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Abstract

Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will
enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as
potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal
computational resources. Target recognition was implemented based on the proposed pattern recognition concept and
tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital
fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target
repository.
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Introduction

1.1 Automatic Target Recognition
Automatic target recognition (ATR) is a technology that can

isolate a target from a noisy background and perform classification

of the object [1]. A reliable computerized pattern recognition

system is crucial for image analysis especially when images are

registered at rates higher than human-assisted visual review

processes. For such applications, the time-critical identification of

targets that are acquired by an imaging modality is vital.

The interest and research in ATR technology has resulted in the

development of various systems for identification of targets over

the past few decades. Utilization of the sophisticated synthetic

aperture radar (SAR) to collect information on target vehicles may

be deployed [2]. An airborne SAR takes radar soundings from the

ground along a precisely measured flight path and then separates

the various target locations by sophisticated signal processing. This

allows the formation of extremely detailed fine-resolution maps of

radar-reflectivity of a target scene. The SAR image data is

analyzed for feature modeling. Each target image has its own

unique signature for use in ATR algorithms.

Concepts in designing and implementing ATR algorithms

include signal and image processing, target detection, isolation and

segmentation, motion analysis and tracking, statistical or model-

based recognition, and signature modeling. An ideal shape pattern

recognition system has an inbuilt identification algorithm that can

fully recognize targets without human intervention and with low

false alarm rates [1]. This performance is required to be relatively

robust to sensor noise and target orientation. The problems in

existing methods are the heavy computational overhead in

identifying targets rapidly, while taking into account all the

filtering and pattern normalization procedures.

In ATR systems, the key operational procedures are target

detection, discrimination and recognition, and performance

assessment. In this paper, the emphasis is on the second and

third procedures. The aim is to reduce computational expense for

this purpose, and the objective is to develop an operational system

that addresses this issue when predicting target identity. Here, the

Cross-plot [3,4,5] is proposed to address the aforementioned

problems in pattern recognition and to identify the target of

interest. This study highlights the conceptual development of the

technique and performs proof-of-concept experiments.

1.2 Feature Extraction and Classification
We can identify two binary objects according to the difference

between their features. In pattern recognition, features are

extracted from a target image containing distinctive information.

Choosing discriminating and independent features is the key to

any successful pattern recognition system. It is usually difficult to

judge a registered object of interest by acquiring raw data related

to it as the recorded information is usually noisy. Therefore, the

raw data must be transformed into a reduced set of features to be

used by the classifier. A process of mapping the original

measurements into more effective features is generally known as

feature selection or extraction (Figure 1). The low dimensional

features contain sufficient relevant information to avoid the

problem of classifier over fitting.

For a given set of signal features that have been extracted, an

appropriate classifier needs to be trained by utilizing part of the

data and the known corresponding labels for fitting data into

feature space. Specifically, the training data is used to populate the

hypothesized clusters of the training data, and the built clusters

can represent the classes in the feature space. Typically, the data is

divided into two parts: one for training and the other for testing in

order to verify the classification capability. Generally, it is assumed

that the training and testing data have similar properties and

distribution, which is a pre-condition of feasibility in classification.

1.3 Shape-Based Image Retrieval
Image-based target recognition has been developing rapidly in

past decades. Shape-based image retrieval [6,7,8] is one of the

most popular methods and inspires the proposed Cross-plot
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technique. The shape-based image technique lies within the shape

analysis and feature extraction paradigm. In shape analysis,

complex spatial features of binary images are represented using

their linear approximations, and easing the computational burden

for carrying out matches between spatial objects. Shape pattern

representation techniques can be divided into two categories,

namely, the boundary-based and region-based methods [9]. Both

methodologies can be further sub-categorized as the transform and

spatial (geometric) domains, depending on whether direct

measurements of the shape are used or a transformation is applied

[10]. Feature extraction is the process of gaining geometrical

information from a shape that has the location, scale and

rotational effects filtered out from it. The resulting feature vector

will be a pattern representation of an exact geometry of the spatial

object. Shape-based retrieval takes into consideration issues such

as robustness and stability of the various shape representation

techniques. Successful retrieval systems have good matching

abilities for shape objects that are subjected to distortion, scaling,

translation, noise, and region loss when using the same feature set.

Therefore, the selection of a feature extraction technique is critical

for achieving high recognition performance [11].

1.3.1 Region-based Methods. Region-based techniques

extract information regarding the internals of the shape besides

the boundary details. Some of the more established methods

utilizes the Zernike [12], pseudo-Zernike moments and wavelet

moment invariants [13]. Transform-based methods encompass the

Hough transform and spatial-based methods take into account

geometrical measurements of the shape’s fundamental

characteristics. Shape-based image retrieval is performed using a

feature vector comprising of the solidity (S), eccentricity (C), and

extent (X) of shapes, which form the SCX feature set [14]. The

choice of these shape measures is not a conditional necessity.

There are many other features such as shape compactness, aspect

ratio, holes, rectangularity, max-min radii, elongation, symmetry,

circularity, and Euler number that can be used [10]. The Query

By Image Content (QBIC) system by International Business

Machine (IBM) uses statistical features to represent the object

shape [15]. Its feature set includes area, circularity, eccentricity,

major axis orientation, and algebraic moment invariants. The

Hough transform [16] has been extensively used for shape

detection and recognition. Specific requirements of geometric

invariance, storage and computational complexity, as well as

support of appropriate similarity measures are considered.

