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Abstract

Background: Partial protective efficacy lasting up to 43 months after vaccination with the RTS,S malaria vaccine has been
reported in one cohort (C1) of a Phase IIb trial in Mozambique, but waning efficacy was observed in a smaller
contemporaneous cohort (C2). We hypothesized that low dose exposure to asexual stage parasites resulting from partial
pre-erythrocytic protection afforded by RTS,S may contribute to long-term vaccine efficacy to clinical disease, which was not
observed in C2 due to intense active detection of infection and treatment.

Methodology/Principal Findings: Serum collected 6 months post-vaccination was screened for antibodies to asexual blood
stage antigens AMA-1, MSP-142, EBA-175, DBL-a and variant surface antigens of the R29 laboratory strain (VSAR29). Effect of
IgG on the prospective hazard of clinical malaria was estimated. No difference was observed in antibody levels between
RTS,S and control vaccine when all children aged 1–4 years at enrollment in both C1 and C2 were analyzed together, and no
effects were observed between cohort and vaccine group. RTS,S-vaccinated children ,2 years of age at enrollment had
lower levels of IgG for AMA-1 and MSP-142 (p,0.01, all antigens), while no differences were observed in children $2 years.
Lower risk of clinical malaria was associated with high IgG to EBA-175 and VSAR29 in C2 only (Hazard Ratio [HR]: 0.76, 95% CI
0.66–0.88; HR: 0.75, 95% CI 0.62–0.92, respectively).

Conclusions: Vaccination with RTS,S modestly reduces anti-AMA-1 and anti-MSP-1 antibodies in very young children.
However, for antigens associated with lower risk of clinical malaria, there were no vaccine group or cohort-specific effects,
and age did not influence antibody levels between treatment groups for these antigens. The antigens tested do not explain
the difference in protective efficacy in C1 and C2. Other less-characterized antigens or VSA may be important to protection.
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Introduction

GlaxoSmithKline Biologicals’ adjuvanted RTS,S malaria vaccine

candidate has repeatedly demonstrated protective efficacy in clinical

trials in Africa [1]. It is composed of the NANP central repeat and

C-terminal T-cell multi-epitope of Plasmodium falciparum circumspor-

ozoite protein (CSP), fused with the S-antigen of hepatitis B virus

and combined with an AS adjuvant systems [2], either AS02 (QS21,

MPL and an oil-in-water emulsion) or AS01 (QS21, MPL and

liposomes) [3]. The RTS,S/AS01 formulation is being evaluated in

a Phase III efficacy trial.

The generation of high titer anti-CSP antibodies has been

extensively documented following RTS,S vaccination of malaria-

naı̈ve adult volunteers [4]. Although certain antibody thresholds

have been proposed that may be necessary to achieve protection

[5], to date, there is no strict anti-CSP IgG correlate of protection

derived from studies involving laboratory-based challenge of

vaccinated volunteers with the bite of an infectious mosquito.

Additionally, an association has been shown between CSP-specific

CD4+ T cell responses and protection in a laboratory challenge

model [5]. However, information is lacking on immunological

correlates of protection in the face of natural exposure to malaria,
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which the challenge model cannot provide. Similar efforts in

African field trials of RTS,S have confirmed the consistent, high

titer generation of CSP-specific antibodies, while cell-mediated

immune (CMI) responses have not yet been systematically studied

[6]. Interestingly, in field studies where efficacy against infection is

the primary endpoint, CSP antibodies seemed to correlated with

protection [7,8], whereas no such correlation could be found with

protection against clinical manifestation of disease [7,9], except in

a recent trial of RTS,S/AS02 in infants [10] and a recent analysis

in children vaccinated with RTS,S/AS01 where anti-CSP

antibody titers 6.5 months after vaccination seemed to correlate

with protection [11].

Protection has been observed for up to 43 months following

vaccination despite declining levels of CSP-specific antibodies

[12,13], and efficacy measurements remained remarkably stable.

