).

Methylation of GSTP1 DNA was checked by methylation-

sensitive digestion followed by quantitative PCR. For pull-downs

followed by mass spectrometry, 75 ml of Dynabeads MyOne

Streptavidin C1 (Invitrogen) were incubated with 10 mg of DNA

for 1 h at RT in DNA binding buffer (150 mM NaCl, 50 mM Tris

pH 8.0, 0.1% NP40). After washing twice in 1 ml DNA binding

buffer, the beads with coupled DNA were incubated with 400 mg

Figure 3. Preferential binding of RBP-J to methylated DNA is sequence specific. (A) RBP-J binds methylated GSTP1 CpG-island DNA but not
methylated GAM12. EMSAs were performed with recombinant GST-tagged human RBP-J, and DNA fragments as indicated. Recombinant MBD2 was
used as a positive control. Anti-RBP-J and anti-MBD2 antibodies were added to supershift the DNA. Anti-RBP-J(1): ab25949 (Abcam); anti-RBP-J(2):
ab33065 (Abcam); anti-MBD2: 07-198 (Millipore). (B) RBP-J binds to the first part of the methylated GSTP1 CpG-island DNA and not to methylated
GAM4. Methyl-CpG pull-downs were performed with U937 nuclear extract and different DNA fragments as indicated. In GSTP1-del the double CpG is
replaced by a single CpG. Western blotting was used as a read-out, and MBD2 was probed as a positive control.
doi:10.1371/journal.pone.0025884.g003

Figure 4. RBP-J binding to a mutated RBP-J consensus site is restored by methylation in vitro. RBP-J binding to the perfect RBP-J
consensus motif and various altered sites in unmethylated and fully methylated states. EMSAs were performed with recombinant GST-tagged human
RBP-J, and DNA fragments as indicated. Altered motifs were designed by substituting residues in the normal consensus (59-AGCGTGGGAACTT-39)
upstream of a guanine with a cytosine, and residues downstream of a cytosine with a guanine. When required, the single CpG site in the normal
consensus was replaced by a TpG to maintain only one CpG per sequence. The resulting 6 altered sites with one CpG per sequence and the normal
consensus (lane 7–8) sequence are indicated above lanes.
doi:10.1371/journal.pone.0025884.g004
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nuclear extract and 10 mg poly(dI-dC) competitor DNA (Sigma)

for 2 h at 4uC in protein binding buffer (150 mM NaCl, 50 mM

Tris pH 8.0, 0.25% NP40, 0.5 mM DTT, and complete protease

inhibitors –EDTA (Roche)). Beads were washed five times in 1 ml

protein binding buffer, and bound proteins were eluted in SDS

PAGE loading buffer and processed for mass spec analyses. For

western blot analysis, the same procedure was followed using one

quarter of materials (beads, DNA, extract) as described above.

Mass spectrometry
In preparation for mass spectrometry, captured proteins from

DNA pull-downs were separated by SDS PAGE and in-gel trypsin

digested. Peptides were then extracted, desalted using StageTips

[55], and analyzed on an Orbitrap Velos mass spectrometer,

essentially as described [56]. Raw data were processed and

analyzed using MaxQuant software (version 1.1.1.25) containing

the integrated Andromeda search engine [57,58] and searched

against a human decoy IPI database v3.68 using a false discovery

rate of 1% at the protein and peptide level.

Western blotting
Western blotting was performed according to standard proce-

dures. The following antibodies were used: anti-MBD2 (Everest,

EB07538), anti-RBP-J (Abcam, Ab25949).

Recombinant proteins
pETM30-RBP-J (VK91) plasmid and pGEX-5X-1-MBD2b

plasmid, for bacterial expression of human His/GST-RBP-J and

GST-MBD2b, respectively, have been described before [33,34].

Expression and GST purification of recombinant proteins were

performed as described in [34]. For methyl-CpG pull-down experi-

ments, crude E. coli lysates were used, in which case the purification

procedure was followed up to the addition of Glutathione Sepharose

beads. For EMSAs, purified proteins were used.

EMSA
DNA oligos used in EMSAs are listed in Table S3. GAM12

DNA has been described before [25]. PAGE purified oligos were

annealed and methylated by M.SssI (New England Biolabs). DNA

was subsequently labeled using gamma-32P-ATP and T4

Polynucleotide Kinase (New England Biolabs), and purified on

Illustra ProbeQuant G50 columns (GE Healthcare). 0.1 ng DNA

was incubated with 100 ng protein in 20 ml binding buffer

(20 mM HEPES pH 7.9, 1 mM EDTA, 3 mM MgCl2, 10 mM

b-mercaptoethanol, 10% glycerol, 0.1% Triton-X100) containing

2 mg BSA and 10 ng poly(dI-dC) for 30 min on ice. For

supershifting, 500 ng of the following antibodies were added:

anti-MBD2 (Millipore, 07-198), anti-RBP-J (Abcam, Ab25949)

and anti-RBP-J (Abcam, Ab33065). DNA-protein mixtures were

run on non-denaturing 6% polyacrylamide and gels were analyzed

according to standard procedures.

Supporting Information

Figure S1 The RBP-J interacting protein SPEN is
preferentially recruited to methylated GSTP1 CpG-
island DNA. Shown are MS signals of a peptide from SPEN

from both forward (left) and reverse (right) experiments. L, light;

H, heavy.

(TIF)

Figure S2 RBP-J binding to a mutated RBP-J consensus
site is restored by methylation in vitro. EMSAs were

performed with recombinant GST-tagged human RBP-J and the

DNA probe containing a mutated RBP-J consensus site as

indicated. Increasing amounts of RBP-J were added to binding

reactions.

(TIF)

Table S1 Results methyl-CpG pull-down/SILAC. Shown are

proteins that have forward ratio .1.5 and reverse ratio ,0.67

(Me-CpG recruited). CGGBP1 is the only protein with forward

ratio ,0.67 and reverse ratio .1.5 (Me-CpG repelled). RBP-J and

SPEN are indicated in bold; MBPs are indicated by *; subunits of

MBD2/NuRD are indicated in grey.

(TIF)

Table S2 DNA oligos used in methyl-CpG pull-down experi-

ments. Sequence derived from the GSTP1 CpG-island is indicated

in capitals; the methylation-sensitive restriction site is underlined.

(TIF)

Table S3 DNA oligos used in EMSA experiments. In

sequence1–7 oligos the (mutated) RBP-J consensus site is indicated

in capitals.

(TIF)

Table S4 Results methyl-CpG pull-down/SILAC of all identi-

fied proteins.

(XLS)
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