1.3.2 Boundary-based Methods. In boundary-based image

retrieval, methods using chain codes [17,18,19], polygonal

approximations [20], Delaunay triangulation [21], Fourier

descriptors [9,22,23,24], boundary moment invariants [15,21,25],

and two-dimensional (2D) strings [26] can be deployed. Boundary-

based image retrieval uses only the contour of the object shape and

ignores the region in the interior. The System for Trademark

Archival and Retrieval (STAR) [27,28] uses features based on

invariant moments and Fourier descriptors extracted from manually

isolated objects. A spatial-based object retrieval technique that is a

sub-category of the boundary-based methods such as the Touch-

Point-Vertex-Angle-Sequence (TPVAS), Bounding Circles (MBC)

and Angle-Sequences (AS). A retrieval architecture based on

MBC utilizes three different structures on features that are

extracted from the objects’ MBC. The Hausdorff distance

between planar sets of points is known to be an effective

measure for determining the degree of resemblance between

binary shape patterns [29,30]. For chain codes, the boundary of a

binary image is traversed and a string representing the curvature

is constructed. A shape can be converted into chain information

representing the boundary. Transformation-based approaches

can be further broken down into two sub-categories: functional

and structural [31]. Functional transformations such as Fourier

descriptors to structural transformations, such as chain codes and

curvature scale space feature vectors, comprise some of the

transform-based methods. A comparison of the performance for

Fourier descriptors, chain codes, Delaunay triangulation, and

TPVAS that are used in shape representation and retrieval of

scaled, rotated and translated shape pattern variants is studied

[10]. Pattern recognition based on shape context relies on the

normalized spatial distribution of landmark coordinates from shape

contours [11,30,32,33]. For this method, the shape of an object is

essentially captured by a finite subset of its points. Distribution of

shape part is based on a reference point relative to it, thus offering a

global discriminative characterization [34]. However, some issues

exist such that the reference points taken on a discontinuous contour

of an incomplete shape with significant loss of regions may result in

poor same characterization. Other techniques such as the inner-

distance, which is defined as length of the shortest path between

landmark points within the shape silhouette, can be incorporated

into shape context and is specialized to identify dissimilarity in

patterns that may be similar in spatial distribution but dissimilar in

part structures [35,36]. Moreover, shapes parts may be dis-

connected and renders the inner-distance method unreliable. As a

result, identification of region-loss shapes will not be optimal as their

correlation indices will be highly dissimilar.

1.4 Cross-plot Based Target Recognition
One of the important breakthroughs in the early work of

computer vision research is the recognition of a two-dimensional

pattern as a perspective view of the three-dimensional scene of

objects [32]. From the technical viewpoint, capturing the

silhouette of the object as a shape pattern and generating its

Cross-plots unique to that pattern can be achieved. At the present

stage, the notable concept is the introduction of strategically

positioned reference nodes, thereby generating Cross-plots of each

of the individual node and the feature points representing the

target pattern. This modification contributes significantly to the

success of the technique in recognizing binary silhouettes of

visually captured air targets. Cross-plot signature generation

satisfies the characteristics of automatic target recognition.

Performance verification was carried out by assessing the

robustness of target recognition to defective imaging based on a

Figure 1. Operational stages of a pattern recognition system. The flow chart of recognition processes can be illustrated using four simple
stages: registration of data, extraction of the target’s features, classification, and decision making. The feature extracted from the registered data is
fed into a classifier, which can be based on Cross-plot, artificial neural network or Bayesian network, for target object classification. The accuracy of
identification is dependent on the quality of features being extracted. Finally a decision is made based on the classified results that will lead to the
identification of the interested target.
doi:10.1371/journal.pone.0025621.g001

ATR Based on Cross-Plot

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e25621



catalogue of patterns with incremental degrees of deviations

(Appendix S1). Performance calibration is based on a repository

of target images (Appendix S2) and system validation is achieved by

real-time air target recognition from a documented video database.

It is impractical to extract every single feature of a target pattern

with high precision while ignoring the noise in the background. As

such, only the vital features of a pattern should be selected for the

signature design in order to achieve an effective pattern

differentiation. The proposed technique is able to extract the

significant shape content of the pattern for signature formation

with minimum pre-processing of the image and no prior

normalization of the target size. Details of the proposed technique

based on this Cross-plot concept are shown in the following

sections.

Methods

2.1 Definition of Cross-plot
We briefly introduce the core mathematics related to the

proposed Cross-plot signature generation technique. The Haus-

dorff fractal dimension [37] is the fundamental Cross-plotting.

Denote D as the fractal in a state space for a given pattern of

points. The space is divided into grid cells of dimension r. Here,

N(r) denotes the number of cells that are penetrated by a specific

set of points. The box-counting fractal dimension D of a fractal, by

counting the number of cells that contain one or more of its points,

is given by

D: lim
r?0

log N rð Þ
log 1=rð Þ

: ð1Þ

The Cross-plot [4] is a graphical representation of the

Hausdorff fractal dimension, and is defined as a plot of the

logarithm of the number of pixel object pair counts that do not

exceed a specified proximity distance versus the logarithm of this

variable proximity distance. More formally, the Cross-plot

between two binary pattern data sets A (with NA pixel points)

and B (with NB pixel points) is

CrossA,B rð Þ~log
NA,B rð Þ
NA

:NB

� �
versus log rð Þ , ð2Þ

where NA,B(r) is the count of pixel object pairs within a distance r.

The specified proximity distance can be normalized by dividing

the distance r with the maximum object pair distance.