This long-term protection observed in Mozambican children

differs markedly from the waning protection observed in earlier

studies of RTS,S/AS02 in Gambian men and U.S. non-immune

adults in the U.S. [14,15]. This unexpected finding suggests that,

in addition to anti-CSP antibodies, other factors may contribute to

sustained protection, such as anti-CSP CMI, fine specificity and

functionality of CSP-specific antibodies, or acquisition of blood

stage immunity greater than that which would be acquired

naturally [4]. Indeed, a hypothesis that RTS,S vaccination may

affect blood stage immunity was proposed at earlier stages of this

vaccine’s development [16]. The concept of enhancing naturally

acquired immunity through interventions that reduce the blood

stage parasite burden was proposed to explain long-term efficacy

of intermittent preventive treatment in infants [17]. In the case of

RTS,S vaccination, it was hypothesized that low dose parasitemia

as a result of partial pre-erythrocytic protection may allow for a

more effective immune response to asexual blood stage parasites

[18,19]. The alternative to this hypothesis would be that RTS,S

vaccination reduces naturally acquired immune responses to blood

stage parasites through reduction in high level exposure.

In the Phase IIb trial in children 1–4 years of age performed in

Manhiça, Mozambique, the study was divided into two cohorts,

each with different follow up methods and schedules [7]. Cohort 1

(C1) was followed for 43 months post-vaccination by passive case

detection (PCD) of clinical malaria, and an efficacy of 30.5%

against first or only episode of clinical malaria was observed over

the entire follow-up period [13]. The estimated entomological

inoculation rate in Manhiça District in 2002 was 38 infective bites

per person per year [20]. Cohort 2 (C2) was followed for 6 months

post-vaccination by active detection of infection (ADI) by

fortnightly and monthly household visits and thereafter by PCD;

vaccine efficacy was initially 45.0% against first or only episode of

infection, but waning efficacy was observed by 6 months post-

vaccination. There were no EIR estimates in this area at the time

of the trial, but transmission intensity in C2 was notably higher, as

deduced by elevated blood stage immunofluorescence antibody

test (IFAT) responses at baseline [7]. In addition to transmission

intensity, another key difference was prompt clearing of parasit-

emia during ADI visits in C2, regardless of parasite density or

presence of fever.

Here, we examined the antibody immune responses to multiple

asexual blood stage antigens at 6 months post-vaccination, the

time when waning efficacy is observed in C2 but not in C1. We

hypothesized that in C1, antibodies to asexual blood stage antigens

in the RTS,S/AS02 group would be higher than those in the

control group. Furthermore, we hypothesized that the magnitude

of the difference between C2 vaccine groups would be less than

that observed in C1. We measured antibodies to leading blood

stage vaccine-candidate antigens AMA-1 [21], MSP-142 [22,23]

and EBA-175 [24], as well as variant surface antigens of the R29

P. falciparum culture line (VSAR29) and recombinant DBL-a. The

R29 culture line exhibits high levels of rosetting, and DBL-a is

encoded within var-1 of R29 [25]. Each of these antigens has been

targeted for vaccine development or for further investigation due

to their importance in the blood stage parasite lifecycle, such as

merozoite invasion, immune evasion and cytoadherence [25–27].

Although it is unknown if there is a causal relationship between

antibodies to these antigens and protective immunity, some of

these antibodies have shown association with protection in

seroepidemiological studies [28–30].

Methods

Ethics Statement
The study was approved by the Mozambican National Health

and Bioethics Committee, the Hospital Clı́nic of Barcelona Ethics

Committee and the PATH Research Ethics Committee, and

written informed consent was gathered from parents/guardians.

Study Design
The samples assessed were obtained as part of a Phase IIb

proof-of-concept randomized, controlled trial of the RTS,S/AS02

vaccine administered to 1–4 year-old Mozambican children

(ClinicalTrials.gov registry number NCT00197041). The trial

design has been described in detail in multiple primary research

articles [7,31,13,19].

