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Abstract

Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site
crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in
signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported
that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from
repeated cocaine administration. In the present study, we investigated synaptic plasticity induced by exogenous DA and its
dependence on mGluR signaling and a potential role for phospholipase D (PLD) as a downstream element linked to mGluR
and DR signaling. Utilizing a modified conditioned place preference (CPP) paradigm as a functional behavioral measure, we
studied the neurophysiological effects after two-weeks to the last cocaine conditioning. We recorded, electrophysiolog-
ically, a DR-induced synaptic potentiation in the basolateral to lateral capsula central amygdala (BLA-lcCeA) synaptic
pathway that was blocked by antagonists of group I mGluRs, particularly, the PLD-linked mGluR. In addition, we observed
2–2.5 fold increase in PLD expression and 3.7-fold increase in basal PLD enzyme activity. The enhanced PLD activity could be
further stimulated (9.3 fold) by a DA D1-like (D1/5R) receptor agonist, and decreased to control levels by mGluR1 and PLD-
linked mGluR antagonists. Diminished CPP was observed by infusion of a PLD-linked mGluR antagonist, PCCG-13, in the
amygdala 15 minutes prior to testing, two weeks after the last cocaine injection. These results imply a functional interaction
between D1/5Rs, group I mGluRs via PLD in the amygdala synaptic plasticity associated with cocaine-cues.
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Introduction

Drug addiction can be classified as a disease of learning and

memory [1]. Bouts of abstinence interrupted by drug use

characterize cocaine abuse [2]. Such psychostimulant abuse

results from cue-associated memory mechanisms reinforced by

regular drug intake [1–4]. Consequently, the cues associated with

repeated drug exposure, and in the absence of the drug, can elicit

intense craving [5–7] that ultimately result in relapse to drug

taking. For this reason, a greater understanding of the associative

learning processes that maintain the addictive state is necessary for

successful treatment of cocaine addiction.

Specific amygdala subnuclei are involved with drug-cue

associated memory mechanisms [6,8–13]. Lesioning or inactiva-

tion of the basolateral amygdala (BLA) prevents the acquisition

and expression of conditioned-cue responses associated with

cocaine-seeking behavior [14–18] whereas inactivation of the

central amygdala (CeA) alone disrupts expression but not

acquisition [19]. Thus, BLA-CeA synaptic pathway is important

for the expression of conditioned responses to cocaine.

Conditioned place preference (CPP) is a classical conditioning

paradigm [20] wherein drug pairing to cued sensory and

contextual stimuli can be quantified to study drug-cue associations

[21]. CPP has also been effective in studying the contribution of

specific amygdala subnuclei in acquisition and expression of

conditioned responses to cocaine [22]. For example, BLA lesions

prior to cocaine CPP training disrupt acquisition, while post-

conditioning lesions disrupt extinction [23]. Another example

illustrates how morphine CPP was utilized to understand increased

signaling mediated by ERK/CREB in the CeA and not BLA [24].

Thus, we utilized CPP to address long-term effects of cocaine-cue

associated neuroplasticity in the BLA-lateral capsula CeA (lcCeA)

synaptic pathway.

Cocaine effects on mesolimbic dopaminergic signaling [25–35]

via modulation of dopamine (DA) transmission are important in

cue-induced neuroadaptations. DA projections densely innervate

the BLA [36] and basal DA levels stay increased in the BLA and

CeA one month after cocaine even without re-exposure to the

drug [11]. In addition, autoradiography studies indicate that the

BLA-CeA region of the amygdala [37] are among the subregions
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with the highest density of D1/5R and type 2-like (D2R) receptors

[38]. Incidentally, infusing a D1/5R antagonist into the BLA

attenuates reinstatement of cocaine seeking behavior [26],

suggesting that cue-induced synaptic changes are mediated

through D1/5Rs in the BLA.

Long-term potentiation (LTP) is extensively used as a measure

of cellular mechanisms underlying synaptic plasticity. In the

hippocampus [39] and prefrontal cortex (PFC) [40], LTP is

influenced by D1/5Rs. DA gates LTP induction that occurs via

suppression of feedforward inhibition from local interneurons in

the amygdala [41]. Importantly, effects on LTP mechanisms

within the amygdala associated with cocaine-withdrawal, are

implicated during the development and maintenance of addictive

behavior [42].

In our previous study using locomotor sensitization, we

demonstrated that electrically induced LTP is enhanced in the

BLA to lcCeA pathway after a 14-day withdrawal from repeated

cocaine administration [43]. The enhanced response is blocked by

D1/5R antagonists suggesting that endogenous DA plays a role in

synaptic plasticity in the amygdala after cocaine treatment.

Additionally, we reported that D1/5Rs mediate a corticotrophin

releasing factor (CRF)-induced LTP linking stress to cocaine-

induced neuronal plasticity in the amygdala during withdrawal

[43]. In the present study, we further investigate a role for D1/5Rs

and downstream elements in synaptic changes within the BLA-

lcCeA pathway of animals subjected to cocaine CPP.

In addition to DRs, both ionotropic and metabotropic

glutamate receptors (mGluRs) are involved in cocaine-induced

neuroplasticity [44]. mGluRs have been identified as critical for

establishing the cue-reinforcing effects of cocaine [45–47].

Particularly, hippocampal application of mGluR1 antagonists

attenuated context-cue induced reinstatement of cocaine-seeking

behavior [48]. Also, a group I mGluR dependent LTP can be

recorded in numerous brain areas [49].

A functional relationship between mGluRs and DRs exists in

some brain areas. For example, in the PFC, a D1/5R antagonist

reduced postsynaptic mGluR5-dependent depolarization evoked

by action potential bursts [50]. Similarly, a D1/5R antagonist and

group I mGluR antagonists attenuated electrically induced LTP in

the core region of the nucleus accumbens (NAcc) [51]. Likewise,

D1/5Rs regulated signaling of group I mGluRs in the globus

pallidus [52] and oligomers composed of mGluR5 and D2R are

found in striatal cells [53] suggesting possible direct interactions

between DRs and mGluRs. Recently, we have reported a role for

group I mGluRs in the BLA-lcCeA pathway during withdrawal in

cocaine CPP expressing animals [54]. In the present study, we

investigated the possibility of a functional interaction between D1/

5Rs and group I mGluRs in mediating the expression of cocaine

CPP. We also investigated phospholipase D (PLD) as an important

downstream target for both D1/5R and group I mGluR signaling

in the cue–induced conditioned response to cocaine during

withdrawal.

PLD was originally discovered as a lipid modifying enzyme that

catalyzes the conversion of phosphatidyl choline into choline and

phosphatidic acid [55,56]. However, a number of recent studies on

PLD function have implicated an important role for the two

known mammalian isoforms, PLD1 and PLD2, in physiological

and pathological roles of brain function [55,57–69], including

regulation of exocytosis [70,71], endocytosis [72] and neurotrans-

mitter release [73], all of which are important mechanisms

associated with long-term synaptic plasticity.

Agonist activation of mGluRs can signal via PLD [62,74–78].

Specifically, PLD can be activated by excitatory amino acids such

as L-cysteine sulfinic acid (L-CSA), an endogenous agonist of

PLD-linked mGluRs [75]. PLD-linked mGluRs in rat hippocam-

pus exhibit signaling that is independent of phospholipase C

(PLC), adenylyl cyclase, protein kinase C [77], phosphoinositide-

specific PLC or inositol (1,4,5) triphosphate signaling [78]. A

specific mGluR that signals via PLD was reported as a group I

mGluR, possibly a mGluR5 subtype [76], that is exclusively

blocked by 2-(29-carboxy-39-phenylcyclopropyl)glycine [PCCG-

13], a potent selective antagonist of PLD activity [79,80]. L-CSA

blocks while PCCG-13 facilitates a group I mGluR agonist-

induced prolongation of epileptiform bursting (another form of

synaptic plasticity) [81].

In addition to PLD-linked mGluR studies, there is evidence

directly linking DA to PLD activation. D1/5R-mediated Na+

current in Aplysia neurons is facilitated by PLD activation [65,82]

suggesting that DA transmission is associated with PLD activity

downstream. Overexpression of PLD2 in rat substantia nigra

causes severe neurodegeneration of DA neurons, a loss of striatal

DA, and an associated ipsilateral amphetamine-induced rotational

asymmetry suggesting that PLD2 may be pathologically involved

in DA release or reuptake [83]. Lastly, PCCG-13 blocks the PLD

activation of norepinephrine, a downstream product of DA

biosynthesis, in adult rat hippocampus [80]. These observations

imply that PLD could be a convergent target that is potentially

important in neurotransmission downstream to both dopaminergic

and glutamatergic signaling.