Figure 2. Effect of pattern target variants on Cross-plots based signatures. Images (a, c, e) are three different binary patterns with eight
reference nodes positioned around their feature point data sets; and (b, d, f) are their corresponding Cross-plot signatures respectively. Binary images
of a silhouette target that are generated from acquired images with variations in target roll, pitch and yaw (from a two-dimensional visual
perspective) are presented in (g, i, k). The images (h, j, l) show the Cross-plots of binary patterns.
doi:10.1371/journal.pone.0025621.g002

ATR Based on Cross-Plot
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2.2 Features by Cross-plotting
Cross-plots are generally used to identify interesting patterns in

complex data sets. The notion of the Cross-plot is defined in terms

of relative distance between two types of point sets. The objective

is to extract the location information about the pattern by

judiciously placing reference nodes around the data set and

computing the Cross-plots with respect to these node points one at

a time. The Cross-plot curves can be presented in the same

signature graph. This section demonstrates that Cross-plot of

different binary target feature sets results in distinct signature

graphs and has the potential to be used for pattern recognition.

To simplify the analysis, an arbitrary number of eight reference

node points are positioned around the binary pattern image in a

circular manner. The radius of this circular arrangement is taken

as the distance from the center of the boundary, encapsulating the

binary target to any one corner of it. Cross-plots can be created

with an arbitrary number of coordinates depending on the

resolution. In all the examples, an arbitrary resolution of thirty-one

coordinates is fixed for each curve in the family of Cross-plots.

Note that dist denotes the distance between two data points; and

count-of-pairs is the number of point-to-point pairs that are equal or

smaller than dist. A description of Cross-plot generation can be

found from steps 1 to 3 in Section 3.1 and the detailed pseudo-

code can be referenced from Appendix S3.

Each curve of the set of Cross-plots demonstrates registration of

feature point counts through the circular pattern in the region just

before the plateau of a Cross-plot curve. The plateau region is the

location where no new data points are accumulated after the

expanding radius reaches the end of the data pattern. The growth

in the accumulation of points decelerates sometime after the

middle of the pattern – the count rate of feature points

representing the pattern encapsulated by the boundary extended

from a node of interest decreases.

Every unique pattern will yield a unique set of curves for Cross-

plots of the pattern with nodes positioned around it. Therefore, a

set of curves for a particular binary image representing a target can

be used as the signature or thumbprint of that object. Figure 2

gives some examples of the Cross-plots corresponding to three

arbitrary binary targets.

For a corresponding Cross-plot signature, there are an arbitrary

number of eight graphs based on number of reference nodes

(N = 8) that are all superimposed onto a single set of axes. Each

node point is able to capture the details of the pattern from a

different spatial perspective. The placements of nodes around the

pattern result in the curves represented by a family of plots. Note

that the chain of reference nodes is superimposed onto a bounding

square box, which may not indicate the minimum encapsulation of

the target silhouette.

Figure 3. Effect of binary pattern with shape distortion and Cross-plots based signatures. The graphs demonstrate that the variation of
Cross-plots can be attributed to the slight distortion in target patterns. The differences presented by the shape contrast indices of these variants are
relatively insignificant.
doi:10.1371/journal.pone.0025621.g003

ATR Based on Cross-Plot
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The technique of characterizing patterns in a data set by using

Cross-plots has been previously studied [5]. In an attempt to detect

cluster locations for a given geometrical pattern through Cross-

plot analysis, certain interesting observations have been made.

Cross-plots of different patterns (with every reference node point)

will yield curves with varying curvature depending on the

distribution of the data set under specific configurations. For

instance, the number of plateaus is related to the number of

clusters in the data set. Based on such observation, the uniqueness

of the Cross-plot that is obtained for every specific pattern and

node is dependent on the characteristics of the data set.

The unique features of a particular shape can be extracted by

computing a set of Cross-plots based on a set of reference nodes

with the shape pattern and representing them simultaneously using

the same graph. Every unique pattern will result in a set of Cross-

plots that describe the pattern characteristics. Despite that, it may

be possible for corresponding sets of Cross-plots to be identical

even based on different shapes, and resulting in a wrong

identification. This problem can be solved by designing a new

arrangement of node points spatially.

2.3 Identification Metric
Detection and identification of a target is based on the outcome

of comparison or similarity between signatures. The signatures of

some images of the observed target and the reference target have a

strong correlation due to the high similarity in their family of

Cross-plots. Application of the algorithm will output the shape

contrast index. A high correlation means a successful match and

the identity of the reference target is reported.

The similarity metric is usually defined via a distance measure

that will be used for a nearest neighbor match in the feature space.

Various dissimilarity measures such as the Minkowski or Ll metric

[38], the Cosine metric [39], and the Hellinger metric [40] can be

used in matching two sets of data points. The Minkowski Ll metric

for the case of l = 1 has been chosen for comparison of signatures

as it is able to simply differentiate the dissimilarity of two

signatures effectively. The Shape Contrast Index (SCI) is simply

the sum of all the Ll = 1 distances. It is inversely proportional to the

similarity of the two patterns for shape comparison. With this

similarity quantification, the proposed feature extraction technique

is able to convert two-dimensional features into one-dimensional

scalars for comparison.

2.4 Invariant Properties of Cross-plot
The Cross-plots are generated from the binary pattern image.

Therefore, the various distortions on the binary pattern image will

affect the generated corresponding Cross-plots. Ideally, the binary

pattern image is pre-processed from the original two-dimensional

image to reduce various distortions. However, this is not always

practical. This section discusses the effects of pattern deviations,

which are sampled from the catalogue of images in Database B

(Appendix S2), on the corresponding Cross-plots of target patterns.