Serum samples were obtained from cross-sectional blood

collections at the start of the single-blind phase of follow-up,

corresponding to 6 months after third dose [31,19]. This timepoint

was selected, because it provides a period of 6 months of natural

exposure following vaccination and coincides with the beginning

of the follow-up period where waning efficacy was observed in C2

[19]. Samples were selected to have an equal representation of C1

and C2 and of older and younger children. To do this, samples

were stratified by cohort and by two age groups ($ or ,2 years of

age) to create 4 subgroups of the full sample set. Samples were

randomly selected in each subgroup. Baseline characteristics of the

samples selected, including age group, previous episodes and pre-

vaccination blood stage antibody titers, are given in Table S1.

Recombinant Proteins
Apical membrane antigen 1 (AMA-1) 3D7 strain [21], PfF2

(fragment II of region II of the 175 kDa erythrocyte binding

antigen, EBA-175) [32], and the Duffy binding-like alpha (DBL-a)

domain of PfEMP-1 [25] were produced at ICGEB. FMP009

(FVO strain of AMA-1), FMP1 and FMP010 (3D7 and FVO

strains of MSP-142, respectively) [22,23], all were produced at

WRAIR.

Suspension array technology
Microsphere coupling. A multiplex suspension array

technology (SAT) panel was constructed to quantify IgG responses

to P. falciparum antigens using Luminex xMAPTM (Luminex Corp.,

Austin, Texas) and the Bio-Plex 100 platform (Bio-Rad, Hercules,

CA). xMAPTM beads (regions: 4, 10, 15, 34, 40, and 45) were

selected for each antigen. Uncoupled polystyrene 5.6 mm COOH-

microspheres (Bio-Rad) were coupled to antigen in 200 mL coupling

reactions (2.56106 microspheres). First, microspheres were washed

twice with 100 mL of Wash Solution from the Bio-Rad carboxylated

microsphere coupling kit. Microspheres were resuspended by

sonication and vortexing and activated using Bead Activation

buffer. Sulfo-NHS (N-hydroxysulfosuccinimide) and EDC (1-Ethyl-

3-[3-dimethylaminopropyl]carbodiimide hydrochloride) (Pierce,

RTS,S Vaccine and Blood Stage Antibodies
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Thermo Fisher Scientific Inc., Rockford, IL) were simultaneously

added to reaction tubes at 5 mg/mL each in Bead Activation buffer,

and reaction tubes were incubated at room temperature with gentle

agitation, protected from light for 20 min. Microspheres were

washed with 100 mL PBS, sonicated and vortexed. One microgram

of corresponding recombinant protein per million microspheres was

added to each reaction tube. A prior titration of the antigen

concentrations confirmed that as little as 1 mg of each antigen per

million microspheres could be used without changing the saturation

levels of the microspheres when assayed with hyperimmune plasma

(HIP). Reaction tubes were left at 4u C on a shaker overnight,

protected from light. Microspheres were then blocked with 250 mL

of 1% bovine serum albumin (BSA) in PBS for 30 min on a shaker at

room temperature, protected from light, then centrifuged and

washed with 500 mL assay buffer (1% BSA/0.05% sodium azide in

PBS, filtered). Coupled microspheres were quantified on a Guava

PCA desktop cytometer (Guava, Hayward, CA), equal amounts of

each analyte combined in multiplex tubes, and stored at 3,000

microspheres/mL at 4u C, protected from light.

