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Abstract

It is suspected that bone marrow (BM) microenvironmental factors may influence the evolution of chronic myeloid
leukaemia (CML). In this study, we postulated that adipocytes and lipids could be involved in the progression of CML. To
test this hypothesis, adipocytes were co-cultured with two BCR-ABL positive cell lines (PCMDS and K562). T cell (Jurkat) and
stroma cell (HS-5) lines were used as controls. In the second set of experiments, leukemic cell lines were treated with stearic,
oleic, linoleic or a-linolenic acids in presence or absence of leptin. Survival, proliferation, leptin production, OB-R isoforms
(OB-Ra and OB-Rb), phosphoinositide 3-kinase (PI3k) and BCL-2 expression have been tested after 24h, 48h and 72h of
treatment. Our results showed that adipocytes induced a decrease of CML proliferation and an increase in lipid
accumulation in leukemic cells. In addition, CML cell lines induced adipocytes cell death. Chromatography analysis showed
that BM microenvironment cells were full of saturated (SFA) and monounsaturated (MUFA) fatty acids, fatty acids that
protect tumor cells against external agents. Stearic acid increased Bcl-2 expression in PCMDS, whereas oleic and linoleic
acids had no effects. In contrast, a-linolenic acid decreased the proliferation and the survival of CML cell lines as well as BCL-
2 and OB-R expression. The effect of a-linolenic acids seemed to be due to PI3K pathway and Bcl-2 inhibition. Leptin
production was detected in the co-culture medium. In the presence of leptin, the effect of a-linolenic acid on proliferation,
survival, OB-R and BCl-2 expression was reduced.
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Introduction

Chronic myelogenous leukemia (CML) is a malignant disorder

of the hematopoietic stem cell (HSC) characterized by a reciprocal

translocation between chromosomes 9 and 22 (t(9;22)(q34;q11))

[1]. The translocation results in formation of the BCR-ABL fusion

oncogene encoding a protein with constitutive tyrosine kinase

activation, which plays a central role in the pathogenesis of the

disease. Many mechanisms are involved in the malignant

transformation orchestrated by the BCR-ABL oncoprotein [2].

It constitutively activates mitogenic signaling pathways such as the

phosphoinositide-3 (PI3) kinase pathway [3]. Once activated, the

PI3K controls cell growth, proliferation and apoptosis, as well as

steps that are involved in tumor formation and malignant cell

dissemination [4].

Although abnormal leukemic cells define the tumor compart-

ment itself, environmental factors could participate in the

evolution of the disease. Indeed, alterations in the bone marrow

microenvironment were widely described. These alterations

include deregulated patterns of cytokine production that promoted

a proinflammatory environment. These alterations induce a

deficient of hematopoietic supportive capacity and decreased the

number of cells in certain stromal cell populations [5].

In addition: 1) Some reports suggest that obesity play important

role in CML risk [6–7]. ; 2) Morphologically identifiable adipo-

cytes, the most abundant bone marrow stromal cells in healthy

adult [8–9], were shown to inhibit myeloid differenciation [10,11].

In patient with CML, the number of pre-adipocytes increased

during the chronic phase and was reduced once CML entered

blast phase [12]. At remission, there is a recurrence of bone

marrow (BM) adipocytes [13]. ; 3) In certain cases of leukemia, a

shift of low density lipoprotein (LDL) from blood to spleen, liver

and bone marrow was observed [14–15]. At the remission, LDL in

peripheral blood return to normal values.A drop in saturated and

monounsaturated fatty acids in the bone marrow was also

described in leukemic patient [16,17]. The involvement of fatty

acids has been widely demonstrated in some cancers such as breast

cancer [18–19] but has never been studied in CML. ; 4) Genes

coding for the receptor of leptin (OB-R), an adipokine produced

predominantly by adipocytes [8,20], and for proteins involved in

fatty acid synthesis, were upregulated in CML cells [3]. This

upregulation was directly associated with activation of the PI3K
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signaling pathway, the major signalling pathway of OB-R [21],

involved in drug resistance [22]. ; 5) Despite many studies

demonstrating the protective effects of leptin against acute myeloid

leukemia (AML) [20,23], the role of leptin in CML remains

unclear. CML seems to be resistant to the proliferative effects of

leptin [20].

Lipid accumulation in the BM associated with OB-R expression

and PI3K/AKT signalling activation led us to believe that fat cells

and lipids could be involved in the evolution of the disease. In this

work, we studied the possible role of adipocytes, leptin and fatty

acids in the CML disease progression by analysing interactions

between BM adipocytes and BCR-ABL positive cell lines and

exploring the potential effects of leptin and fatty acids on these cell

lines.