2.4.1 Distortion. This section describes how the shape

distortion affects the Cross-plots. Figure 3 shows three targets

with the same structure but mapped onto different projections and

their corresponding Cross-plots. Assume the shape in Figure 3 (a)

is the reference shape, target in 3 (c) is spatially compressed to 75%

of its original size in the horizontal orientation and target in 3 (e) is

sheared vertically at an angle of 20u. As can be seen, the difference

between the binary patterns Figure 3 (a), (c) and (e) are detectable,

however, the change in their Cross-plots is small. The SCI of

Cross-plots for Figure 3 (b) with (d) and for Figure 3 (b) with (f) are

Figure 4. Effect of target orientation on Cross-plot based signatures. Pattern images representing aircraft target silhouettes based on four
different views and their respective Cross-plots. The orientation of the target generates Cross-plots with similar curvatures but having different
positions exist in the same signature set.
doi:10.1371/journal.pone.0025621.g004

ATR Based on Cross-Plot

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e25621



10.3 and 15.6 respectively (Refer to Section 2.3 for the definition

of identification metric used in here). This shows the relatively low

sensitivity of Cross-plots to a certain level of shape distortion.

2.4.2 Target Mirroring. Generating Cross-plots using an

encapsulation of nodes that are arranged uniformly around the

pattern boundary results in graphical representation that are

identical irrespective of the same target pattern taken from

different isometric views of the same visual plane. The sequence of

nodes taken to generate Cross-plot curves is different for different

views. Figure 4 demonstrates four symmetrical views (vertical and

horizontal) of the same target and their corresponding Cross-plots.

Each reference node point that is Cross-plotted with the pattern

produces a curve (each being represented by using a different

symbol). Difference in arrangement of the pattern with respect to a

set of node points will result in the same corresponding curve to be

represented by different symbols. If the node at the nose of the

aircraft is taken as the start node point for Cross-plotting with the

entire target pattern, the signatures produced from each of these

node points will be similar for all four target orientations. The SCI

of Cross-plots for side views 1 to 4 is derived to be 3.00. As the

number of node points in the circular encapsulation increases, the

variation of angle of orientation of the pattern in affecting the

signature decreases.

2.4.3 Target Pitching. Different orientations of the three-

dimensional object produce different orthographic views when

they are superimposed onto a two-dimensional visual plane during

monitoring (Refer to Figure 5). Figure 5 (a, c) shows the

corresponding signatures for images of the fighter jet pitched at

0u and Figure 5 (b, d) illustrates that for target silhouette pitched at

45u. For the case of side view of the target in Figure 5 (a, b), we

determine the boundary of nodes encapsulating the target pattern

using the Minimum Boundary Circle (MBC) method [14]. The

displacement in angular orientation of the object with respect to a

specific axis results in the same graph that is represented by

different ordering of symbol representing the nodes. Rotating the

arrangement of the nodes using the same angle as the pitch of the

aircraft reduces deviation in its signature. The SCI of Cross-plots

for Figure 5 (a) with (b) and for Figure 5 (c) with (d) are 7.1 and 6.9

respectively (Refer to Section 2.3 for the definition of identification

metric used in here).

2.4.4 Scaling. The Cross-plots retain their curvature integrity

despite scaling of the resolution of the target pattern (Refer to

Figure 6). The scaling for a typical image in multiples of two is

performed once (Figure 6 (a, c)) and the corresponding Cross-plots

are computed in Figure 6 (b, d). The scaling of pattern resolution

will cause a very slight shift in the logarithmic distance axis of the

Cross-plots, without any change in their curvatures.

The Cross-plot extracts information from the pattern such as

the number of feature points in the data set encapsulated by a

radial boundary, from a stationary reference node point, in the

Figure 5. Effect of silhouette targets pitched at 06 and 456 on Cross-plots based signatures. The orientation of the target generates a
different pattern based on its silhouette onto a two-dimensional plane. The signatures based on the Cross-plots that pertain to every target are
shown to have small variations.
doi:10.1371/journal.pone.0025621.g005

ATR Based on Cross-Plot
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two-dimensional Euclidean space. The number of points relative

to the image size is similar for both resolutions, if twice the radial

extension from the node is taken for the 2 times resolution image.

Based on this observation, obtaining the signature of a pattern

image at n times resolution can be achieved by a shift of magnitude

of log(n) for the logarithmic axes of the Cross-plots for the given 1

time resolution binary pattern, instead of applying computation-

ally expensive spatial quantization to the image before signature

generation as shown in Figure 6 (c) and 6 (d). Normalization of the

number of counts of the pixels and the radial scanning distances

for any specified image resolution, as demonstrated in the Cross-

plot formula, is equivalent to a shift of the axes by log(n). Figures 6

(e) and 6 (f) illustrate that Cross-plots for the same pattern of

different dimensions will be similar after normalization. This is in

contrast to the Figures 6 (b) and (e), which represent non-

normalized count-of-pairs and radius spanned for the pixel counts.

2.4.5 Noise. The main sources of degradation are sensor

noise, and the scattering and attenuation of electromagnetic

radiation by atmospheric particles in an intervening propagation

medium, resulting in fuzzy target boundaries [41,42]. This type of

noise can affect the binary image pattern greatly. However, the

noise on the binary image pattern can be mitigated using the

Cross-plot technique because the fine details can be smoothed and

then reduced in resolution.