Luminex assay and standard curves. The SAT assay

developed for these analyses used modified standard curves and a

template employed by the Laboratory of Malaria and Vector

Research (LMVR, NIH) ELISA reference center [33]. Briefly,

3,000 microspheres per analyte were added to a 96-well round

bottom plate per well. A HIP pool from Mozambican volunteers

was applied in a 2-fold serial dilution for a starting dilution of

1:1,500 and incubated for 1 h at room temperature with plate

agitation and protection from light. The plate was washed by

pelleting microspheres (centrifuge at 8006g for 5 min) and

resuspended with wash buffer (0.05% Tween 20/PBS). 100 mL

of biotinylated anti-human IgG (Sigma, Tres Cantos, Spain)

diluted 1:2,500 in assay buffer was applied to all wells and

incubated at room temperature for 45 min with agitation and

protection from light. The plate was washed as before, and 100 mL

of streptavidin-conjugated R-phycoerythrin (Invitrogen, Carlsbad,

CA) diluted 1:1,000 in assay buffer was added and incubated at

room temperature for 25 min with agitation and protection from

light. The plate was immediately read using Bio-Plex Manager

version 4.0, and at least 100 microspheres per analyte were

acquired per sample. Crude mean fluorescent intensity (MFI) was

exported with background fluorescence from blank wells already

subtracted. Additionally, Bio-Plex Manager software automatically

calculated the regression equation for the curves of each analyte.

The 5-parameter logistic regression curve with logarithmic

variance weighting was selected due to superior fit with antibody

data [34,35].

y~Az
D

1z x=c
� �B

� �G

where A is the lower asymptote, B is the slope at the inflection

point, C is the concentration at the inflection point, D is the upper

asymptote, and G is a factor of asymmetry.

The back-calculated dilution corresponding to 15,000 MFI,

roughly the middle point of the linear region of a fully saturated

sigmoidal curve with the Bio-Plex 100 system, was assigned the

arbitrary value of 15,000 Antibody Units (AU), and the "undiluted

units" of the HIP pool for each analyte was calculated by

multiplying 15,000 units by the corresponding dilution factor. This

value was registered with the HIP pool to create a reference

standard for these antigens. This reference standard was repeated

on each assay day in a 14-point 2-fold dilution series, starting at a

dilution of 1:1,500 with the corresponding unit values (the large

range of the dilution series encompasses different saturation points

for each antigen). Test plasmas were incubated with the multiplex

microspheres at a final dilution of 1:500 in duplicate, and the assay

was performed as described for the standard curves. Based on the

standard curves for each analyte, AU concentration for each

antigen was calculated by the Bio-Plex Manager software. Samples

where microsphere aggregation exceeded 50% were excluded

from analysis.

Anti-VSA antibody assays
VSA antibody assays were performed as described previously

[36]. The R29 line of P. falciparum was selected for anti-VSA assays

because, compared to other field and laboratory isolates, it was the

most immunogenic in preliminary studies in this population

(Dobaño et al. unpublished). Briefly, synchronized cultures of the

R29 line were cryopreserved and thawed for each assay day.

Sterile 96-well round bottom plates were blocked with 200 mL/

well of 1% BSA/PBS and left overnight at 4u C. Erythrocyte

pellets were measured and resuspended in 1% BSA/PBS to 1%

hematocrit, and 95 mL of erythrocyte suspension was added to

each well. A 1:20 dilution, or 5 mL of serum, was added to wells

without replicates, and 4 wells were left as controls: a blank, two

compensation controls and a HIP positive control. Plates were

incubated for 30 min at room temperature with mild agitation and

washed three times by centrifuging the plate at 1,2006g for 2 min,

carefully flicking off the supernatant, and resuspending the pellets

with 200 mL of 1% BSA/PBS. Pellets were resuspended in 100 mL

of polyclonal rabbit anti-human IgG (Dako Cytomation, Glostrup,

Denmark) diluted in 1:200 in 1% BSA/PBS and incubated for

30 min at room temperature with gentle agitation. Plates were

washed and pellets resuspended in 100 mL of Alexa Fluor 488

donkey anti-rabbit IgG (Invitrogen, Carlsbad, CA) diluted 1:1,000

and ethidium bromide (Ecogen, Barcelona, Spain) diluted 1:1,000

from a 1% stock in 1% BSA/PBS and incubated for 30 min at

room temperature with gentle agitation and protection from light.