Materials and Methods

Isolation and culture of adipocytes
Femoral and iliac crest bone marrow (BM) samples were

obtained from patients undergoing hip surgery at the Department

of Orthopedic Surgery (CHR, Liège, Belgium). The hospital ethics

committee of the University of Liège (B70720095686-2009/26)

approved this study and the donors were informed by written

consent in accordance with the Helsinki convention. Adipocytes

were isolated from femoral biopsies and cultured as previously

described [10]: briefly, after dissociation with collagenase, floating

adipocytes were cultured using the ceiling method. They were

amplified in a long-term culture medium (alpha-MEM, 12.5%

horse serum, 12.5% fetal calf serum, 2mM L-glutamax, 0.2M

inositol, 100 M ß-mercaptoethanol, 50 U/ml penicillin and

50 mg/ml streptomycin). Adipocytes from BM acquired a

fibroblast-like fat cell (FLFC) morphology in vitro but conserved

the typical features of freshly isolated BM adipocytes [10].

Cell lines
PCMDS cell line, was described as CML [24] and kindly

provided by Dr G.Bogdanovic (Sremska Kamenica Oncology

Institute, Serbia). A stromal cell line (HS-5), the CML cell line

K562 and a T cell line (Jurkat) were purchased from American

Type Culture Collection (ATCC Rockville, MD). Cell lines were

maintained in RPMI-1640 medium containing 10% fetal calf

serum, 1% L-glutamine, 50 U/ml penicillin and 50 mg/ml

streptomycin.

Co-cultures of leukemic cells with FLFCs or HS-5
FLFCs or HS-5 were plated in 6- or 96-well plates at 1006103

or 306103 cells, respectively. After monolayers formation, 56103

(96-well plates) or 306103 (6-well plates) PCMDS, K562 or Jurkat

cells were added either in cell-cell contact or using transwell

chamber (cell culture insert 8 mm pore size PET track-etched

membrane, Becton Dickinson, France). For [3H]Thymidine

experiments, FLFCs and HS-5 monolayers were irradiated before

the addition of 106103 PCMDS. Cultures were stopped after 24h,

48h and one week. Conditioned media were collected and stored

at 280uC until dosage of leptin by enzyme-linked immunosorbent

assay (ELISA)(R&D Systems Inc, France). Leukemic cells were

used for morphological analysis, immunostaining, protein and

RNA extraction.

Fatty acid stimulation
For lipid stimulation, PCMDS, K562 or Jurkat cell line (256103

/ml) were cultured in the presence of 50 to 250 mM of stearic

(C18:0), oleic (C18:1), linoleic (C18:2 n-6) or a-linolenic acids

(C18:3 n-3) (all from Sigma-Aldricht, France) with or without

addition of 400 mg/ml of a-Tocopherol (Sigma-Aldricht, France).

Oil Red O staining
Cytospins were realized for Oil Red O staining : they were fixed

in formaldehyde vapor during 5 min, stained with Oil-Red-O

(Sigma-Aldricht, France) for 10 min, air-dried and counterstained

with hematoxylin for 5 min.

Flow cytometry
Flow cytometry analysis were performed on a FACS-CantoII

(Becton Dickinson and Company, France). Cell suspensions were

incubated with a mouse anti-OBR (R&D Systems, France)

antibody (1/50) for one hour at room temperature, then with a

FITC conjugated rat anti-mouse (IgG2b) antibody (1/400) (BD

biosciences, France).

[3H]Thymidine uptake
After 24h or 48h of co-culture, 0.1 mCi of [3H]Thymidine

(specific activity, 6.7 Ci/mmol), (DuPont, Wilmington, DE) was

added to the medium for 6 hours. The cell suspensions were then

deposited onto harvester filters using a semiautomatic cell

harverster (unifilter 96 haverster, Perkinelmer, USA). Radioactiv-

ity was measured using a scintillation counter (Topcount,

Perkinelmer, USA) and expressed as counts per minute (CPM).

Apoptosis
To quantify apoptosis, the cells were analyzed over time by

staining for the phosphatidylserine translocation using FITC-

annexin V and propidium iodide (PI) (Annexin-V/PI kit, BD

Pharmingen, USA), according to the manufacturer’s instructions.

Samples were analysed on a FACS CantoII (Becton Dickinson,

France).

Fatty acids analysis
Total lipids were extracted from femoral bone marrow with

chloroform-methanol 2:1 (v:v) as previuosly described Folch et al

[25]. The extract was concentrated under reduce pressure at

35uC. Fatty acid methyl esters (FAME) were prepared from crude

lipids by Boron trifluoride catalyzed transesterification. Ten mg

lipids were dissolved in 0.5 ml n-hexane to which 0.5 ml of

reagent (14% BF3-methanol, dry methanol and n-hexane

25:55:20 v/v/v) were added in 10 ml sovirell tubes. The sealed

tubes were maintained at 70uC during 90 min. After cooling

0.1 ml 10% H2SO4 and 0.5 ml saturated solution of NaCl were

added and the solution diluted in 8 ml of pure n-hexane. FAME

were analysed by gas liquid chromatography on a Agilent 6890

apparatus fitted with cold ‘‘on-column’’ injection and a FID

detector (maintained at 250uC). The operating conditions were as

follows: 30 m60.25 mm, Factor four MAX from Varian, film

thickness: 0.25 mm; temperature programme: from 50uC (hold of

1 min) to 150uC at 30uC /min and from 150uC to 230 at 5uC /

min with a time final hold of 18 min. Helium at 70 KPa was used

as carrier gas. FAME were identified on the basis of their retention

time with those of the SUPELCO 37 FAME MIX (47885-U). The

results for each FAME are expressed in area %.