For simplicity in our experiments, we generalize noise using a

randomly generated normal distribution. The level of noise is

denoted by the signal-to-noise ratio (SNR), where the SNR is

defined as the contrast of object divided by the standard deviation

of normally distributed random noise. The unit of this measure-

ment is the decibel (dB). Figure 7 shows the Cross-plots of images

with three different signal-to-noise ratio (SNR) levels. Figure 7 (a)

is a binary image pattern without any noise; Figure 7 (c) is a binary

image pattern with SNR of 23 dB and the SNR in Figure 7 (e) is

20 dB; Figure 7 (b),(d),(f) are the corresponding Cross-plots of

Figure 7 (a),(c),(e) respectively. As the SNR decreases, the

possibility of correct target recognition decreases accordingly.

Therefore, the level or threshold of SNR to which this technique is

robust relates the accuracy of correct target recognition to be

achieved.

2.4.6 Part Discontinuities. The existence of severe noise in

an image may result in the disconnection of the pattern into

segments but with the overall shape being retained. The effect of

pattern truncation and segregation is investigated based on such a

defect (Refer to Figure 8). Due to the overall statistical

contribution of pixel counts from the complete regions of the

pattern, the destruction of counts from the missing regions will not

modify the general characteristic of the Cross-plots. The

aggregation of pixel counts for each scanning distance is affected

slightly and retains much of the inherent pattern information. This

can be seen from the SCI of Cross-plots for 8 (b) with (d) that has a

value of 3.20 (Refer to Section 2.3 for the definition of

identification metric used in here).

2.5 Standardized Alignment of Targets
This section explores the concepts behind Singular Value

Decomposition (SVD) [43,44,45] and demonstrates how SVD can

be applied onto a pattern data set to enable mapping to a standard

orientation. The result map can serve as a base pattern for all

target variants of different orientation. The previous observations

show that the Cross-plot signatures may have similar curvatures

that are generated by nodes at dissimilar positions. To solve this

problem, the concept of principal component analysis is applied.

Figure 9 illustrates that the most prominent principal component

can serve as the directional alignment of the target and presents

Figure 6. Effect of scaling of shape pattern on Cross-plots based signatures. The subfigures are as follows: (a) Binary image at resolution of
128 by 128; (b) Cross-plots of binary image at resolution of 128 by 128; (c) Cross-plots of binary image at resolution of 128 by 128 with encapsulations
spanned by distances that are normalized; (d) Binary image at resolution of 256 by 256 without normalized spanning distance; (e) Cross-plots of
binary image at resolution of 256 by 256 without normalized spanning distance; (f) Cross-plots of binary image at resolution of 256 by 256 with
encapsulations spanned by distances that are normalized.
doi:10.1371/journal.pone.0025621.g006

ATR Based on Cross-Plot
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the reconstructed pattern along this component. The reconstruct-

ed targets for all the variants are identical and serve as the

standard base pattern for which their signatures will be generated

for identification or database storage in the retrieval system.

2.6 Verification based on Pattern Variants
To quantify the degree of variation in shape and size, images of

binary patterns in Appendix S1 illustrates various degrees of

structural and dimensional distortions. Figure 10 presents some of

these deviations from the original pattern and their corresponding

SCIs. Under each category of pattern deviation, the SCI of

corresponding modified binary image is computed and compared.

The first image along horizontal axis in each subfigure is the

original pattern image (or reference image). The values on the

vertical axis are the SCIs of their corresponding images. The

system quantifies the degree of pattern variation when correlated

with a standard model, i.e. top view capture of a target that is the

first pattern on the left of the images. The degree of contrast varies

incrementally as the variant patterns distortions amplify in

incremental stages. This allows the model to detect the degree of

contrast for the input pattern variant as it varies with the level of

distortion or orientation.

The effect of horizontal distortion is investigated (Figure 10 (a)).

The images following reference image are horizontally compressed

with a step 5%. In Figure 10 (b), the effect of pixel loss is

investigated. The pixel loss is performed by scattering random

white pixels on the pattern image. In this simulation, it is to add

noise to the image pixel. For the successive images following the

reference image, the noise is increased by 0.4 dB for each image.

In Figure 10 (c), scaling is performed by decreasing the size of both

vertical and spatial dimensions by an interval of 10% for each step.

In Figure 10 (d), the effect of blurring is accomplished in the spatial

domain by pixel averaging in a neighborhood which is known as

sharpening in term of image processing [46]. The degree of

sharpness changes with the radius of the neighborhood to be

averaged. Images shown in Figure 10 (d) are 256 by 256 pixels.

The sharpness of the successive images following the reference

image is adjusted based on the change of sharpening radius with

an increase by 2% of the image width. In Figure 10 (e), each image

after reference image is clockwise rotated on the same plane at

angular increment of 36u. In 10 (f), the target is rotated along its

roll axis with an angular displacement of 20u on a single plane.

Note that this set of images based on three-dimensional rotations is

from Dassault Aviation [47].

The SCI indicator of the query patterns is affected by increasing

scales of distortions for shape object changes based on a set of ten

frames. The effectiveness of the shape-based representation model

can be gauged by its recognition of variant patterns based on a

different geometric feature for each target set. The whole

procedure shows that under a controlled experimental setup, the

increase in the SCI value corresponds to an increase in the

variation of the reference target pattern. The smoothness of the

Figure 7. Effect of noise on Cross-plot based signatures. (a) Binary pattern of target without noise; (c) Binary pattern of target with SNR of
23dB; (e) Binary pattern of target with SNR at 20 dB; (b, d, f) are the Cross-plots of patterns from (a, c, e) respectively.
doi:10.1371/journal.pone.0025621.g007
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correlation curve demonstrates the sensitivity of the model when

responding to incremental modification for variant geometrical

patterns.