Plates were washed as before and two additional times with PBS.

Pellets were resuspended in 200 mL of PBS, transferred to

cytometer acquisition tubes containing 200 mL of PBS, acquired

on a 4-color FACS Calibur and analyzed using CellQuest Pro

v5.2.1 (BD, Franklin Lakes, NJ). A gate for infected events was

established using infected erythrocytes and ethidium bromide

stain. A minimum of 1,000 infected events and up to 5,000 were

acquired. Geometric mean MFI was reported for both infected

and uninfected events, and an overall MFI value for specific

VSAR29 antibodies was calculated by subtracting the MFI of

uninfected events from MFI of infected events.

Procedures for normalization of data were as follows. A 6-step

2-fold serial dilution of HIP was added in duplicate to each assay

plate, starting with a 1:20 dilution to generate a reference curve for

inter-assay variation and dynamic assay normalization. A

standardized mean fluorescence intensity (MFI) score was assigned

to each sample, as previously described [37], based on the

hyperimmune plasma (HIP) titration. Samples with specific MFI

above the highest titer (1:20) were assigned a score of 6, between

that and the next titer (1:40) a score of 5, and so forth, and all

samples with specific MFI below the lowest titer (1:640) were given

a score of 0. Additionally, the HIP titrations for all plates were

averaged, and 6 "normalization constants" were generated, one for

each dilution of the HIP, which were the ratio of MFI on the plate

to the mean of all plates. All samples were normalized by

multiplying the crude MFI by the normalization constant

corresponding to the standardized MFI score for that sample

(e.g. a sample with MFI score of 6 would be normalized with the

normalization constant for the 1:20 HIP dilution for that plate).

RTS,S Vaccine and Blood Stage Antibodies
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This method allowed for more accurate adjustments across the

MFI spectrum than by normalizing all values by a single dilution

of a positive control.

Statistical Analysis
All antibody data were exported in Microsoft Excel, organized

and imported into STATA version 11 (STATA Corp., Texas).

Luminex values were divided by 1,000 for analysis. Data was log-

transformed using the natural logarithm. Differences between

groups were analyzed by the reverse cumulative distribution

function [38] and the Wilcoxon rank-sum test. Correlations

between antibody responses to different antigens were assessed by

Pearson’s correlation coefficient (r), and p-values were adjusted by

the Bonferroni correction. High correlation was considered for

values of r greater than 0.7, and moderate correlation was

considered for r greater than 0.5. Continuous data were analyzed

for variables interacting with antibody levels using an Ordinary

Least Square (OLS) linear regression model adjusting for age

group, cohort, blood stage antibodies at baseline (based on IFAT

performed for the main trial) [7], previous malaria episodes,

present infection and batch of experiments. Interactions with the

vaccine group and the adjusting variables were tested with an F-

test. Data were categorized into 5 groups: below range, lower/

middle/higher tertiles and above range. Categorical data were

analyzed using an Ordered Politomous Logisitc Regression

(OPLR) model adjusting for the same variables as above.

Continuous and categorical data were compared for time-to-first

clinical episode in the single-blind follow-up time period from 6–

18 months post-vaccination [31] using univariate and step-wise

multivariate Cox proportional hazard models on all children,

stratified by cohort and adjusting for vaccine group, age group,

IFAT at baseline, and previous clinical malaria episodes. Maternal

antibodies were not considered as a confounding factor, because

the youngest children in the study were nearly 2 years of age at the

time of sampling. Results were considered statistically significant

for a p-value ,0.05.

Figure 1. Reverse cumulative distribution of crude IgG responses by treatment group. The graphs represent the pooled antibody
responses of children 1–4 years (cohorts 1 & 2 together) who received RTS,S/AS02 vaccine or control vaccine.
doi:10.1371/journal.pone.0025779.g001
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Results

Of the 2022 children aged 1-4 years enrolled, sera from 6

months post-vaccination in 580 randomized individuals who

completed according-to-protocol (ATP) criteria throughout the

single-blind phase (6–18 months post-vaccination) were assayed by

Luminex and flow cytometry. Samples were evenly distributed

between C1 and C2 and between the , 2 years and $2 years age

groups.