Given the link between DR and PLD, mGluR and PLD, the

availability of a selective antagonist for the PLD-linked mGluR,

and our previous data [43], we focused on DR-mGluR

interactions and tested whether in the BLA-lcCeA pathway of

cocaine CPP animals: 1) DA induces a long lasting effect on

synaptic transmission in slices from cocaine CPP animals; 2) D1/

5R agonist-induced synaptic plasticity is dependent on group I

mGluRs and the PLD-linked isoform; 3) changes in PLD protein

expression are present in amygdala of cocaine CPP animals and

whether the pharmacological sensitivity of PLD activity correlates

with the D1/5R agonist-induced plasticity including sensitivity to

the PLD-linked mGluR antagonist; and 4) inhibiting the PLD-

linked mGluR in the amygdala prevents the expression of the cue-

conditioned response to cocaine.

Results

Robust conditioning to cocaine-cues is measured in
animals trained in a counterbalanced CPP paradigm after
two weeks withdrawal

Two weeks after the last injection, the cocaine CPP group had

significantly greater CPP scores than saline-treated animals

irrespective of whether the drug pairing was on the preferred side

(saline: 187.1675.1, cocaine: 448.2655.7, *p,0.05, n = 34) or the

non-preferred side (saline: -239.7678.5, cocaine: 203.8671.7,

***p,0.005, n = 34, Figure 1A). ‘Preferred’ side indicates the

natural preference of the animal for the side with dark floor and

dark walls, while ‘non-preferred’ side has white floor and white

walls.

The negative CPP score in saline-treated animals suggests that

less time was spent on the white side (non-preferred) compared to

the black side (preferred). When cocaine injections were associated

with the white side, we recorded a positive CPP score indicating

that the cues linked with cocaine CPP resulted in the behavioral

preference to the normally aversive white-sided environment.

Interestingly, associating cocaine with the preferred black side

during training also produced enhanced cue-associated response,

where the cocaine group spent significantly more time on the black

side compared to the saline-treated group. Using these animals, 14

Amygdala PLD-Linked mGluR and DA Synaptic Plasticity
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days after the last cocaine CPP training, we analyzed the synaptic

changes in the BLA-lcCeA pathway.

SKF81297 induces LTP in the BLA-lcCeA pathway in the
cocaine CPP but not saline-treated group

Since infusing a selective D1/5R antagonist into the BLA

attenuated cue-induced reinstatement of cocaine-seeking behavior

[26], we analyzed the effects of SKF81297 (10 mM), a selective

D1/5R agonist on fEPSPs in the BLA-lcCeA pathway. The

fEPSPs in the saline-treated group did not significantly differ from

baseline (101.669.7%, ns, n = 7) while in the cocaine CPP group,

SKF81297 induced a long lasting potentiation of fEPSPs for the

duration of the recording (151.468.8%, *p,0.05, n = 6,

Figure 1C). After one hour washout of SKF81297, fEPSPs in

the cocaine conditioned group were significantly greater than in

the saline-treated group (***p,0.005) and persisted similar to

electrical- and CRF-induced LTP previously recorded in the BLA-

lcCeA pathway [43]. This prolonged elevation in fEPSP

magnitude also resembled chemically induced LTP described for

numerous other drugs [84–86]. In addition, SKF81297-induced

Figure 1. Amygdala slices (B) from animals exhibiting robust cocaine CPP (A) measured 14 days after the last day of CPP training
demonstrate a D1/5R agonist-induced LTP in the BLA-lcCeA pathway (C) which is abolished by D1/5R antagonist application (D). A)
The cocaine CPP group (black bars) had significantly greater CPP scores than saline-treated animals (white bars) irrespective of whether the drug
pairing was on the preferred (saline: 187.1675.1, cocaine: 448.2655.7, *p,0.05, n = 34) or the non-preferred side (saline: 2239.7678.5, cocaine:
203.8671.7, ***p,0.005, n = 34). B) Placement of recording (Rec) and stimulating (Stim) electrodes are indicated in a schematic representation of the
slice containing BLA-lcCeA pathway using a rat brain atlas template [127]. C) D1/5R agonist (SKF81297) induces LTP in the BLA-lcCeA pathway in brain
slices from animals conditioned to cocaine and tested two weeks after the last CPP training day (clear triangles, 151.468.8%, *p,0.05, n = 6). The
saline-treated group did not show potentiation (clear circles, 101.669.7%, ns, n = 7). Responses are plotted as percent change from the baseline field
EPSPs as a function of time. Numbers on the representative traces show the time on the graph at which they were recorded. D) SKF81297-induced
LTP in the amygdala from slices of cocaine CPP animals (clear triangles) is completely abolished by the D1/5R antagonist, SCH23390 (filled triangles,
94.5610.9%, **p,0.01, n = 4). Significance is denoted by increasing number of asterisks (*). For comparison panels C and D use same data graphs and
fEPSP traces for the slices from cocaine CPP group superfused with SKF81297.
doi:10.1371/journal.pone.0025639.g001
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LTP in the cocaine CPP group was completely blocked

(94.5610.9%, **p,0.01, n = 4, Figure 1D) by a D1/5R antagonist

(SCH23390, 10 mM) indicating that SKF81297-induced LTP in

the amygdala of the cocaine CPP group was dependent on D1/

5Rs. When a higher concentration (25 mM) of SKF81297 was

tested, the fEPSP response of saline-treated group (103.066.9%,

ns, n = 5, data not shown) was not different from that seen with

10 mM SKF81297. Although 25 mM SKF81297 elicited a

significant increase in fEPSP magnitude in the cocaine CPP

group (135.565.9%, *p,0.05, n = 4, data not shown) compared to

the saline-treated group at the same concentration, the effect was

not significantly different from that of 10 mM concentration (ns).

As a result, we used the 10 mM SKF81297 concentration that

induced optimal LTP in subsequent experiments.

To test whether synaptic efficacy was altered between the

cocaine CPP group, saline-treated group and naı̈ve rats, we

measured their input/output responses (I/O). Curves were

generated in each slice by measuring lcCeA fEPSPs elicited in

response to a series of increasing electrical stimuli applied to the

BLA. No significant differences were observed between the groups

(see Figure S1), suggesting that synaptic strength did not change.

SKF81297-induced LTP mimics the DA-induced LTP in the
presence of raclopride

To determine if SKF81297 mimics endogenous neurotransmit-

ter-activated D1/5Rs (Figure 2A), we applied exogenous DA

(10 mM) in the presence of the D2R receptor antagonist, raclopride

(RAC, 10 mM). The DA+RAC-induced LTP recorded in slices

from the cocaine CPP group was significantly greater than baseline

values (146.563.2%, *p,0.05, n = 5) and from the fEPSP values

recorded in the saline-treated group (102.262.4%, *p,0.05, n = 5).

Also, no significant differences were observed between last 10 min

fEPSP values of SKF81297- or DA+RAC-induced LTP (ns, n = 5).

However, the SKF81297-induced LTP showed a slower onset yet

steeper slope before reaching saturation (Figure 1B and 2A).

The ability of DA to induce LTP in the presence of the D2R

antagonist indicates that D1/5Rs are the likely receptors

mediating the potentiation in the cocaine CPP group. Adding a

D1/5R antagonist, SCH23390, completely blocked (94.564.5%,

ns, n = 6, Figure 2B) the DA+RAC-induced LTP in slices from the

cocaine CPP group, confirming D1/5R as the receptor subtype

mediating DR-induced LTP.

GABAergic inhibition is necessary for SKF81297-induced
LTP

Previous studies from this laboratory have routinely utilized

10 mM of the noncompetitive GABA antagonist, PTX, to record

fEPSPs in the BLA-lcCeA pathway [43,54,87–89]. Since DRs are

located on c-aminobutyric acid (GABA) interneurons in the

amygdala [90], it is likely that inhibitory transmission could affect

the LTP recorded. To examine the relationship between

GABAergic inhibition and the SKF81297-induced LTP, we

analyzed the dose-dependent effects of PTX (Figure 3). In the

cocaine CPP group, SKF81297-induced LTP was abolished in

50 mM PTX (112.264.6%, n = 7), compared to LTP in 10 mM

PTX (151.468.8%, n = 6) or in no PTX (137.566.9%, n = 5).