Western immunoblotting
Cell lysates were prepared with the use of RIPA buffer (10 mM

Tris [tris(hydroxymethyl)aminomethane], pH 7.4; 150 mM NaCl;

1% Triton 62100; 0.5% deoxycholate; 0.1% sodium dodecyl-

sulfate [SDS]; 5 mM ethylenediaminetetraacetic acid [EDTA])

containing protease inhibitors (complete tablets; Roche, Basel,
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Figure 1. Coculture of FLFCs and PCMDS for 48h: Influence on PCMDS. a PCMDS proliferation in direct contact (co) and in transwell (trw)
conditions with FLFCs and HS-5 stromal cell lines vs K562 and Jurkat cells in direct contact with FLFCs. **P,0.01 versus control cells (black columns)
(Student t test). Columns, mean of at least three independent determinations, bars. SD. b lipid accumulation was observed by Oil Red O staining in
PCMDS and in K562 in direct contact and in transwell condition (not show) but not in Jurkat cells (magnification, x20) shows intracytoplasmic
lipid droplets. c cell-cell direct contact with PCMDS induce morphological alterations in FLFCs that are not observed in transwell condition
(magnification, x20).
doi:10.1371/journal.pone.0025651.g001
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Switzerland). Aliquots of protein samples (50 mg) or equivalent

amounts of cells (26106 cells) were mixed with the same volume of

double-strength Laemmli buffer (125 mM Tris–HCl pH 6.8, 4%

SDS, 20% glycerol, 10% 2–mercaptoethanol, and 0.002%

bromophenol blue). The samples were boiled for 5 min and

subjected to SDS-polyacrylamide gel electrophoresis (PAGE) (7-

12% gradient gels). Immunobloting was performed using mono-

clonal antibodies or polyclonal antisera against actin (A 2066,

Sigma); BCL-2 (DAKO A/S, Glostrup, Denmark); leptin receptor

(R&D systems, France); AKT, Phospho-Akt (Ser473), (9272,

9271,respectively; Cell Signalling, Danvers, MA 01923). Immu-

nodetection was performed by the using of horseradish peroxidase-

Figure 2. Coculture of FLFCs and PCMDS: Leptin production and OB-R expression. a leptin production assessed by enzyme-linked
immunosorbent assay in direct contact (co) and transwell (trw) coculture of PCMDS with FLFCs or HS-5 stromal cell lines after one week (black
columns no contact; hatched columns direct end transwell contact). ***P,0.001 versus PCMDS in control condition (Student t test). b after 48h, leptin
receptor (OBR) expression was analysed by flow cytometry after immunostaining of PCMDS cultured in control conditions (black columns) or in co-
culture with FLFCs or HS-5 (hatched columns).*P,0.05 versus PCMDS in control condition (Student t test). Columns, mean of at least three
independent determinations, bars. SD.
doi:10.1371/journal.pone.0025651.g002
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conjugated secondary antibodies (mouse IgG or rabbit IgG,

horseradish peroxidase linked whole antibodies, NA931 or NA934,

Amersham, Buckinghamshire, UK) and an enhanced chemilumi-

nescence method (RPN2132; Amersham, Buckinghamshire, UK)

involving exposure to X-ray film (Amersham hyperfilm ECL,

Buckinghamshire, UK).

RNA extraction and Reverse Transcription-Polymerase
Chain Reaction Analysis

Total RNA was purified from cell suspensions using the High

Pure RNA Isolation kit (Roche Diagnostics, Germany). The

amount of purified RNA was quantified by fluorimetry using

the RiboGreenTM RNA Quantification kit (Molecular Probes

Eugene, USA). Those specific primers were used to amplify the

following mRNA: endogens 28S: 39-GTTCACCCACTAATAG-

GGAACGTGA and 59 GATTCTGACTTAGAGGCGTTCA-

GT OB-Rb: 59-GCCAACAACTGTGGTCTCTC and 39-AGA-

GAAGCACTTGGTGACTG; OB-Ra: 39-AAGGAGTGGGAA-

AACCAAAG and 59-CCACCATATGTTAACTCTCAG; Reac-

tions were performed in an automated thermal cycler (Perkin-

Elmer, USA) using the geneAmp Thermostable rTth Reverse

Transcriptase RNA PCR kit (Perkin-Elmer, USA), specific pairs of

primers (Eurogentec, Belgium), 10 ng of RNA per 25 ml reaction

mixture. Known copy number of the internal standard (ssRNA)

was used for 28S mRNA amplification.

Statistical analysis
Experiments were performed with at least three independent

determinations. The results were analyzed by independent

samples two-tailed and unpaired Student’s t-test, and were

presented as means 6 standard deviation (SD).