Antibody responses in RTS,S and control children
There were no significant differences in the distribution of IgG

responses to any of the antigens tested between RTS,S/AS02

vaccine candidate and control groups in the crude (Figure 1 &

Table S2), or adjusted (Table 1) analyses, and this was the case for

both cohorts separately (Table S3). However, the effect of RTS,S/

AS02 vaccination on blood stage antibodies was different by age

group (Figure 2), with lower IgG levels for the 3D7 and FVO

strains of AMA-1 (p = 0.0104 & p = 0.0147, respectively) and

MSP-142 (p = 0.0009 & p = 0.0142, respectively) in the RTS,S

group compared to control, among younger (, 2 years) children

but not in the older ($ 2 years) children (Table 2 & Table S4). No

difference was seen in either age group for antibodies against EBA-

175, DBL-a, or VSAR29.

As previously shown, antibodies were generally higher in the

older age groups, in the region of higher transmission intensity

(C2), in children with previous malaria episodes or infection at the

time of sampling, and in those with higher pre-vaccination IFAT

titers (Table S5).

Correlation of antibody responses to different antigens
Antibody responses to the different antigens were not

systematically correlated (Figure 3). Most antibody combinations

were moderately (15/28) to highly (4/28) correlated. Correlation

was high between AMA-1 3D7 and FVO (r: 0.94, p,0.001) or

MSP-142 3D7 and FVO strains (r: 0.81, p,0.001), indicating high

levels of cross-strain recognition. Prior to performing assays, HIP

was titrated against AMA-1 and MSP-142 3D7- and FVO-coated

microspheres in singleplex and multiplex to confirm a minimal

level of cross-reactivity in the positive control plasma (data not

shown).

Antibody responses in relation to protection from clinical
malaria

We calculated the effect of antibodies at 6 months post-

vaccination on the hazard of clinical malaria, analyzed as

continuous and categorized data. There were no divergences in

the continuous or categorical models, and only the continuous

models are reported here. In C1, there was no evidence of any

association between antibodies and risk of clinical malaria. The

hazard to the first or only episode of clinical malaria was

significantly higher in children with previous malaria episodes

(hazard ratio [HR]: 2.95, p,0.001), and lower in the older age

group of children (HR: 0.54, p = 0.015). In C2, there was a lower

risk of clinical malaria associated with higher IgG to EBA-175 and

VSAR29 (Table 3 & Table S6), as well as a lower risk in the older

age group (HR: 0.57, p = 0.041). The HR was, again, significantly

higher in children with previous malaria episodes (HR: 1.91,

p = 0.004).

Discussion

We tested a hypothesis that vaccination of children with the

partially protective, pre-erythrocytic stage RTS, S adjuvanted

vaccine candidate would elicit a broadly stronger asexual blood

stage immune response that may be associated with long-term

protection from clinical disease. Furthermore, we proposed that

this observation would explain the waning efficacy observed in C2

and in newborns [8,12]. From the onset, we were confronted with

the question of which antigens to select among the nearly 2,000

antigens of the asexual blood stage (www.plasmodb.org). Our

selection was limited by the current knowledge and availability of

blood stage antigens, and we used targets expressed on the surface

of merozoites or infected erythrocytes, thus accessible to the

immune system and probably under immune pressure [39], and

which have known functions in erythrocyte invasion, immune

evasion and cytoadherence.