The SKF81297-associated fEPSPs in the saline-treated groups

were not affected by different levels of GABA inhibition

(102.664.0%, 101.669.7% and 101.165.1%, ns, n = 5–7 at 0,

10 and 50 mM PTX, respectively). In contrast, we measured a

significant dependence of the SKF81297-induced LTP on the level

of GABAergic inhibition in the cocaine conditioned group

(Figure 3A). Two-way ANOVA showed a significant effect in the

cocaine CPP group (drug) treatment (F(1,36) = 30.04, ****p,0.001),

PTX concentration (F(2,31) = 4.48, *p,0.05) and the drug X

concentration interaction (F(2,31) = 4.198, *p,0.05).

In 50 mM PTX, fEPSP magnitudes in slices from the saline-

treated group were not altered (ns, n = 7, Figure 3C) and were not

significantly different than cocaine CPP animals (ns, n = 7,

Figure 3C). Thus greater inhibition (50 mM PTX) of GABAergic

responses resulted in diminishing the differences in fEPSP

magnitudes between cocaine CPP and saline-treated groups

measured with 10 mM PTX. In the absence of PTX, fEPSP

responses in slices from the saline-treated group were not different

Figure 2. The endogenous neurotransmitter, dopamine (DA), in
the presence of raclopride (RAC), a D2R antagonist, induced
LTP mediated through D1/5R activation. Responses are plotted as
percent change of baseline fEPSPs as a function of time. Numbers on
the representative traces show the time on the graph at which they
were recorded. A) DA in the presence of RAC (clear triangles,
146.563.2%, *p,0.05, n = 5) shows potentiation similar to that
recorded with SKF81297 (Figure 1B) in amygdala slices from cocaine
CPP animals while the saline-treated group (clear circles, 102.262.4%,
ns, n = 5) exhibits no LTP. B) DA+RAC-induced LTP is abolished by
SCH23390 in the cocaine CPP group (filled triangles, 94.564.5%, ns,
n = 6). For comparison panels A and B use same data graphs and fEPSP
traces for the slices from cocaine CPP group superfused with SKF81297.
doi:10.1371/journal.pone.0025639.g002

Amygdala PLD-Linked mGluR and DA Synaptic Plasticity

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25639



from baseline (ns, n = 5, Figure 3D) but SKF81297-induced LTP

was significantly different in slices from cocaine CPP animals

(*p,0.05, n = 5, Figure 3D). Although LTP measured without

PTX and LTP recorded in 10 mM PTX were not significantly

different in slices from cocaine CPP animals (ns, n = 5, Figure 3B),

we used 10 mM PTX in all subsequent experiments to maximize

the signal to noise ratio and to compare these data with our

previous studies [43,54,87–89]. Altogether, these data indicated

that intact synaptic inhibition was required for SKF81297-induced

LTP in the BLA-lcCeA pathway in the cocaine CPP group.

PCCG-13, a specific PLD-linked mGluR antagonist, blocks
SKF81297-induced LTP

The DA system can be linked to PLD [65,83,91] and DRs are

known to have a functional relationship with group I mGluRs

[50,51,92]. For these reasons, we examined the possible

interaction between DRs and the PLD-linked mGluR by

analyzing the effect of a specific antagonist, PCCG-13, which

interferes with PLD activity by blocking the PLD-linked mGluR

[80]. In the presence of PCCG-13 (2 mM), fEPSP magnitudes in

Figure 3. GABAergic inhibition in the BLA-lcCeA synapse is essential for SKF81297-induced LTP in the cocaine CPP group. Field EPSP
magnitude is plotted with respect to baseline values as a function of increasing PTX concentrations. Responses are plotted as percent change from
the baseline fEPSPs as a function of time. Numbers on the representative traces show the time on the graph at which they were recorded. A) In the
cocaine CPP group (filled triangles), SKF81297-induced LTP is lost when GABAergic inhibition is blocked with 50 mM PTX (saline: 101.165.1%, cocaine:
112.264.6%, ns, n = 7). In the saline-treated groups (filled circles: 102.664.0%, 101.669.7% and 101.165.1%, ns, n = 5–7), the SKF81297-associated
fEPSPs do not show a dependence on the extent of GABAergic inhibition. B) SKF81297-induced LTP at different concentrations of PTX in amygdala
slices from the cocaine CPP group is plotted as a function of time. LTP in 50 mM PTX (inverted triangles, 112.264.6%, n = 7) is inhibited compared to
LTP in 10 mM PTX (clear triangles, 151.468.8%, n = 6) or LTP in no PTX (filled triangles, 137.566.9%, n = 5). C) SKF81297-induced LTP in 50 mM PTX
(inverted clear triangles) in the cocaine CPP group is diminished to levels recorded in the saline-treated group (filled circles). D) With GABAergic
inhibition intact, SKF81297-induced LTP is significantly increased in the cocaine CPP group (filled triangles) compared to the saline-treated group
(filled circles). Panels use same data graphs as in A, B and fEPSP traces in B to illustrate the comparisons. For comparison, all panels use same data
graphs and fEPSP traces for the slices from cocaine CPP group superfused with SKF81297 in 10 mM PTX represented in Figures 1 and 2.
doi:10.1371/journal.pone.0025639.g003
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slices from both the saline-treated (SKF81297+PCCG-13:

104.368.1%, ns, n = 6, data not shown) and cocaine CPP group

(SKF81297+PCCG-13: 95.069.2%, ns, n = 8, Figure 4A) were

not significantly different from the baseline indicating that the

SKF81297-induced LTP in the cocaine CPP group was

completely blocked by PCCG-13 (**p,0.01, n = 6, Figure 4A).

We also tested the effects of PCCG-13 on the expression of

SKF81297-induced LTP, 60 minutes after the washout of the

superfused SKF81297. PCCG-13 (97.863.1%, n = 4) blocked the

expression of SKF81297-induced LTP (150.466.9%, ***p,0.005,

n = 4) compared to baseline (100.063.2%, n = 4, Figure S2).

Additionally, fEPSPs in the presence of PCCG-13, SKF81297,

and 50 mM PTX in slices from either the saline-treated group

(92.769.7%, ns, n = 5, data not shown) or the cocaine CPP group

(93.7610.1%, ns, n = 5, data not shown) were not significantly

different from the baseline. These data suggest that the

SKF81297-induced LTP in slices from cocaine CPP animals

may be dependent on mGluR modulation of PLD.

To examine further the mGluR subtype linked to PLD, we

tested the effect of LY367385 (100 mM), a competitive mGluR1

antagonist. While fEPSP magnitudes were not significantly

different from baseline in slices from the saline-treated group

(109.368.4%, ns, n = 6, data not shown), LTP in the presence of

LY367385 was blocked in slices from the cocaine CPP group

(SKF81297+LY367385: 106.066.7%, ****p,0.001, n = 6,

Figure 4B). MPEP (10 mM), the competitive mGluR5 antagonist,

significantly reduced the SKF81297-induced LTP in slices from

the cocaine CPP group (SKF81297+MPEP: 122.765.6%,

**p,0.01, n = 6, Figure 4C), indicating that mGluR5 activation

also contributed to the SKF81297-induced LTP. However the

Figure 4. SKF81297-induced LTP in the cocaine CPP group is dependent on the PLD-linked mGluR, mGluR1, and partially
dependent on mGluR5 and PLC activity. Responses are plotted as percent change from the baseline fEPSPs as a function of time. Numbers on
the representative traces show the time on the graph at which they were recorded. A) SKF81297-induced LTP in the cocaine CPP group (clear
triangles, 151.468.8%, *p,0.05, n = 6) is completely blocked by the PLD-linked mGluR antagonist (PCCG-13, filled triangles, 95.069.2%, n = 6). B)
mGluR1 receptor antagonist (LY367385, filled triangles, 106.066.7%, n = 6) blocks the SKF81297-induced LTP (clear triangles, *p,0.05, n = 6). C) The
mGluR5 antagonist (MPEP, filled triangles, 122.765.6%, n = 6) significantly reduces but does not abolish the SKF81297-induced LTP (clear triangles,
*p,0.05, n = 6). D) PLC antagonist (U-73122, filled triangles, 128.266.1%, n = 6), reduces but does not eliminate the SKF81297-induced LTP (clear
triangles, *p,0.05, n = 6). For comparison, panels A and B use same data graphs and fEPSP traces for the slices from cocaine CPP group superfused
with SKF81297 as shown in Figures 1, 2 and 3.
doi:10.1371/journal.pone.0025639.g004
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remaining LTP was significantly greater than baseline (*p,0.05)

and from that in LY367385 (*p,0.05), indicating that MPEP only

diminished, while LY367385 completely blocked the LTP. MPEP

induced no significant changes in fEPSP responses in the saline-

treated group (107.863.4%, ns, n = 9, data not shown) compared

to baseline (100.063.5%, n = 9, data not shown). This suggests

that both group I mGluRs (mGluR1 and mGluR5) can mediate

the SKF81297-induced LTP in the cocaine CPP group but only

the mGluR1 antagonist mimicked the effect of PCCG-13.