Results

3.1 System Methodology
A computational prototype of the automatic target recognition

(ATR) methodology based on the proposed Cross-plot technique is

developed. This section provides the details of the system that is

implemented to match a target signature to an identical one in the

database. For an appropriately tested user-defined number of node

points and resolution of the Cross-plot signature, target identifi-

cation based on a repository of 60 targets in real time is reliable

and achievable within time in the order of milliseconds.

To generate the signature of the target, the raw image must be

pre-processed to remove noise and to segment all the objects in the

image for identification. The outline of the target, in terms of

structural details in the image, has to be extracted accurately. The

following procedures provide the guidelines for image preprocess-

ing. For preprocessing of images of targets with distinct demon-

strated features, the image is converted into a binary form through

amplitude quantization. For 2D feature space, such as an image, the

process of representing the amplitude of the 2D signal at a given

coordinate as an integer value with L different gray levels is usually

referred to as amplitude quantization or simply quantization. The

effectiveness in capturing the silhouette of the aircraft for images

depicting a target with an evenly shaded interior and a background

that differs in contrast to a specified degree varies.

To extract the targets from low contrast images where the

gradient magnitude of the target and background is in the

intermediate range, utilization of edge information is indispensable

[42]. Segmentation of different objects in the image can be

achieved by performing image segmentation such as connected

component labeling [48,49,50]. For less distinct images of targets

whose intensity contrast with the background is low due to light

reflection, segmentation techniques such as Markov random fields

[51] and watershed segmentation [48] may be applicable for

segregation of different objects in the image based on intensity and

proximity.

Based on the understanding of the theory and observations of the

Cross-plots discussed in the previous sections, the pseudo code of

our method is formulated. A more detailed pseudo-code can be

referenced in Appendix S3 to further breakdown the following steps.

(a) (b)

Figure 8. Effect of pattern defects on Cross-plot based signatures. Comparison of signatures (b,d) generated from clear (a) and noisy (c)
images. The subfigures are as follows: (a) Binary pattern of target without region loss; (b) Cross-plots generated from pattern without region loss; (c)
Segregated binary pattern of target due to region loss; (d) Cross-plots generated from segregated pattern due to region loss.
doi:10.1371/journal.pone.0025621.g008
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1. Remove outliers and noise surrounding the key target.

Construct a boundary encapsulating the binary target.

Determine the dimensions of the circular boundary to be

encapsulated around the target. The radius of the circle is

taken as the distance from the center of the rectangle to any

one corner of its boundary.

2. Position an arbitrary number of node points uniformly and

circumferentially around the circular boundary encapsulating

the binary target.

3. Obtain the set of Cross-plots for a = 1 to N, CrossD,a where D is

the binary pattern points and a is the current node of interest

from a set of N reference node points. The signature of the

pattern is represented in a matrix that represents coordinates of

Cross-plot curves that are concatenated column-wise.

4. The signatures of items in the database are compared with the

target signature to give an indicator for degree of shape

contrast. To compare two signatures, piecewise elemental

differences in the two matrices are summed to determine a

Shape Contrast Index (SCI) value.

5. The database item pertaining to the signature with the lowest

SCI is returned as the identified target. Shapes with subsequent

increment in SCI can be output for reference and analysis. If

the SCI of all the items exceeds a user-specified threshold,

reporting of an unidentified target will be returned.

3.2 System Prototyping
In this section, the design principles of the automatic target

recognition system are described in detail and the functionalities of

the system such as the actual image indexing, i.e. the computation

of pattern signatures and the quantification metric for the

perceptual similarity between two snap shots of the target are

implemented and analyzed. These are typically off-line operations.

For this system, the procedure of signature differentiation with

respect to the chosen signature and metric is of lower complexity

as compared to the image indexing. The overall complexity is

dependent on the specificity of the signature and conservation of

the spatial arrangement of the pattern. This method generates

low-level signatures efficiently, capturing only the global content of

the pattern irrespective of pattern distortion or target disorienta-

tion that affects it locally. The implementation and testing of the

pattern indexing and recognition demonstrates the efficiency and

effectiveness of our target recognition system.

3.2.1 Schematic System Layout. This section briefly

describes some of the working functionalities of the ATR system

and how units can be integrated to form a classification system. It

harnesses the Cross-plot in pattern recognition to enable an

efficient and effective way of identifying airborne targets. The

signature reflects the geometrical distribution of the image without

executing sophisticated image processing or extracting excessive

information from the shape pattern content. As a result, the

computational load in generating a target’s signature is low and to

achieve real-time target identification is technically possible.

The identification of a target can be achieved by the find-and-

match procedure (Figure 11). The speed of matching depends on

the size of the signature, and its low complexity. The implemented

pattern identification and retrieval can be adjusted for speed at the

expense of accuracy and vice versa. This flexibility allows for

customization of the system based on the type of pattern types and

size of its image library. Based on the design of the system outlined

in this section, a prototype of the machine that performs target

Figure 9. Alignment of patterns along their most prominent principal components. The above observation demonstrates that all variants
of targets at different orientations can be mapped onto a base pattern, which fulfills standardization of target alignment. This will enable a standard
set of reference node points around the binary targets.
doi:10.1371/journal.pone.0025621.g009
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recognition is built and analyzed for its performance. Note that

sampled images are from the target repository in Appendix S2.