No differences were observed in the distribution of antibodies to

AMA-1 (3D7 & FVO), MSP-142 (3D7 & FVO), EBA-175, DBL-a
and VSAR29 when comparing all children in the RTS,S/AS02

and control vaccine groups, suggesting that RTS,S/AS02 neither

enhances nor impairs antibodies naturally acquired against blood

stage antigens. This finding contrasts with a recent report on blood

stage antibodies in a Phase IIb trial of RTS,S in Kenya and

Tanzania, which found a significant reduction in blood stage

antibodies in RTS,S-immunized children [40]. However, when

stratifying by age, AMA-1 and MSP-142 antibodies were lower in

the RTS,S/AS02 group in children ,2 years of age at enrollment.

In this case, the results from Bejon et al. agree with ours, given that

the ages of all children in that trial were below 2 years of age [9].

The reduction in episodes of malaria and, thus, exposure to

parasites afforded by RTS, S/AS02, thereby reduces levels of IgG

to some blood stage antigens, particularly antigens shown to be

markers of exposure [41–43]. The absence of a detectable

reduction in the older age group may be explained by the

relatively high antibody levels already acquired in these children;

reduced exposure in the RTS, S group may have a less dramatic

effect on these antibody levels.

The hypothesis that waning efficacy in C2 is a result of

interrupted exposure to low dose parasitemia hinges on a

differential profile of blood stage antibodies from those of C1,

which is not supported by these data. One explanation is that these

antigens may merely serve as strong markers of exposure, which is

Table 1. Multivariate linear regression model showing the
effect of RTS,S vaccination on levels of IgG to blood stage
antigens, compared to control vaccination, adjusted by
cohort, age, IFAT titer at baseline, batch of experiments,
previous episodes and present infection.

Antigen Prop. Diffa 95% CIb p R2 c

AMA-1 (3D7) 0.82 0.61–1.10 0.190 0.63

AMA-1 (FVO) 0.90 0.66–1.24 0.525 0.62

MSP-142 (3D7) 0.97 0.72–1.32 0.867 0.48

MSP-142 (FVO) 0.87 0.64–1.18 0.365 0.34

EBA-175 1.08 0.83–1.41 0.547 0.38

DBL-a 1.13 0.91–1.40 0.258 0.43

VSAR29 1.07 0.87–1.33 0.502 0.49

aProportional difference refers to the proportional effect per log-increase in
antibody level.

bConfidence Interval.
cR2 value of the OLS regression model was ,0.65 in all cases, indicating that
only a portion of the variability of IgG data is explained in the model.

doi:10.1371/journal.pone.0025779.t001
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expected to be lower overall in the RTS,S group. IgG to all

antigens tested were higher in C2 and may indicate an already

advanced level of blood stage immunity, where RTS,S gives less

impact on blood stage antibodies. Lower antibodies in younger

children may also be linked to exposure. Whereas blood stage

antibodies to AMA-1 and MSP-142 in older children may have

already reached a plateau, partial pre-erythrocytic protection

afforded by RTS,S may reduce the levels of antibodies to antigens

Figure 2. Reverse cumulative distribution of antibodies in RTS,S/AS02 vaccine vs. control vaccine groups, stratified by age group.
The graphs represent the pooled antibody responses (cohorts 1 & 2) who received RTS,S/AS02 vaccine or control vaccine.
doi:10.1371/journal.pone.0025779.g002

Table 2. F-test for interactions between RTS,S vaccine group and key variables on antibody levels.

Prop. Diff.a (95% CI) ,2 years Prop. Diff.a (95% CI) .2 years p-value interaction RTS,S x Age group

AMA-1 (3D7) 0.51 (0.32–0.81) 1.11 (0.76–1.63) 0.0104

AMA-1 (FVO) 0.55 (0.34–0.91) 1.23 (0.82–1.84) 0.0147

MSP-142 (3D7) 0.52 (0.33–0.82) 1.46 (0.98–2.17) 0.0009

MSP-142 (FVO) 0.54 (0.34–0.87) 1.17 (0.79–1.74) 0.0142

Results are proportional difference in antibody levels associated with being in the RTS,S/AS02 vaccine group.
aProportional difference refers to the proportional effect per log-increase in antibody level to blood stage antigens; CI: Confidence Interval.
doi:10.1371/journal.pone.0025779.t002
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that are strongly associated with exposure in the younger children.