Since the link between group I mGluRs and signaling via the

phospholipase C (PLC) in the brain is well established [93–95], we

tested the effect of a PLC inhibitor, U-73122 (1 mM), on the

SKF81297-induced LTP. While U-73122 attenuated fEPSP

response in the cocaine CPP group (SKF81297+U-73122:

128.266.1%, ***p,0.005, n = 6, Figure 4D), LTP magnitude

was still significantly greater than either baseline (*p,0.05) or

fEPSP after PCCG-13 application (*p,0.05). U-73122 did not

produce any significant change in the fEPSP response in the

saline-treated group (110.365.3%, ns, n = 5, data not shown)

compared to baseline (100.062.4%, n = 5, data not shown). These

data suggest that the SKF81297-induced LTP may involve PLC

and PLD signaling. On the other hand, it was recently reported

that U-73122 can also inhibit cardiac PLD activity [96] suggesting

that PLC mediation of D1/5R agonist-induced LTP may be due

to its effect on PLD.

Expression of amygdala PLD and not DR or mGluR
protein levels is elevated in cocaine CPP group

When we studied the protein expression levels using Western

blot analysis, PLD1 expression was significantly increased in whole

cell homogenate of amygdala obtained from cocaine CPP animals

compared to the saline-treated group (**p,0.01, n = 4, Figure 5A).

However, no significant difference in PLD2 protein expression was

detected (ns, n = 4, Figure 5B) suggesting that PLD1, not PLD2,

Figure 5. PLD levels in the amygdala are increased in cocaine CPP animals. Protein expression relative to the loading control is plotted
along the Y-axis. Representative immunoblots are shown in the panels above each graph; *p,0.05 compared to the corresponding saline-treated
control. A) PLD1 levels in the whole amygdala homogenate are significantly increased in cocaine CPP animals (black bars) compared to the saline-
treated group (white bars). B) PLD2 levels in the whole amygdala homogenate are not increased in the cocaine CPP group (black bars) compared to
the saline-treated group (white bars). C) In the amygdala crude synaptosomal fraction, PLD1 protein levels are increased in the cocaine CPP group
(black bars) suggesting that there is increased synaptosomal membrane incorporation of PLD1 in this experimental group compared to the saline-
treated group (white bars). D) Similar to PLD1, amygdala crude synaptosomal levels of PLD2 show an increase in the cocaine CPP group (black bars).
However, such increased expression is observed despite a lack of increase in the whole homogenate levels, suggesting that recruitment from the
existing pool of PLD2 to the synaptosomal membrane is increased in the cocaine CPP group.
doi:10.1371/journal.pone.0025639.g005
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could be the PLD subtype linked to the mGluR mediating

SKF81297-induced LTP. When we further tested crude synapto-

somal levels in cocaine CPP group, both PLD1 (*p,0.05, n = 3,

Figure 5C) and PLD2 (*p,0.05, n = 3, Figure 5D) expression were

significantly increased, suggesting that both isoforms of amygdala

PLD are affected in the conditioned response to cocaine.

Western blot analyses performed on proteins obtained from

either whole amygdala homogenate or crude synaptosomal

fractions failed to show a significant difference in protein

expression levels for either DRs (D1R or D5R) or mGluRs

(mGluR1 and mGluR5) in cocaine CPP and saline-treated groups

(data not shown). This suggests that the mechanism contributing to

the role of DRs and mGluRs in SKF81297-induced LTP in the

cocaine CPP group does not involve changes in overall receptor

levels.

PLD1 and PLD2 associate with mGluR1 and mGluR5 in
the amygdala of cocaine CPP animals

Since the SKF81297-induced LTP was blocked with antagonists

for both PLD-linked mGluR and group I mGluRs, we examined

whether PLD is associated with mGluR1 or mGluR5 using co-

immunoprecipitation assays. Both PLD1 (Figure 6A) and PLD2

(Figure 6B) were immunoprecipitated by mGluR1 and mGluR5

antibodies in the amygdala extracts from cocaine CPP animals

and not in the saline-treated group.

Reciprocal co-immunoprecipitations using PLD1 or PLD2 and

co-immunoprecipitations with D1R or D5R antibodies could not

be analyzed since the co-immunoprecipitations showed only

immunoglobulin bands. It is well established that not all antibodies

employed with Western blotting can be utilized for immunopre-

cipitations. This incompatibility is attributed to inaccessibility of

epitopes when the protein is in its native conformation during

immunoprecipitation [97].

PLD activity in BLA/CeA containing slices from cocaine
CPP, but not saline-treated animals, is altered in response
to treatment by agonists and antagonists of D1/5R and
mGluRs

An enzymatic activity assay [98] was used to determine whether

the increase in amygdala PLD protein expression in cocaine CPP

group reflected an increase in PLD activity (Figure 7). Baseline

PLD activity was increased in the BLA/CeA containing slices

from the cocaine CPP group (527.3694.3, n = 50) compared to

the saline-treated group (142.6636.9, ****p,0.001, n = 50). We

also tested the effect of D1/5R agonist (SKF81297), D1/5R

antagonist (SCH23390), mGluR1 antagonist (LY367385),

mGluR5 antagonist (MPEP), and specific PLD-linked mGluR

antagonist (PCCG-13) on baseline PLD activity. Applications of

SKF81297 (184.9630.5, n = 12), SCH23390 (84.9638.9, n = 12),

LY367385 (94.7618.9, n = 12), MPEP (74.2616.3, n = 7) and

PCCG-13 (132.5618.4, n = 7) did not significantly alter the

phosphatidyl ethanol (PEtOH) levels in the saline-treated group

compared to the basal activity levels. The D1/5R agonist,

SKF81297, strongly stimulated the enhanced basal PLD activity

in cocaine CPP group (1722.06176.9, *p,0.05, n = 12) and the

D1/5R antagonist (SCH23390) decreased basal PLD activity in

the cocaine CPP group (91.2621.9, **p,0.01, n = 12). Addition of

PCCG-13 (62.9610.6, n = 7) and LY367385 (75.0613.9, n = 12)

also significantly reduced basal PLD activity in BLA/CeA slices

from cocaine CPP animals (**p,0.01, n = 7) but not the saline-

treated group suggesting that the increased basal PLD activity in

the cocaine group was mediated through D1/5Rs, mGluR1 and

Figure 6. Amygdala protein subjected to co-immunoprecipitation (IP) with mGluR1, mGluR5 and subsequently immunoblotted (IB)
with PLD antibodies show association between PLD1/2 and mGluRs1/5 in the cocaine CPP group. A) PLD1 and B) PLD2 were detected
only in the amygdala of cocaine CPP group (coc) but not saline-treated group (sal).
doi:10.1371/journal.pone.0025639.g006
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the PLD-linked mGluR. On the other hand, the mGluR5

antagonist (MPEP) application reduced but did not block basal

PLD activity (305.7631.5, ns, n = 12) in the cocaine CPP group

suggesting that mGluR5 associated changes in the SKF81297-

induced LTP in cocaine CPP animals may be mediated through

mechanisms other than those associated with an increase in PLD

activity. Overall, these data indicated that the pharmacological

sensitivity of basal and stimulated PLD activity correlated with

that of the SKF81297-induced LTP suggesting that a PLD-linked

mGluR mediates the D1/5R agonist-induced LTP in the

amygdala of cocaine CPP animals.

Blocking the PLD-linked mGluR inhibits the expression of
CPP after two weeks withdrawal in the cocaine CPP
group

To test whether mGluR-linked PLD activation in the amygdala

was important for cue-induced behavioral response to cocaine, we

studied the effect of PCCG-13 on the expression of CPP after two

weeks withdrawal. Bilateral cannulae were surgically implanted

into the BLA to permit direct infusion of PCCG-13 as described

earlier. Animals were trained for cocaine CPP on the non-

preferred side to increase the signal-to-noise ratio.