3.2.2 System Implementation. A prototype of the auto-

matic target recognition system was built with the desired level of

interactive user control and tested on a platform with different

pattern registrations. The Shape Contrast Index (SCI) of the

reference shape pattern with respect to the actual pattern is

calculated and the patterns are well-matched based on their

SCIs. The signatures of the target patterns are displayed

graphically for reference. We reduced the size of the library

database and use only selected input patterns of different air

targets. Our main objective is to illustrate how different shape

targets with high perceptual similarity may be identified. The

degree of accuracy can also be displayed along with the matched

target. The objective of the different experiments in the following

sections and which relies on a small system database of samples is for

demonstration purposes. A more reliable system can be developed

by increasing the (i) database of target variants, and (ii) resolution of

signatures, which can be customized to achieve the best pattern

recognition efficiency.

Users import the digital patterns and perform feature

extraction in the indexing process to generate unique signatures.

There are options for entry updates into the multimedia data-

base for matching and identification of patterns. The pattern

images in the database are ranked according to their similarity

with the query pattern and with their corresponding Shape

Contrast Index (SCI) label. The automatic target recognition

prototype is implemented and tested for reliability. In this

experiment, a synthetically generated target from the side view

is loaded and identified using a target library of one hundred

and eighty reference patterns as shown in Figure 12 (a). In the

case of a video capture of the same target, the shape object has

been segmented for analysis and very similar result is obtained

as observed in Figure 12 (b). No prior processing techniques to

Figure 10. Measurement of shape contrast based on its pattern variations. The sub-figures that represent Shape Contrast Index (SCI)
variations of pattern variants with respect to a reference pattern are as follows: (a) Correlation of distorted variants; (b) Correlation of pixel-lost
variants; (c) Correlation of scaled variants; (d) Correlation of blurred variants; (e) Correlation of rotated variants (rotation in a two-dimensional plane
about an axis); (f) Correlation of disoriented variants (target displacement about roll axis in three-dimensions and captured as a binary image from a
two-dimensional perspective).
doi:10.1371/journal.pone.0025621.g010
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clean the image or improve the outline of the target shape are

carried out.

From the ranking and correlation values, the similarity of the

target and the target library data set A (in Appendix S1) can be

quantified and a module has been implemented to predict the

probability of its correct identification. Series of designed

experiments that are based on real and synthetically generated

patterns are performed with the target recognition trials, and have

demonstrated robustness, accuracy, and the system suitability in

the context of target recognition.

3.2 System Testing and Performance
In this section, the proposed technique was tested on a real data

set and analyzed for effective performance and efficiency. Sampled

images from a multimedia file [52] was used to create Data Set C

and the thumbprints of an air target (Dassault Rafale) are provided

for testing and demonstration.

The system is able to detect targets, and predict the accuracy as

well as confidence of identification based on statistical analysis of

SCI of every frame capture. The calculated SCI for a frame is

inversely proportional to the confidence of matching. Figure 13

shows the SCI generated for every frame in a graphical format.

Although our proposed technique can handle fuzzy, noisy, distorted

or incomplete patterns at varying degrees, the poor image resolution

of target and lack of appropriate preprocessing can affect the system

accuracy to a certain degree.

A well-established pattern recognition technique by artificial neural

network (ANN) was used to validate the performance of Cross-plot

based ATR. The extracted features are dependent upon the structure

of the segmented target and based on a set of standardized invariant

moments, which encompass the property of the rotation invariant.

These properties were passed to a multi-layer fully-connected

perceptron neural network with one hidden layer [53]. The weights

of this network were trained using a back propagation algorithm,

which is based on the generalized Delta rule [54].

For the ANN classifier, training set is based on the target library

(Data Set A and B) in Appendix S1 and S2 respectively. For the

Cross-plot technique, the same sets of pre-classified data are stored

in its repository database. Experiments are conducted from a high-

resolution video of the Dassault Rafale air target and the extracted

images were received from this video (Data Set C). Here, D1 is

defined as the pre-classified data set for ANN and Cross-plot ATR,

D2 as the test data set, PTP as the percentage of objects correctly

identified as positive targets (True-Positive), PFP as the percentage

of objects incorrectly identified as positive targets (False-Positive),

and PFN as the percentage of objects incorrectly identified as

 

Figure 11. Retrieval and classification procedures for target identification. This framework lays the architecture for the development of
automatic target recognition system. Key advantages of this model are that the signature generation does not require heavy computational
resources, and the accuracy and speed of matching can be adjusted by the user.
doi:10.1371/journal.pone.0025621.g011
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negative targets (False-Negative). The Precision is defined as the

ratio of PTP to (PTP + PFP), and Recall is the ratio of PTP to

(PTP + PFN). The Cross-plot has a higher precision and recall

performance compared to the ANN method. This lends support to

justification of the better performance by the Cross-plot pattern

recognition technique.

It may be worthwhile noting that false-alarm and detection rate

reduces as the number of nodes, N that is used in Cross-plot, or the

number of hidden neurons, n in the hidden level of an ANN

classifier increases. So to achieve a fair comparison of accuracy in

pattern identification, suitable adjustments are made such that

N = 8 and n = 5 such that the speed of processing is equal for both

frameworks. The results based on their identification performance

(Table 1) show that the ATR system based on Cross-plot

technique has a lower false alarm rate and achieved a greater

accuracy of detection as compared to the ANN based system.