We have no evidence that these lower levels of antibodies in

younger RTS,S-vaccinated children result in an impairment of

blood stage immunity over the 43 months of follow-up. Further

studies should confirm this result. The difference in transmission

intensity between cohorts remains a potential factor in vaccine

efficacy that cannot be controlled in these data, but which may

explain the waning efficacy observed in C2 through potential

mechanisms such as increased likelihood of inoculation, greater

exposure to parasite genetic diversity and a higher level of

challenge to strain-specific or variant-specific naturally acquired

immunity.

Interestingly, children with higher IgG to EBA-175 and VSAR29

at 6 months post-vaccination had a lower hazard of clinical

malaria up to 18 months, but this result was only observed in C2.

We found that vaccine group did not modify antibody levels to

these antigens differently in C1 and C2, thus showing no

interaction between vaccine group and cohort and suggesting that

protection in C1 may be mediated by other immune factors. It is

possible that the children living in Ilha Josina (C2) experience a

faster build-up of immunity than those living in Manhiça (C1) due

to the differences in transmission intensity, perhaps indicating a

more ‘‘mature’’ immune response in C2. This is supported by the

clinical patterns of disease in these populations [44], where the age

pattern of disease is shifted to earlier age in Ilha Josina, compared

to Manhiça (Aide et al., Guinovart et al., in preparation). It follows

that affinity maturation of antibodies in C2 may also occur earlier

than in C1 and account for differences in the protective effect of

the antibodies. Thus, further characterization of the antibodies

evaluated here, particularly fine specificity [45], subclasses of IgG

[29], affinity and/or avidity [46] and in vitro functional capacity,

could show further differences, both between cohorts and in

prospective risk of disease.

Could other asexual blood stage antigens be more relevant to

immunity? Evidence from a study in Mali before and after the

transmission season suggests that a number of previously

uncharacterized antigens may be better candidates for discrimi-

nation of protection from clinical disease [47]. A broader

repertoire of antibody responses is shown to be associated with

reduced risk of clinical malaria [48]. Anti-VSA antibodies and,

particularly, how rapidly they are acquired in succession, may be

important factors in parasite control [49]. The moderate

correlation between antibodies against different antigens suggests

that the selection may not be representative of the blood stage

antibody immune response as a whole, and that different antibody

levels could be expected within individuals for other antigens. It

remains to be seen if these antibodies are acquired differently in

RTS,S-vaccinated versus control-vaccinated individuals.

In conclusion, antibodies to the immunodominant blood stage

antigens evaluated here were neither higher nor lower in RTS,S-

immunized children compared to the control vaccine group, as a

whole. In younger children, there seemed to be a reduction in

Figure 3. Correlation of antibody responses to merozoite and VSA antigens within the individual. A matrix of log-transformed antibody
units or mean fluorescence intensities (VSAR29) against the selected blood stage antigens shows correlation of antibody responses between antigens.
Pearson’s correlation coefficient (r) is included in each antibody combination panel (p-value,0.001 for all correlations).
doi:10.1371/journal.pone.0025779.g003
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antibodies against some antigens in the RTS,S group, although

there is no evidence in this study that these lower antibody levels

translate to an impairment of naturally acquired immunity. Based

on our findings, antibodies to the common blood stage antigens

tested do not explain the difference in long-term efficacy between

C1 and C2. The data are not sufficient to reject the hypothesis that

the RTS,S vaccine facilitates immunity upon exposure to blood

stage parasites, as it is not known if the antigens selected are

representative of, or relevant to, the overall protective antibody

response of asexual blood stage antigens, and CMI responses were

not addressed. Further characterization of naturally acquired

blood stage antibodies must be done for the duration of the follow-

up period to highlight protective antibody responses and effects of

RTS,S vaccination in these two cohorts.
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