PCCG-13 infusion produced a significant difference in the

behavior of the cocaine CPP animals (Figure 8). CPP for the drug-

paired, non-preferred side in the cocaine group observed on day 6

(one day after last CPP training, 92.46145.9, n = 7) was not

observed after PCCG-13 infusions in the same animals on day 19

(two weeks after last CPP training, 2397.16155.6, ns, n = 7).

However, animals receiving PCCG-13 infusions in the saline-

treated group did not register a significant difference in the CPP

score on day 19 (2700.86143.2, n = 5) compared to day 6

(2423.56149.7, n = 5). These data suggested that the PLD-linked

mGluR is important for mediating long-term synaptic plasticity in

the amygdala associated with cocaine conditioned responses.

Two sets of controls were used in this study. (1) Since BLA is

important for acquisition of conditioned responses, we tested

animals that were implanted with cannulae and trained for CPP

similar to the experimental group, but not given infusions. A

robust CPP was observed in the cocaine group, both on day 6

(saline: 287.8693.4, n = 8, cocaine: 368.8696.5, n = 9, **p,0.01)

Figure 7. Basal PLD activity is strongly stimulated by the D1/5R agonist and blocked by the D1/5R, mGluR5, mGluR1, and the PLD-
linked mGluR antagonists in the amygdala of cocaine CPP animals. The dotted line indicates PLD activity associated with control slices (no
EtOH added) which was determined for each animal and used to calculate the change in PLD activity levels with EtOH and/or drug application. Basal
levels represent the increase in PLD activity observed in the EtOH-treated slices compared to the no EtOH controls; *p,0.05 compared to the
corresponding saline control and #p,0.05 compared to the cocaine CPP group basal PLD activity. Basal PLD activity was significantly increased
(***p,0.001, n = 50) in the cocaine CPP group (dark bars, 527.3694.3) compared to the saline-treated group (white bars, 142.6636.9). SKF81297, the
D1/5R agonist, application increased the basal levels in the cocaine CPP group significantly (1722.06176.9, n = 12, #p,0.05) compared to the basal
PLD activity observed with EtOH treatment alone in the same experimental group. The D1/5R antagonist, SCH23390, completely blocked basal PLD
activity (91.2621.9, n = 12, ##p,0.01) in the cocaine CPP group. A similar reduction in PEtOH levels was observed with application of either the PLD-
linked mGluR antagonist, PCCG-13 (62.9610.6, n = 7, ##p,0.01) or the mGluR1 antagonist, LY367385 (75.0613.9, n = 12, ##p,0.01), while the
mGluR5 antagonist, MPEP, did not decrease basal PLD activity (305.7631.5, n = 7, ns) within the cocaine CPP group but were significantly increased
compared to (*p,0.05) the saline treated group. Applications of SKF81297 (184.9630.5, n = 12), SCH23390 (84.9638.9, n = 12), MPEP (74.2616.3,
n = 7), LY367385 (94.7618.9, n = 12) and PCCG-13 (132.5618.4, n = 7) did not significantly alter the PEtOH levels in the saline-treated group compared
to the basal activity levels. Inset is a depiction of the triangular excision performed to isolate amygdala (bilaterally for each animal, each slice)
containing the basolateral (BLA), the central (CeA) and the lateral (LA) subregions from three serial coronal slices (350 mm) beginning 22.30 mm to
22.80 mm from Bregma [127].
doi:10.1371/journal.pone.0025639.g007
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Figure 8. Expression of cocaine CPP was blocked by bilateral infusions of the PLD-linked mGluR antagonist into the amygdala of
cocaine CPP group 14 days after the last CPP training. Infusions of the vehicle into the cocaine CPP animals (striped bars, 383.56121.0, n = 3,
Veh infusion panel) on test day 19 do not diminish cocaine CPP (black bars, 176.1656.3, n = 3, Veh control panel) measured on test day 6. No
significant changes were observed in the behavioral response of the saline-treated group between day 6 (white bars, 2170.2636.2, n = 5, Veh control
panel) and day 19 (grey bars, 2369.2671.3, n = 5, Veh infusion panel), suggesting that the vehicle infusions alone had no effect. PCCG-13 infusion 15
minutes prior to CPP testing results in a marked loss of preference for the drug-associated side (black bars, cocaine day 6: 92.46145.9, striped bars,
cocaine day 19: 2397.16155.6, *p,0.05, n = 7, PCCG-13 control and PCCG-13 infusion panels respectively) in the cocaine CPP animals, while no
significant change in the behavioral response is observed in saline-treated group (white bars, saline day 6: 2423.56149.7, grey bars, saline day 19:
2700.86143.2, ns, n = 5, PCCG-13 control and PCCG-13 infusion panels respectively). *p,0.05 compared to the corresponding vehicle control (saline)
and by ‘p,0.05 compared to the corresponding vehicle control (PCCG-13). Cannulae placement for the animals is depicted (above the graph) for
both the vehicle (Veh) and drug (PCCG-13). These sites were mapped to BLA on rat brain atlas [127] templates. A schematic representation of the
experimental protocol utilized for CPP training along with the two days of CPP testing is illustrated above the corresponding data in the graph below.
doi:10.1371/journal.pone.0025639.g008
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and on day 19 (saline: 2186.56126.4, n = 8, cocaine:

296.96127.8, n = 9, *p,0.05) compared to the saline group,

suggesting that animals having cannulae placement in the BLA did

not show deficits in CPP acquisition. (2) To control for infusion

related effects, we tested animals that were implanted with

cannulae and trained for CPP similar to the experimental group,

but given the same volume of vehicle infusions before test on day

19 (Figure 8). In this case, CPP was present on both day 6

(176.1656.3, n = 3) and day 19 (383.56121.0, n = 3) in the

cocaine CPP group compared to saline-treated animals (day 6:

2170.2636.2, *p,0.05; day 19:2369.2671.3, *p,0.05, n = 5),

suggesting that neither the infusion procedures nor the vehicle

used affected CPP expression.

Discussion

The main findings from our present study are: (1) a D1/5R

agonist induces LTP in the rat BLA-lcCeA synaptic pathway in

the cocaine CPP but not the saline-treated group; (2) the D1/5R

agonist-induced LTP is dependent on the PLD-linked mGluR,

and mGluR1; (3) amygdala PLD1 and PLD2 (but not DR or

mGluR) protein expression are increased in crude synaptosomal

fractions from the cocaine CPP group; (4) basal PLD activity is

increased in the cocaine CPP group, further stimulated by D1/5R

agonist and inhibited by antagonists of mGluR1 and PLD-linked

mGluR; (5) PLD1 and PLD2 association with mGluR1 and

mGluR5 is only observed in the cocaine CPP group; and (6) the

PLD-linked mGluR antagonist blocks the expression of cocaine

CPP.

A D1/5R agonist induced LTP is recorded in the BLA-
lcCeA pathway in brain slices from cocaine CPP group
after two weeks withdrawal

In our previous study [43], we reported that D1/5R antagonist

blocked electrically induced LTP while both D1/5R and D2R

antagonists blocked CRF-induced LTP during cocaine withdraw-

al. Since D1/5Rs were common to both types of LTP, we now

focused on their direct activation and potential dependence on

mGluRs after 14 days of withdrawal from cocaine CPP. We

observed a D1/5R agonist (SKF81297) associated LTP that

occurred in the BLA-lcCeA pathway only in the cocaine CPP

group which could be completely abolished by a D1/5R

antagonist (SCH23390). This is similar to earlier studies where

synaptic potentials in the PFC are facilitated by DA after cocaine

[99]. DA can facilitate LTP induction in hippocampal neurons by

increasing a timing-dependent LTP window and permitting

normally ineffective weak stimuli, with fewer spikes, to generate

significant LTP [100]. We propose an analogous mechanism

where dopaminergic signaling via group I mGluR and PLD

transforms the SKF81297 fEPSP response in the saline-treated

group into LTP in the cocaine-conditioned group that persists in

the amygdala slices long after cessation of drug-intake.

DA, the endogenous ligand, in the presence of a selective D2R

antagonist (RAC), also generated LTP similar to the SKF81297-

induced LTP. This suggests that DA activation of D1/5Rs, not

D2Rs, is important for the LTP observed. Activation by DA is

immediate while a 20 minute delay is observed in the SKF81297-

induced LTP. This could very well be attributed to the chemistry

of SKF81297, a benzazepine that has a functionally mobile phenyl

substituent which influences its efficacy in binding and transducing

its actions [101,102]. In studies comparing the effect of D1/5R

partial and full agonists on cAMP production and D1R

internalization [103], a different rate was attributed to distinct

binding characteristics associated with D1/5R and G-protein

interface. This suggests that the delayed SKF81297-induced LTP

recorded in the present study could be related to agonist structure.