Discussion

The proposed approach requires the generation of object

signature from the data set and all the information about this item

can be derived from the Cross-plot. The strength of this technique

is the element of computational efficiency. The computation of the

Cross-plot between the pattern and the node is of complexity

O(N + NlogN), where N is the number of data points. Because the

comparison of the signature can be achieved without exhausting

huge computational resources, this technique enables the possi-

bility of the identification of targets in real time.

In shape retrieval systems, partial content information from a

pattern is always extracted and condensed into a signature. The

limitation of this approach becomes apparent when the structural

details of the target are vague. This is because of the increase in

perceptual similarity of the shapes pertaining to the binary target

image as the air target is captured at greater distances. The loss of

shape content information is determined by the resolution of the

signature. The signature map is efficient in extracting the shape

feature of binary image data with minimum computational and

memory resources, and it is used as a thumbprint of the target in

the database. Despite the many advantages, full information of the

structural specifications of the target that is presented in its binary

pattern cannot be contained. Nevertheless, storage space in the

memory constrained database can be made available for more

Figure 13. Correlation analysis of an airborne target based on acquired video clip. The data registration and feature extraction of a
Dassault Rafale from a video database can be performed in real-time to consolidate sufficient content information of its shape. The time taken to
verify its identity is in the order of milliseconds. The Shape Contrast Index (SCI) versus time graph demonstrates the variations in these indices as each
image is captured per time frame increment. The probability and confidence of identification are output for decision makers.
doi:10.1371/journal.pone.0025621.g013

Figure 12. Programmable human-computer interface template for automatic target recognition system. Data for (a) Synthetic shape
pattern as the identified target and (b) Photorealistic image that depicts actual target are recorded. The interface system shows that it is able to
effectively identify targets with fuzzy outlines and discontinuous interiors.
doi:10.1371/journal.pone.0025621.g012
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instances of training data to be added because of their low-

memory signatures. The size of the signature is proportional to the

duration for comparison, and can be made minimal at the expense

of limited feature extraction and accuracy of identification. This

signature can be scaled to an appropriate size depending on the

memory space in the target reference database and an optimized

accuracy of identification.

Comparison with pattern recognition systems based on different

tools such as neural networks can be made. For the neural

network-based recognition system [55], more neurons may be

required to maintain the same accuracy of detection if the number

of known targets with different shape contents increases. It is also

difficult for the value of correlation to be indicated. Complexity of

computation exceeds O(N), N is number of pixels that form the

binary pattern. In addition, this model is not rotation, scaling, and

translation invariant. When using the SCX (Solidity Eccentricity

Extent) model, there is poor accuracy in identification of airplane

silhouettes especially when there is region loss within patterns.

Moreover, the poor accuracy in distinguishing airplanes that have

close perceptual similarity makes the system inflexible. As there are

no correlation metrics, the degree of matching is hard to indicate.

The accuracy of identification cannot be varied with the speed of

retrieval. The model is not noise, orientation, pixel-loss, and

blurring invariant and patterns need to be preprocessed before

classification.

For the shape context method, histogram of relative distances

based on a log r versus h grid serves a discriminative descriptor

[56]. Analogously, consolidative count-of-points based on a

Cartesian grid serves as the discriminative descriptor for the

Cross-plot technique. Both approaches relies on global shape

information into a local descriptor based on developing a set of

vectors that express the configuration of the shape relative to a

reference point. Therefore, the two methods work optimally only

when comparing shapes derived from gray-scale images rather

than from line representations. In addition, when implementing

the shape context approach, reference points taken on a

discontinuous contour of the shape as a result of region loss may

not represent the true shape contour accurately. Sectional loss of

shape parts violates the assumption that the sampled points are

able to approximate the underlying continuous shape, and causes

ambiguity in matching. Since the Cross-plot matching is

independent of contour coordinates, an accurate discriminator

can be achieved for shape objects that are subjected to distortion,

noise, and region loss when using the same feature set. Therefore,

the Cross-plot remains relatively robust for discontinuous shape

recognition, whereas the shape context method will have failed for

the above mentioned discrepancies.

The technique of using Cross-plots for pattern recognition

surpasses many existing techniques due to its robust performance.

The measurements of (i) area and perimeter, (ii) length of

maximum dimension, (iii) moments relative to the centroid, (iv)

number and area of holes, (v) area and dimensions of convex hull,

(vi) number of sharp corners, (vii) number of intersections with a

check circle, and (viii) angles between intersections, are some of the

shape analysis techniques used in pattern recognition [9]. Most of

these feature measurements will have failed for disconnected

patterns such as that shown in Figure 7 (c) if the features extraction

is not able to identify the overall shape characteristics despite such

critical feature defects.

This paper presents the proof for using the Cross-plot as a

potential tool for pattern recognition and motivates a number of

open questions for further investigation. In particular, determina-

tion of the optimal resolution of the signature vis-à-vis the number

of nodes and the resolution for each Cross-plot curvature that is

sufficient to develop an accurate shape retrieval system running on

low computational resources requires further investigations. The

threshold of prediction failure based on incrementing the degree of

pattern distortion for a specific configuration of signature is a

challenge to the reliability of this proposed approach. Exploration

of the effect of different datasets along with varying database sizes

is beyond the scope of this proof-of-concept study, and is an

interesting open question for future implementations. Other future

works may include investigation of multiple distortion mechanisms

such as a combination of shape transformation, noise and pixel

loss on the accuracy of the target recognition system.
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