Results

Direct contact between FLFCs and PCMDS induced lipid
accumulation in PCMDS and inhibited their proliferation

It was previously shown that FLFCs obtained from BM

adipocytes exerted a negative control on granulocyte differentia-

tion [10]. This observation raised the question of wether FLFCs

influenced leukemic myelomonocytic cells. To address this issue,

FLFCs were cultured with a BCR-ABL positive myelomonocytic

leukemic cell line, PCMDS and HS-5 stromal cell line was used as

control. The co-cultures were realized either in direct contact or in

transwell conditions and stopped after 48 hours.

In both conditions, PCMDS proliferation rate as tested by [3H]

thymidine uptake was significantly (p,0.01) lower (3683.756

733.48 cpm) in the presence of FLFCs than in control conditions

(8678.561320.92 cpm) or in the presence of HS-5 (7829.56

462.79 cpm). This decrease in proliferation was also detected

with another BCR-ABL positive cell line, K562 cells (p,0.01)

(921.14668.04 cpm in control condition vs 614.716132.19 cpm

in co-culture with FLFC) but not with Jurkat cells (p = 0.184450)

(805.856142.73 cpm in control conditions vs 637.426107.14 cpm

in co-culture with FLFCs) (Fig. 1a). Cell survival was similar in all

the culture conditions tested (data not shown). Morphological

examination after Oil Red O staining showed that PCMDS and

K562 cells but not Jurkat cells accumulated lipid droplets in their

cytoplasm when co-cultured with FLFCs (Fig. 1b) but not with

HS-5 (not shown). Furthermore, when the co-cultures were

stopped after one week, morphological examination showed that,

in direct cell-cell contact, but not in transwell conditions, FLFCs

but not HS-5 displayed morphological alterations suggesting cell

death in the presence of PCMDS (Fig. 1c).

Contact between FLFCs and PCMDS induced leptin
production and increased OB-R expression on leukemic
cells

As adipocytes exert many effects on hematopoietic cells by

producing leptin [26], we have compared leptin production by

FLFCs and HS-5 and OB-R expression on the cell surface of

PCMDS in control (medium alone) and co-culture conditions

(Fig 2A and 2b). Leptin levels measured by Elisa in co-culture of

FLFCs with PCMDS in direct cell-cell contact were greatly

increased (p,0.001), compared to cultures of FLFCs alone

(344.68659.7 pg/ml vs 38.67643.67 pg/ml) or to co-culture of

FLFCs with CD34 progenitors (120 pg/ml) [10]. In transwell

conditions, leptin level (92.38617.26 pg/ml) was also significantly

increased (p,0.001) but to a lesser extent than in direct cell-cell

Table 1. Fatty acid composition of bone marrow aspirates
and biopsies.

Fatty acids Bone marrow aspirates Bone marrow biopsy

Saturated fatty acids 36.2762.78% 41.33564.6%

Monounsaturated fatty
acids

36.2869.41% 48.3864.11%

Polyunsaturated fatty
acids

12.69560.5% 5.73562.51%

Fatty acids was analysed by gas lipid chromatography as described in ‘‘Materials
and methods’’. Values expressed as mean 6 SD (standard deviation)
doi:10.1371/journal.pone.0025651.t001

Figure 3. PCMDS in a medium supplemented with lipids
mixture for 24h. PCMDS viability (a) and proliferation (b) decrease
in contact with lipids (black columns no lipids stimulation; hatched
columns lipids stimulation). * P,0.05 and **P,0.01 versus PCMDS
without lipids treatment (Student t test). Columns, mean of at least
three independent determinations, bars. SD.
doi:10.1371/journal.pone.0025651.g003
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Figure 4. PCMDS, K562 and Jurkat cells cultured with stearic, oleic, linoleic and a-linolenic acids. a lipid accumulation in PCMDS, K562
and Jurkat cell in contact with saturated (SFA) and polyunsaturated (PUFA) fatty acids (magnification, x20 and x40) shows intracytoplasmic lipid
droplets. b effects of a-linolenic acid on PCMDS, K562 and Jurkat cells proliferation after 48 hours. *P,0.05 and ***P,0.001 versus in control
condition (Student t test). c effects of a-linolenic acid on PCMDS, K562 and Jurkat cells survival after 48 hours. **P,0.01 and ***P,0.001 versus in
control condition (Student t test). d effects of 200 mM of a-linolenic, linoleic, oleic and stearic acids on Bcl-2 expression (black columns no lipids
stimulation; hatched columns lipids stimulation) measured by western blot. *P,0.05 versus PCMDS in control condition (Student t test). e effects of
200 mM of a-linolenic, linoleic, oleic and stearic acids after 24 hours on OB-R (black columns) no lipids stimulation; hatched columns lipids stimulation)

Leptin and Fatty Acids Effects on Leukemics Cells
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contact. No leptin was detected in co-cultures of PCMDS with

HS-5.