Besides, SKF81297 application initially depressed fEPSPs before

inducing LTP (Figure 4) whereas DA/RAC-induced LTP had a

fast time course and no initial depression of fEPSPs. Interestingly,

MPEP and a PLC antagonist (U-73122) blocked the SKF81297

delay resulting in faster onset but depressed LTP magnitude

suggesting that the initial depression may be due to activation of a

SKF81297-induced long-term depression (LTD), one that is

dependent on mGluR5 and PLC but obscured by a larger

SKF81297-induced LTP. This proposed mechanism for the

depression induced by SKF81297 is supported by evidence

showing that group I mGluR-dependent LTD is recorded in

many brain areas and ascribed to multiple mechanisms (see [104]

for review) and that DR and mGluR agonist together can induce

LTD in the PFC [105].

DRs and GABAergic synapses in the BLA-lcCeA pathway
DA modulation of GABAergic function occurs throughout the

BLA-lcCeA pathway [106]. While D1R activation increases

excitability through direct stimulation of BLA projection neurons,

it also augments the inherent excitability of local BLA interneu-

rons and therefore results in increased inhibition to projection

neurons [107–109]. In contrast to local BLA interneurons, D1/5R

activation hyperpolarizes GABAergic medial paracapsular (inter-

calated) cells (MPCs), which gate feed-forward inhibition from the

BLA to the CeA [110] resulting in increased transmission to the

CeA [90,106]. During withdrawal, GABAergic transmission is

reduced in midbrain neurons, which results in electrically-induced

LTP [111]. Such reductions in GABAergic transmission could

occur in the BLA-lcCeA and influence the D1/5R signaling. Thus,

we tested whether changing the level of GABA inhibition would

affect the D1/5R agonist-induced LTP. We found that the

SKF81297-induced LTP was blocked in 50 mM PTX in the

cocaine CPP group. In previous studies, we observed that GABA

synaptic transmission in the BLA-lcCeA pathway is blocked with

50 mM PTX where spontaneous GABAergic miniature inhibitory

synaptic currents are reduced in frequency and amplitude

indicating a reduced GABAergic tone onto lcCeA neurons in

amygdala slices from cocaine CPP animals [54]. Thus, DA

inhibition of MPCs which reduces GABAergic inhibition on

downstream CeA neurons [90] coupled with reduced GABAergic

tone onto lcCeA neurons [54] may facilitate the development of

LTP in the cocaine CPP group.

SKF81297-induced LTP is mediated through mGluR1 and
PLD-linked mGluR in the cocaine CPP group

In the cocaine conditioned group, antagonists for group I

mGluRs blocked the D1/5R agonist-induced LTP in the BLA-

lcCeA pathway implicating increased mGluR and/or DR

expression as a potential mechanism for development of the

SKF81297-induced LTP during cocaine withdrawal. However,

increases in protein expression of mGluRs or DRs were not

measured in the amygdala of cocaine CPP animals. These results

are similar to studies after acute amphetamine treatment which

showed increased activity of another signaling partner of DRs,

phosphoinositide-3-kinase, that was not accompanied by increase

in DR levels [112]. Also, in self-administration studies, D1/5R

levels were not different from control levels in the limbic brain

regions one week after the last cocaine training [113]. These

observations suggest that the SKF81297-induced LTP in the

cocaine CPP that we observed could occur by mechanisms other

than increased D1/5R levels. For example, D1/5Rs work

cooperatively with both mGluR1 and mGluR5 in the NAc to
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mediate electrically induced LTP [51] while in the PFC, co-

activation of DRs and a group I mGluR agonist can together

induce a chemical LTD [105]. Also, a group I mGluR antagonist

blocked locomotor behavior induced by D1/5R agonists in the

NAc [114]. Finally, the presence of oligomers of DRs and mGluRs

in living cells [53] provides support for the hypothesis that DR/

mGluR heteromers could underlie D1/5R agonist induced LTP in

the present study.

With hetero-oligomer formation, non-functional receptors can

become operative by associating, while agonists can trigger

functional receptors to dimerize to increase efficacy [115].

mGluR5 can dimerize via disulfide bonds in the extracellular N-

terminal domain [116] and formation of D1/5R and D2R

heteromers activates calcium–calmodulin kinase (Ca+2-CaMKII)

signaling pathway [117]. Also, disruption of group I mGluR

function in the globus pallidus, important for synaptic plasticity,

can be restored and regulated by D1/5R and D2R activation [52].

In our studies, the D1/5R agonist strongly stimulated amygdala

PLD activity in the cocaine CPP group indicating a biochemical

link between D1/5Rs and PLD. Also, PLD-group I mGluRs co-

immunoprecipitation studies indicate a direct physical link

between mGluRs and PLD in amygdala. Thus, we propose that

a co-operative interaction between mGluR and DR perhaps via

formation of a heterodimer may lead to an increase in membrane

binding of PLD1/PLD2 and underlie the SKF81297-induced

LTP recorded in the amygdala of cocaine CPP animals.

Amygdala PLD activity and expression are increased in
cocaine CPP animals

Despite no change in the protein levels of both DRs and

mGluRs in the amygdala, PLD1 and PLD2 crude synaptosomal

expression were elevated 2–2.5 fold indicating a potential increase

in interaction of both PLD1 and PLD2 with the existing D1/5Rs

and group I mGluRs in the cocaine CPP group. The elevated PLD

expression was accompanied by increased PLD activity. Basal

amygdala PLD activity increased 3.9 fold in the cocaine CPP

group. In addition, PLD activity in the presence of the D1/5R

agonist was increased 9.3 fold over the agonist-stimulated saline-

treated group. Basal amygdala PLD activity was blocked

completely by D1/5R, PLD-linked mGluR, and mGluR1

antagonists in amygdala slices from cocaine CPP group but only

diminished by an mGluR5 antagonist to levels still significantly

higher than corresponding saline-treated group. Similar agonist-

like effects of mGluR antagonists on PLD activity have been

reported previously [74–78]. These findings of agonist and

antagonist effects on basal PLD activity directly correlate with

those of D1/5R-agonist induced LTP suggesting that increased

PLD activity could be a mechanism associated with SKF81297-

induced LTP in the cocaine CPP group. It has been reported that

an elevated PLD activity, with no change in PLC expression, can

generate a stable signaling pathway [66], perhaps more suitable

for the SKF81297-induced LTP observed.

Cocaine CPP associated long-term memory is blocked by
the PLD-linked mGluR antagonist

In the rat preclinical model, cocaine conditioned behaviors are

blocked by infusion of a D1/5R antagonist into the amygdala [26]

and by group I mGluR antagonists in the hippocampus [48]

suggesting an important contribution by both receptors to cue-

induced cocaine responses. In the present study using PCCG-13,

we clearly demonstrate that amygdala PLD-linked mGluR

signaling is important for the expression of both cocaine CPP

and SKF81297-induced LTP. Thus, PLD-mediated signaling may

be a necessary step in activating events downstream from mGluRs

and DRs in amygdala synaptic plasticity. Rat brain PLD1/PLD2

expression that occurs throughout development and stabilizes

during adulthood [118,119], could govern physiological processes

of neurite outgrowth [64,120–124] and neurotransmitter release

[73], thus regulating cellular synaptic plasticity that affects long-

term memory mechanisms. Indeed, a recent study of synaptic

dysfunction in a mouse model of Alzheimer’s disease implicated

PLD as an important element that can regulate underlying

memory deficits [68]. Thus, further investigation of PLD

interactions may be key to better understanding molecular

correlates of relapse to cocaine providing a framework for

developing therapeutic interventions that successfully target

addiction.

Materials and Methods

Animals
All animal procedures were carried out in accordance with the

Guide for the Care and Use of Laboratory Animals as adopted

and promulgated by the National Institutes of Health (NIH) and

approved (Approval ID: 8907176) by the Institutional Animal

Care and Use Committee (IACUC) at the University of Texas

Medical Branch at Galveston (UTMB). Male Sprague-Dawley

albino rats (Harlan, Houston, TX, USA), age 3–4 weeks and

weighing approximately 45 grams during arrival, were used as

subjects. After 3 days acclimation, animals were randomly divided

into cocaine and saline groups and housed in a temperature-

controlled room at 22–24uC with a 12 hr light/dark cycle and fed

a standard laboratory chow diet and water ad libitum.

Conditioned place preference (CPP) apparatus
Four acrylic animal chambers (16’’ X 16’’ X 12’’) were

contained inside of sound and light attenuating environmental

control boxes (Accuscan Instruments, Inc, Columbus, OH). The

chamber was subdivided into two distinct compartments, one with

white floors and walls associated with a textured floorboard (raised

Plexiglas ridges), the other with black floors and walls on a smooth

Plexiglas floorboard. The light intensity in the chambers was

maintained at 320 lumens. On baseline and testing days, the

animal was placed in a removable holding chamber (6’’ X 3’’ X

6’’) that was inserted centrally between the black and the white

compartments, and then lifted, to allow the animal free access to

both sides. On conditioning days, a centrally inserted removable

12’’ acrylic single pane wall restricted the animal to one

compartment. Activity and time spent on each side were measured

using the VersaMax activity monitor system (Accuscan Instru-

ments, Inc).

Experimental design
The counterbalanced CPP behavioral paradigm included three

sessions: baseline, conditioning and testing. The baseline and

testing sessions were performed only once, while the conditioning

sessions occurred over 5 days. For the baseline session (performed

24 hr prior to the first injection), each animal was allowed to freely

roam the activity box for 30 min in order to test the animal’s

preference for one side over the other (i.e., a biased design).

Animals were then randomly assigned to be in the cocaine-treated

experimental or saline-treated control groups. Conditioning

sessions were 30 min long during which saline or cocaine injection

delivered intraperitoneally (i.p.) was paired with either the black or

the white side. In the morning, all animals received saline

injections (1 ml/kg of 0.9% saline solution). During each

experiment, equal number of animals were placed in the different
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chambers (either the black or the white side). In the afternoon, the

control animals received saline, while the experimental animals

were administered cocaine. Sessions were counterbalanced. The

animals placed on the white side in the morning were placed on

the black side in the afternoon and those on the black side in the

morning were placed on the white side in the afternoon. In the

afternoon, all animals also received sound and light cues; for the

first 5 min of the session (once per second) the animals received a

tone (70 db white noise), simultaneously with light (320 lumens

on/off per 15 sec). Since the amygdala, in addition to cues

mediated by context, also processes cues to light and sound [125],

addition of these cues improved the CPP response in our

experiments. During the 30 min test session on day 6 (24 hr after

the last training session), animals were allowed to roam freely

between the two chambers (as in baseline). The testing session also

included the light and sound cues that were previously paired with

saline or cocaine injections in the afternoon training sessions. The

amount of time per side of the chamber was determined and

reported as a CPP score [126]: - the time spent on the drug-paired

side during test day 6 or 19 minus the time spent on the same side

during baseline. If a population of animals spent more time on the

drug-paired side during the test sessions than during the baseline

session, the CPP score would be positive, suggesting that a

conditioned place preference had developed during the training

period. Behavior was analyzed using one-way or two-way repeated

measures ANOVA followed by paired or unpaired t-test when

significance was reached.

Surgery
Post-acclimation to arrival, rats were anesthetized with i.p.

injections of ketamine (90 mg/kg) plus xylazine (10 mg/kg). Based

on animal size, age adjustments were made to the co-ordinates to

guide the cannulae into the basolateral amygdala (BLA) for

infusions. Specifically, bilateral cannulae were stereotaxically

placed in the BLA (anterioposterior 22.64 mm from bregma,

lateral +/24.9 mm and dorsoventral 26.3 mm [127]), according

to previously described procedures [128]. Animals were allowed 5

days to recover, and subsequently subjected to CPP conditioning

for the next 5 days. On day 6 (24 hr post training), the animals

were tested for CPP and then subjected to withdrawal in their

home cages for 14 days. Following withdrawal, the animals were

bilaterally infused with 0.5 ml of either PCCG-13 (8.5 mM) in

vehicle (0.0134% beta cyclo-dextrin, BCD, in 0.9% saline) or

vehicle alone over a period of 20 minutes and allowed to remain in

their home cage for 15 min prior to CPP testing. Twenty four

hours after the CPP test, animals were infused with 0.5 ml of

methylene blue dye in dimethyl sulfoxide (DMSO), sacrificed and

brain slices prepared to verify cannulae placement.

Slice Preparation
Coronal brain slices were prepared after 14 days withdrawal as

described previously [43]. No anesthetics were used prior to

decapitation to avoid their influence on neuronal plasticity. Serial

coronal slices (500 mm), containing the BLA-lcCeA, were cut

(approximately 2.3–2.8 mm from Bregma) [127]. Initially, slices

were bathed in oxygenated, modified artificial cerebrospinal fluid

(ACSF) solution (in mM): NaCl (119), KCl (3.0), NaH2PO4 (1.2),

MgSO4 (1.2), CaCl2 (2.5), NaHCO3 (25) and glucose (11.5) at

room temperature (RT) for 1 hr. They were then submerged in a

chamber (1.0 mL, 2.5 mL/min) and held at 3061uC for another

hour before recording. A constant pH (7.4) was maintained by

continuous superfusion (2 mL/min) with oxygenated [95%

oxygen/5% carbon dioxide (carbogen)] ACSF.

Electrophysiology
Field excitatory postsynaptic potentials (fEPSPs) were recorded

with tungsten electrodes (2–5 MV) in coronal brain slices as

described previously [43]. Briefly, fEPSPs were evoked by

stimulating fibers in the BLA using 150 ms pulses of varying

intensity (3–15 V) applied at 0.05 Hz through concentric

electrodes (50 kV). All experiments were performed in the

presence of 10 mM picrotoxin (PTX) in ACSF except where

noted. Initially, fEPSP magnitude was adjusted to 30% of

maximum response and baseline values recorded for 10 min.

For experiments where agonists were superfused, antagonists were

added to the ACSF for 10 min prior to addition of the agonist and

continued throughout the 15 min agonist superfusion. Thereafter,

fEPSPs evoked at a frequency of 0.05 Hz were recorded for 1 hr.

Drug-induced changes in fEPSP slopes during drug application,

during agonist treatment, and during the last 10 min of the

experiment, were calculated and normalized to baseline values.

Western Blotting
Amygdala tissue preparation. After withdrawal, rats were

decapitated and the brain was sliced to obtain the amygdala. As

described previously [43], the appropriate amygdala subregions

were isolated and homogenized with lysis buffer (Mammalian

Cellytic lysis buffer; Sigma, St. Louis, MO, USA) containing

protease inhibitors (complete mini EDTA-free protease cocktail

tablet; Pierce Biotechnologies, Rockford, IL, USA) to obtain

amygdala homogenate. The cell membrane fraction was obtained

by homogenizing isolated amygdala subregions with lysis buffer

containing (in mM): sucrose (320), Tris–HCl (25), EGTA (2),

EDTA (2) and protease inhibitors and adjusted to pH 7.4.

Individual samples were then centrifuged at 1090 g for 15 min

at 4uC and the supernatant was collected into ultra-clear tubes and

centrifuged (Beckman Coulter, Inc., Fullerton, CA, USA) twice at

15,000 g for 20 min. The pellet fraction was dissolved in a

minimum volume of lysis buffer with 1% Triton-X 100. Protein

quantification was performed using the BCA protein assay (Pierce

Biotechnologies). Aliquots of 50 mg protein samples were stored at

280uC until further use. Each sample represented one animal.

Immunoblotting. A solution of 2X sample buffer with 1 mM

dithiothreitol (DTT) was added to the samples and then placed in

water bath at 37uC for 60 min followed by 5 min cooling on ice,

unless otherwise indicated. Samples (50 mg per lane) were

separated on a 10% acrylamide gel by SDS-PAGE and

transferred to a nitrocellulose membrane overnight in a cold

room. The membranes were then blocked with LI-COR (LI-COR

Biosciences, Lincoln, NE, USA) blocking buffer for at least 1 hr at

RT or overnight at 4uC and then incubated overnight in primary

antibodies (diluted in LI-COR blocking buffer). After removal of

the antibody, the blot was washed with phosphate-buffered saline

(PBS) [(in mM) NaCl (137), KCl (2.7), Na2HPO4 (100), KH2PO4

(2)] containing 0.05% Tween 20 (PBST). All further steps were

carried out in the dark to prevent the loss of sensitivity of the

infrared dye secondary antibodies. The secondary antibodies

(diluted in LI-COR blocking buffer) were applied for 1 hr at RT.