OB-R expression was tested by flow cytometry. In control

condition, 21.63% of PCMDS expressed OB-R with a mean

fluorescence intensity of 25263.1. The percentage of PCMDS

expressing OB-R (p,0.05) as well as the fluorescence intensity

(p,0.05) greatly increased when they were co-cultured with

FLFCs but not with HS-5 (81.86611.16% and 446.3362 MFI

versus 3.3562.43% and 44.6 6 26.71 MFI) (Fig. 2b).

Lipid composition of normal bone marrow
As we observed lipid accumulation in PCMDS and K562

cytoplasm when they were cultured in contact with FLFCs, we

measured the lipidic content in four bone marrow biopsies and

two BM aspirates (Table 1). The total extractable lipid in the bone

marrow specimens varied between 19.4 to 35.2% of fresh tissue

weight. In BM biopsies, saturated fatty acids (SFA) accounted for

41.3364.6%, monounsaturated fatty acids (MUFA) for 48.386

4.11% and polyunsaturated acids (PUFA) for 5.7362.516% of the

total whereas in BM aspirates, SFA accounted for 36.2762.78%,

MUFA for 36.2869.41% and PUFA for 12.6960.5%.

Stearic saturated fatty acids (SFA), oleic
monounsaturated acid (MUFA) and linolenic
polyunsaturated fatty acids (PUFA) differentially
influenced PCMDS proliferation and survival, as well as
Bcl-2 and OB-R expression

The accumulation of lipids in myelomonocytic leukemic cells in

the presence of FLFCs led us to investigate wether the effects of

FLFCs were at least partially due to the fatty acids they contain.

To address this question, PCMDS were cultured in a medium

containing approximatively the same proportion (33%) of lipids

and the same composition (50% oleic, 43% stearic, 6.5% linoleic

and 0.5% a-linolenic acid) than that observed in a bone marrow

biopsy. After 48 hours, PCMDS viability and proliferation were

significantly decreased (95.1360.11% viability in control condi-

tions vs 91.7560.61% in the presence of lipids, p,0.05 and

1682661537.27 cpm in controls vs 8555.3361086.23 cpm in the

presence of lipids, p,0.01)(Fig.3a and 3b). To assess whether the

different types of fatty acids equally affected PCMDS survival and

proliferation, we cultured PCMDS, K562 and Jurkat cell lines in

presence of 50 to 250 mM of saturated stearic acids (SFA) or of

monounsaturated (MUFA) oleic acids or of polyunsaturated

(PUFA) linoleic acid and a-linolenic acids. This range of

concentration corresponded to that observed in situ. Lipid

accumulation in their cytoplasm was studied by Oil Red O

staining. In the presence of PUFA, PCMDS and K562

accumulated more lipids than in the presence of SFA. This

accumulation was also observed in Jurkat cells (Fig.4a). After

48 hours, a-Linolenic acid accumulation was associated with a

decrease of PCMDS and K562 proliferation (p,0.001)(100 mM:

1849.286304.33 cpm, 150 mM: 1189.576166.70 cpm, 200 mM:

763642.50 cpm and 250 mM: 394.14647.04 cpm vs 3301.716

603.50 cpm, in control) (150 mM: 6822.576587.42 cpm, 200 mM:

6569.856609.80 cpm and 250 mM: 4792.576280.26 cpm vs

12535.2861131.70 cpm, as control) and survival (p,0.001)

(150 mM: 23.4866.41%, 200 mM: 20.266.83% and 250 mM:

1.4360.32% vs 94.3161.59%, as control)(150 mM: 86.664.80%,

200 mM: 26.7627.01% and 250 mM: 2.8560.49% vs 97.860 as

control) in a dose dependant manner (Fig. 4b and 4c). Only high

amounts (250 mM) of a-linolenic acids slightly affected Jurkat cell

survival (p,0.01) (68.4665.22% vs 93.9360.35%) but without

any influence on their proliferation (Fig. 4b and 4c). Linoleic

(PUFA), oleic (MUFA) and stearic acids (SFA) did not affect

neither proliferation nor survival of PCMDS and K562 (results not

shown).

Linoleic (PUFA) and oleic acids (MUFA) did not influence Bcl-2

expression whereas, after 24 hours stearic acids (SFA) increased

(p,0.05) and a-linolenic acids (PUFA) decreased (p,0.05) its

expression in PCMDS (27326797 A.U. and 5086150 A.U.

respectively vs 1000 A.U. in control conditions) (Fig. 4d). The

decrease of Bcl-2 expression in presence of a-linolenic acids was

correlated to the low level of survival induced by this fatty acid

(Fig. 4b).

As BCR-ABL positive chronic myeloid leukemia cells express

leptin receptor (OB-R) [3] and as we observed an increase of OB-

R expression in PCMDS co-cultured with FLFCs, we evaluated

whether fatty acids could affect the expression of OB-R after

24 hours of culture. Our results showed that stearic, oleic and

linoleic fatty acids (200 mM) did not modify OB-R expression

(34.762.42% ; 25.9663.83% ; 22.0868.67%, respectively vs

27.1662.11% in control conditions). On the other hand, 200 mM

of a-linolenic acid induced a decrease of OB-R expression on

PCMDS surface after 24 hours (8.4860.79% vs 27.1662.11% in

control conditions) (P,0.001)(Fig. 4e).