The blots were scanned directly by the Odyssey Infrared

Fluorescent Imaging System (LI-COR Biosciences). As a loading

control, blots were also probed with either glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) or an actin antibody. Band

densities were calculated using the integrated intensity values

determined by the Odyssey software. Labeling was quantified by

analyzing the ratio of the integrated intensity value of antibody-

specific protein to the loading control in each lane to provide an

integrated intensity ratio.
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Antibodies. Primary antibodies (with the references provided

where the antibodies were tested for specificity) included:

metabotropic glutamate receptors [mGluR1 (AGC-006) [129]

and mGluR5 (AGC-007) [24]] from Alomone (Jerusalem, Israel);

phospholipase D [PLD1 (sc-25512) and PLD2 (sc-25513), [60]]

and actin (sc-1616) from Santa Cruz Biotechnologies Inc. (Santa

Cruz, CA); dopamine receptor D1R (AB20066) [130] from

Abcam (Cambridge, MA); D5R (MAB5292) [131] from

Millipore (Temecula, CA) and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH, Clone 6C5) from Advanced

Immunochemicals Inc. (Long Beach, CA). Secondary antibodies

included donkey anti-goat from Santa Cruz Biotechnologies Inc;

goat anti-rabbit (926-32211-IRDye 800CW) and donkey anti-

mouse antibodies (926-32222-IRDye 680) from LI-COR (Lincoln,

NB).

PLD Activity Assay. PLD under normal conditions utilizes a

molecule of water to catalyze the reaction generating phosphatidic

acid (PA) and choline from phosphatidyl choline (PC). In the

presence of simple alcohols such as ethanol, PLD preferentially

utilizes the alcohol generating, in a 1:1 ratio, phosphatidyl ethanol

(PEtOH) [98]; which has been utilized as a quantitative enzymatic

assay to measure PLD levels and activity. In addition to studying

neuronal function with electrophysiology and measuring protein

expression levels using western blots, we utilized this assay to study

the enzymatic activity levels of PLD in the amygdala of animals

following CPP and 14 day withdrawal. Animals were decapitated

and 350 mm coronal brain slices were collected and placed in ice-

cold (0–6uC) oxygenated ACSF. Amygdala subregions were

dissected out from each brain slice by further making triangular

cuts in the coronal slices containing the amygdala (see inset in

Figure 7) and placed in test tubes containing 2 ml of Kreb’s Buffer

(pH 7.4) consisting of (in mM) NaCl (22); KCl (3.1); MgSO4 (1.2);

KH2PO4 (0.4); and CaCl2 (1.3). After 30 min incubation at RT,

Kreb’s buffer was replaced with 1 ml ACSF containing 30 mCi of

tritiated (3H) glycerol per sample tested, incubated for 2 hr and

then washed with ACSF. Either 500 ml ACSF containing no

ethanol, only ethanol (5 ml per sample), or ethanol and a drug were

added in one to two slices per animal and incubated for an hour.

Thus, every ethanol or ethanol and drug treated slice(s) had a

control set of slices from the same animal that was not treated with

ethanol or drug. The reaction was stopped by adding 2 ml of ice-

cold chloroform/methanol/HCl (100/200/2) to each test tube.

The tubes were then sonicated (30 min) and centrifuged at 4500 g

for 2 min. The lower organic layer (1 ml) was collected and dried

using nitrogen (N2) gas. Chloroform (70 ml) was then added to

form the slurry and spotted on silica gel coated thin layer

chromatography (TLC) plates. A solvent system consisting of ethyl

acetate: 2,2,4–trimethyl pentane (iso-octane): acetic acid:

methanol: water in 60:80:20:20:10 ratio was used to separate the

components in the slurry. The plate was developed with iodine

vapors and the resulting phosphatidylethanol (PEtOH) spot was

visualized. PEtOH and other phospholipids (remaining in the

lanes of each sample) were scraped separately from the plate and

collected in individual vials of scintillation fluid to determine the

ratio of PEtOH to total radioactivity counts (PEtOH/PLipids).

Increases or decreases in PEtOH levels (calculated as percent of

the control [no ethanol] levels per animal) were used to analyze

changes in PLD activity.

Drugs. Cocaine HCl obtained from the National Institute of

Drug Abuse (NIDA) was dissolved in 0.9% saline solution and

injected intraperitoneally (i.p.) at a concentration of 15 mg/kg.

Picrotoxin (PTX), dopamine (DA) and raclopride (RAC) from

Sigma Aldrich (St. Louis, MO) were dissolved in water and kept on

ice (prior to use). To prevent oxidation, fresh solutions were made

immediately before experiments. 2-Methyl-6-(phenylethynyl)pyridine

hydrochloride (MPEP HCl) was obtained from Ascent Scientific

(North Somerset, United Kingdom). 6-Chloro-2,3,4,5-tetrahydro-

1-phenyl-1H-3-benzazepine hydrobromide (SKF81297), (S)-(+)-a-

amino-4-carboxy-2-methylbenzeneacetic acid (LY367385), (2R,19S,

29R39S)-2-(29-carboxy-39-phenylcyclopropyl)glycine (PCCG-13), 1-

[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-

pyrrole-2,5-dione (U-73122), and R-(+)-7-chloro-8-hydroxy-

3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochlo-

ride (SCH23390) were obtained from Tocris Bioscience (Ellisville,

MO). Ketamine HCl (Ketaved 100 mg/ml) and Xylazine HCl

(Tranquived, 20 mg/ml) were obtained from Vedco Inc (St. Joseph,

MO).

Statistical analysis. To account for non-normal distribution

of data, non-parametric tests were used for statistical analysis.

Behavioral data was analyzed using either one-way ANOVA

(Kruskal-Wallis test) or a repeated measures two-way ANOVA

followed by a paired or unpaired t-test when significance was

achieved. Western blot and electrophysiological data were

analyzed using a Kruskal-Wallis test followed by a Mann-

Whitney U or Wilcoxon matched pair test as appropriate for

pair-wise comparison. Statistical significance was defined at

p,0.05, with an increasing number of asterisks indicating lower

p values. Lack of significance (p.0.05) is denoted by ‘‘ns’’ (non-

significant).

Supporting Information

Figure S1 Input-output relationships for fEPSP strength
were not significantly altered in the BLA to lcCeA
pathway after either saline or cocaine treatment com-
pared to naı̈ve group. Responses are plotted for fEPSP strength

(fEPSP slope, output) as a function of afferent BLA stimulation

intensities (V, input). Slopes of the input-output curves were

compared in three groups (naı̈ve, saline-treated and 14 day

withdrawn cocaine-cue CPP, n = 20–21 per group) with a

Kruskal-Wallis ANOVA followed by pairwise comparison using

Wilcoxon. Field EPSP slopes in slices from the amygdala of all

three groups did not show any changes at different stimulation

intensities tested.

(EPS)

Figure S2 PCCG-13 blocks the expression of SKF81297-
induced LTP. Responses are plotted as percent change from the

baseline fEPSPs as a function of time. SKF81297 (10 mM)

application (for 15 min) in the presence of PTX ( mM) results in

LTP (clear triangles measured in the 75–85 min duration,

150.466.9%, ***p,0.005, n = 4 compared to baseline) in

amygdala slices from cocaine CPP animals while the saline-treated

group (clear circles measured in the 75–85 min duration,

92.564.0%, ns, n = 4) exhibits no change in fEPSP. At 60 minutes

after the ACSF mediated washout of the superfused SKF81297,

PCCG-13 (2 mM) application (for 15 min) in the presence of PTX

(10 mM) results in reducing the SKF81297-induced LTP to

baseline values (clear triangles measured in the 150–160 min

duration, 97.863.1%, ns, n = 4) in amygdala slices from cocaine

CPP animals while no effect on the fEPSP response was observed

in the saline-treated group (clear circles measured in the 150–160

min duration, 97.164.4%, ns, n = 4). Inset represents the fEPSP

response in the cocaine CPP group at baseline (dark bar), last 10

min of the 60 min washout following SKF81297 (middle bar) and

PCCG-13 (lightly shaded bar). Expression of SKF81297-induced

LTP (150.466.9%, ***p,0.005, n = 4) was attenuated by applica-

tion of PCCG-13 (97.863.1%, n = 4) compared to baseline (100.06
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3.2%, n = 4). ***p,0.005 compared to baseline, ###p,0.005

compared to fEPSP response after PCCG-13 application.

(EPS)
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