Using RT-PCR analysis, we established that a-linolenic acid

(200 mM) decreased OB-Ra (p,0.05) and OB-Rb (p,0.05)

mRNA expression after 24 hours (76.5764.21 A.U and

54.14627.52 vs 100 A.U. in control conditions) whereas others

lipids analysed had no effect (Fig 4e).

Leptin alone did not influence PCMDS but inhibited the
effects of a-linolenic acid on PCMDS survival, Bcl-2 and
OB-R expression

The high levels of leptin in co-cultures of FLFCs and PCMDS led

us to analyse the effects of leptin on PCMDS cultured alone or in

presence of fatty acids. Leptin alone (300 pg/ml) did not influence

PCMDS proliferation, survival and OB-R expression. However,

leptin inhibited partially the decrease in OB-R expression induced by

a-linolenic acids (8.4860.79% with a-linolenic acid vs 18.8364.56%

with a-linolenic acid and leptin) (p,0.01)(p,0.05) (Fig. 5a). Leptin

also inhibited the decrease of BCL-2 expression induced by a-

linolenic acids (956.546231.21 vs 1000 A.U after 24 hours)(fig.5B),

maintained PCMDS survival in the presence of low concentrations of

a-linolenic acids (50 and 100 mM) and partially protected them from

death induced by the higher doses (150 mM to 250 mM) (p,0.05)

(150 mM : 90.460.55 vs 23.4866.41% , 200 mM: 85.562.47 vs

20.266.83 and 250 mM : 64.2660.90 vs 1.4360.32)(Fig.5c). Leptin

did not affected the decrease of proliferation induced by a-linolenic

acids (data not shown).

Low OB-R expression was associated with phospho-Akt
inhibition and caspase activation

Phosphatidylinositol 3-kinase (PI3K) was the main signalling

pathway of OB-R, implicated in the regulation of cell growth,

proliferation and apoptosis. After 24 hours of contact with a-

linolenic acids, a partial inhibition of Akt phosphorylation was

observed (p,0.01)(333 6 130 A.U vs 1000 A.U). Leptin addition

and on OB-Ra (black columns) and OB-Rb (hatched columns) mRNA expression in PCMDS. *P,0.05 and ***P,0.001 versus in control condition
(Student t test) Columns, mean of at least three independent determinations, bars. SD.
doi:10.1371/journal.pone.0025651.g004
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restored the activation of PI3K/AKT pathway (Fig. 6a). The low

level of phosphoAkt was associated with the low level of BCL-2

observed after 24 hours (Fig. 6b). As the antiapoptotic effect of

AKT is principally due to partial inhibition of caspase activation

[27–28], we used caspase inhibitor (R&D Systems Inc, France)

and showed a significant inhibition (p,0,05) of PCMDS cell

death induced by a-linolenic acid (85.2661.66 vs 77.0361.7%)

(Fig. 6c).

Figure 5. Leptin disturbed the effect of a-linolenic acids. a effect of 200 mM a-linolenic acids alone or with leptin (300pg/ml) on membranous
OB-R expression in PCMDS after 24 hours (black columns PCMDS without stimulation; hatched columns PCMDS with stimulation). OB-R expression
was analysed by flow cytometry. *P,0.05 and ***P,0.001 versus in control condition (Student t test). b effect of 200 mM a-linolenic acids alone or
with leptin (300pg/ml) on BCL-2 expression in PCMDS after 24 hours (black columns PCMDS without stimulation; hatched columns PCMDS with
stimulation) measured by western blot. *P,0.05 versus in control condition (Student t test). c effet of a-linolenic acids with or without leptin (300 pg/
ml) on PCMDS survival after 48 hours. *P,0.05 and ***P,0.001 versus in control condition (Student t test) Columns, mean of at least three
independent determinations, bars. SD.
doi:10.1371/journal.pone.0025651.g005
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Figure 6. a-Linolenic acid inhibit AKT phosphorylation and induce caspase activation. a Akt phosphorylation in PCMDS stimulated by a-
linolenic acid 24 hours with and without leptin (black columns PCMDS without stimulation; hatched columns PCMDS with stimulation) measured by
western blot. *P,0.05 versus in control condition. b PhosphoAkt (black columns) and BCL-2 (hatched columns) level in PCMDS after a-linolenic acid
contact with and without leptin. Akt phosphorylation and BCL-2 were measured by western blot. *P,0.05 versus in control condition (Student t
test).Columns, mean of at least three independent determinations, bars. SD. c PCMDS survival in control, with a-linolenic acid or with a-linolenic acid
and caspase inhibitor after 24 hours.
doi:10.1371/journal.pone.0025651.g006

Leptin and Fatty Acids Effects on Leukemics Cells

PLoS ONE | www.plosone.org 9 October 2011 | Volume 6 | Issue 10 | e25651



Discussion

Microenvironmental factors are suspected of influencing the

evolution of chronic myeloid leukemias (CML). In this work we

postulated that bone marrow adipocytes, leptin and lipids could be

involved.

In the first step, we analyzed in vitro the interactions between

adipocytes and two BCR-ABL positive cell lines using a T cell line

(Jurkat) and a stromal cell line (HS-5) as controls. Adipocytes

induced a decrease in BCR-ABL positive cell lines proliferation

but did not influence Jurkat cells. By contrast, HS-5 stromal cells

did not influence leukemic cells. This finding is in agreement with

previous studies reporting that CML cells proliferate continuously

even when being in contact with BM stroma [29]. In addition, it has

been shown that morphologically identifiable adipocytes, almost

absent in the bone marrow of leukemic patients [8,30] reappear in

high amounts during the remission period[13]. CML cell lines,

inducing adipocytes but not HS-5 cell death in vitro, could be

responsible for the disappearance of adipocytes observed in vivo [30].

In contact with adipocytes, leukemic cells of myeloid origin but

not of lymphoid origin accumulate lipids. This lipid accumulation

can be observed in vivo using Sudan Black B (SBB) staining [31].

Lipid accumulation in myeloid cells has previously been noted in

some pathological conditions such as atherosclerosis [32] and

asthma [33]. In cancer [18–19], this accumulation seems to

protect cells from microenvironmental cytotoxins [34–35] and to

induce inflammatory response [36–38] frequently observed in the

BM of CML patients [39] and associated with reduced

proliferation [34,40–41].

The consequences of lipid accumulation appear to be dependent

on the types of fatty acids accumulated. Our chromatographic

analyses of the BM aspirates and biopsies of healthy patients showed

a clear difference between the lipid composition of supernatant and

cells of the BM microenvironment .The supernatant were rich in

PUFA, while the cells were full of SFA and MUFA, fatty acids that

are generally accumulated by tumor cells to protect themselves

against external agents. An in vitro study has demonstrated that the

presence of adipocytes protects leukemia cells from chemothera-

peutic agents through Bcl-2 overexpression [42]. Our results

showed that stearic acid increased the Bcl-2 expression, whereas

others fatty acids (oleic and linoleic acids) had no effects. In contrast,

a-linolenic acid decreased BCL-2 and OB-R expression in CML

cell lines and reduced the proliferation and the survival of these cell

lines. These observations are in direct agreement with two studies

realised in HL-60 (Human promyelocytic leukemia cells) and U937-

1 (Human monocytic cell line) cell lines where EPA (Eicosapentae-

noic acid), a derivative of a-linolenic acid, once accumulated in the

cell, reduced survival and proliferation [40–41]. Other studies

focusing on breast cancer also showed an apoptotic and

antiproliferative effects of omega-3 polyunsaturated fatty acids

(PUFAs n-3) including a-linolenic acid [18,43]. These findings are

consistent with a study that showed that a cell with PUFAs n-3 was

more sensitive to chemotherapy than the one filled with oleic and

stearic acid [19].

This phenomenon seems to be specific to the myeloid lineage.

Indeed, the majority of T-cell lines, previously characterized as

Sudan Black B negative [31], do not accumulate fat. But some

studies presented rare cases of SBB positive acute lymphoblastic

leukemia (ALL) [44] as the Jurkat T cell line [45]. This rare

occurrence might explain why small lipids droplets are observed in

contact with PUFA. But unlike Cury-Boaventura et al, in our study

we did not observe any effect of fatty acid on Jurkat cells

proliferation and survival [46]. The reason of this discrepancy

might be the presence of antioxydant in our culture medium.

Although the fish omega-3 fatty acids protective role against

cancer is known, the role of a-linolenic acid, a PUFA n-3 found in

high concentrations in vegetable oils, 5 to 10 times more prevalent

[43] in the diet, remains controversial. a-Linolenic acid protects

against atherosclerosis, a disease involving monocytes which

accumulate fat and generate foam cells [47]. The effect of a-

linolenic acid on increasing the risk of prostate cancer is still

debated [47,48].

According to different studies in tumor cells [49–50], the effects

of a-linolenic acids in myeloid leukemia seemed to be directly

related to PI3K pathway and Bcl-2 inhibition associated with

caspase activation. Fatty acids act on normal or tumor cells via this

pathway. PUFA n-3 inhibits, while PUFA n-6 and MUFA

activate, the PI3K pathway [4,18]. The PI3K pathway is activated

in many cancers [3,51–52] and is linked to the control of growth,

migration, proliferation and apoptosis of tumor cells such as

leukemic cells [3–4,34]. This pathway is essential for the survival of

leukemic cells [50] and is involved in the development of resistance

to treatment with imatinib [22].

In our study, we have also shown that leptin production was

increased when BCR-ABL positive cell lines were co-cultured with

adipocytes. Leptin is known as a proliferative and antiapoptotic

agent in many cancers [23,51,53]. According to recent studies, the

effects of leptin involve its receptor (OB-R) and PI3K pathway

[27,54], the major signaling pathway of OB-R [21]. In our study,

leptin alone had no effect on OB-R expression, proliferation or

survival of CML. This might be explained by the difference in the

amount of leptin used. Identical amounts to those observed in the

co-culture medium were used, i.e. 300 pg / ml, whereas in others

studies, the concentration of leptin used was about 30 to 3000 fold

higher [53–54].

However, in the presence of leptin, the effects of a-linolenic acid

on proliferation, survival, OB-R and BCl-2 were reduced. This

phenomenon was also observed, after the addition of DHA

(Docosahexaenoic acid), an other derivative of a-linolenic acid, in

the presence and absence of leptin in rat glial and pituitary cells

tumor [55]. Both our results and previous studies suggest that an

adipocyte-rich composition of stearic and oleic acid promotes the

development of leukemia, while a-linolenic acid exerts an inhibitory

effect. Leptin can counteract a-linolenic acid inhibitory effects.

Therefore we suggest that at the onset of the disease, bone

marrow adipocytes partially inhibited the expression of malignant

leukemic clone. Cytokines produced by leukemic cells induce

lipolysis of BM adipocytes. Then PUFA n-3 released from the

adipocytes impairs CML proliferation and survival by inhibiting

the PI3K pathway. Thereafter, these effects are soon inhibited by

leptin released by adipocytes that also increased the lipolysis of

adipocytes [56] releasing SFA and MUFA that protect CML from

apoptosis by activating the PI3K pathway. A fat cell that loses its

fat is destined to die [56–57]. This could explain why adipocytes

are suffering in contact with CML and why adipocytes almost

disappear in CML [30]. Then, in blast crisis, leukemic cells

proliferate and survive without any influence by adipocytes, but

under the influence of lipids supplied from blood LDL. After

treatment, the reappearance of adipocytes could influence the

survival of some residual malignant cells.
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46. Cury-Boaventura MF, Pompéia C, Curi R (2004) Comparative toxicity of oleic

acid and linoleic acid on Jurkat cells. Clin Nutr 23: 721–32.

47. Brouwer IA, Katan MB, Zock PL (2004) Dietary alpha-linolenic acid is

associated with reduced risk of fatal coronary heart disease, but increased

prostate cancer risk : a meta-analysis. J Nutr 134: 919–22.

48. Carayol M, Grosclaude P, Delpierre C (2010) Prospective studies of dietary

alpha-linolenic acid intake and prostate cancer risk: a meta-analysis. Cancer

Causes Control 21: 347–55.

49. Kim JY, Park HD, Park E, Chon JW, Park YK (2009) Growth-inhibitory and

proapoptotic effects of alpha-linolenic acid on estrogen-positive breast cancer

cells. Ann NY Acad Sci 1171: 190–195.

50. Carlesso N, Cardoso AA (2010) Stem cell regulatory niches and their role in

normal and malignant hematopoiesis. Curr Opin Hematol 17: 281–6.

51. Uddin S, Bu R, Ahmed M, Hussain A, Ajarim D, et al. (2010) Leptin receptor

expression and its association with PI3K/AKT signalling pathway in diffuse

large B-cell lymphoma. Leuk Lymphoma 51: 1305–1314.

52. Shah A, Swain WA, Richardson D, Edwards J, Stewart DJ, et al. (2005)

Phospho-akt expression is associated with a favorable outcome in non-small cell

lung cancer. Clin Cancer Res 11: 2930–6.

53. Mouzaki A, Panagoulias I, Dervilli Z, Zolota V, Spadidea P, et al. (2009)

Expression patterns of leptin receptor (OB-R) isoforms and direct in vitro effects

of recombinant leptin on OB-R, leptin expression and cytokine secretion by

human hematopoietic malignant cells. Cytokine 48: 203–11.

54. Uddin S, Bavi P, Siraj AK, Ahmed M, Al-Rasheed M, et al. (2010) Leptin-R and

its association with PI3K/AKT signaling pathway in papillary thyroid

carcinoma. Endocr Relat Cancer 17: 191–202.

Leptin and Fatty Acids Effects on Leukemics Cells

PLoS ONE | www.plosone.org 11 October 2011 | Volume 6 | Issue 10 | e25651



55. Di Benedetto R, Salvati S, Attorri L, Di Biase A (2009) Omega-3

polyunsaturated fatty acids affect leptin receptor gene expression in pituitary

GH4C1 cell line. J Food Lipids 16: 382–93.

56. Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D, et al.

(2005) Leptin decrease adiposity in bone marrow of ob/ob mice. J Bone Mineral
Res 20: 994–1001.

57. Gullicksen PS, Della-Fera MA, Baile CA (2003) Leptin-induced adipose

apoptosis : implications for body weight regulation. Apoptosis 8: 327–35.

Leptin and Fatty Acids Effects on Leukemics Cells

PLoS ONE | www.plosone.org 12 October 2011 | Volume 6 | Issue 10 | e25651


