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Abstract

Background: Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest physical,
phenotypic, and functional properties in cultured cell populations. Despite considerable research on MSCs and their clinical
application, the biology of these cells is not fully clarified and data on signalling activation during mesenchymal differentiation
and proliferation are controversial. The role of Wnt pathways is still debated, partly due to culture heterogeneity and
methodological inconsistencies. Recently, we described a new bone marrow cell population isolated from MSC cultures that we
named Mesodermal Progenitor Cells (MPCs) for their mesenchymal and endothelial differentiation potential. An optimized
culture method allowed the isolation from human adult bone marrow of a highly pure population of MPCs (more than 97%), that
showed the distinctive SSEA-4+CD105+CD90neg phenotype and not expressing MSCA-1 antigen. Under these selective culture
conditions the percentage of MSCs (SSEA-4negCD105+CD90bright and MSCA-1+), in the primary cultures, resulted lower than 2%.

Methodology/Principal Finding: We demonstrate that MPCs differentiate to MSCs through an SSEA-4+CD105+CD90bright

early intermediate precursor. Differentiation paralleled the activation of Wnt5/Calmodulin signalling by autocrine/paracrine
intense secretion of Wnt5a and Wnt5b (p,0.05 vs uncondictioned media), which was later silenced in late MSCs (SSEA-4neg).
We found the inhibition of this pathway by calmidazolium chloride specifically blocked mesenchymal induction
(ID50 = 0.5 mM, p,0.01), while endothelial differentiation was unaffected.

Conclusion: The present study describes two different putative progenitors (early and late MSCs) that, together with already
described MPCs, could be co-isolated and expanded in different percentages depending on the culture conditions. These
results suggest that some modifications to the widely accepted MSC nomenclature are required.
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Introduction

The Wnt family of signaling proteins participate in multiple

developmental events during embryogenesis [1,2,3]. In addition, it

has also been implicated in adult tissue homeostasis [4,5]. Wnt

signals are pleiotropic, with effects that include mitogenic

stimulation, cell fate specification, and differentiation [6]. Wnts

are highly conserved, cysteine-rich secreted ligands which bind the

Frizzled (Fzd) receptor family. So far, 19 Wnts have been

identified in humans together with 10 Fzd receptors, co-receptors

(LRP-5, LRP-6), and inhibitors (Dkks, sFrps and Wif). Binding of

Wnt ligands to the Fzds results in the activation of different

pathways: the canonical pathway that involves nuclearization and

activation of b-catenin [7], and the b-catenin independent non-

canonical pathways acting through phosphokinase networks [8],

including JNKs, CaMK-II, PKC, and Calmodulin/NF-AT.

The role of Wnt signalling in Mesenchymal Stromal Cell (MSC)

fate is still debated. Both canonical and non-canonical pathways have

been implicated in mesenchymal differentiation and proliferation.

This ‘‘dual’’ role could be related to the specific Wnt ligand

responsible for the signalling and/or to the developmental stage at

the time of Wnt pathway engagement (reviewed by Ling L. et al.

[9]). In cultured MSCs, the canonical Wnt3a activated signalling

seems to stimulate proliferation and self-renewal [10], whereas the

non-canonical Wnt5a/JNK mediated signalling inhibits proliferation

and promotes osteogenic differentiation [11]. Some authors have

reported that non-canonical Wnt signalling inhibits MSC prolifer-

ation in either autocrine or paracrine fashion [12]. Moreover,

ligand concentration in the culture medium could lead to opposite

effects [13]. Thus, the role of Wnt signalling in mesenchymal fate

is far from clarified and the controversial results could rise from

intrinsic variability and heterogeneity of the MSC preparations.
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MSCs are still poorly characterized due to the absence of

manifest physical, phenotypic, and functional properties in

heterogeneous cell culture populations [14], which contain single

stem cell-like cells as well as progenitor cells with different lineage

commitments [15]. Also, cell origin and culture conditions induce

high variability in cell composition that can affect interpretation of

the experimental results [16]. A further obstacle to the study of

MSCs is the lack of precise knowledge about their in vivo identity.

Once established in culture, they express a variety of cell-lineage

specific antigens, including adhesion molecules, integrins, and

growth factor receptors that are either down- or up-regulated in

MSC (sub)populations [17]. Moreover, the number of culture

passages required to select a homogenous MSC population may

induce loss of immature and multipotent precursor cells.

A number of markers have been proven to be suitable for the

prospective isolation of MSCs from primary tissues. They include

CD271, SSEA-4, ganglioside GD2, CD146, CD200, and the avb5

integrin complex, as well as several antibody-defined molecules

[18,19,20,21,22]. However, none of them represents an ultimate

and exclusive MSC marker.

Recently, we identified in MSC cultures a novel cell population

characterized by unusual morphology and a unique phenotype

[23]. These cells exhibited both mesenchymal and endothelial

differentiation potential and therefore we named them Mesoder-

mal Progenitor Cells (MPCs). We optimized a protocol to harvest

MPCs from human Bone Marrow Mono-Nucleate Cells

(BMMNCs) supplemented with autologous serum [24]. They

consisted of a highly homogeneous population identified by

phenotype CD105+SSEA-4+CD90neg while lacking many other

mesenchymal associated markers, including MSCA-1, CD166,

CD271, W5B5 [24], as well as the pericyte marker CD146. MPCs

revealed the expression of the pluripotency-associated marker

SSEA-4 and of nuclear factors Oct-4 and Nanog [25]. We also

demonstrated that different serum supplementations in MSC

culture medium led to different percentages of co-cultured MPCs

[23], thus contributing to the variability of cell proliferation and

differentiation potential [26]. Interestingly, when cultured in

appropriate conditions MPCs differentiated to either highly

proliferative and clonogenic MSCs or to mature endothelial cells

showing tube-like structures in MatrigelH 3D-cultures.

Here we demonstrate that MPCs differentiate to MSCs through

an SSEA-4+ early intermediate precursor. Differentiation was

paralleled by the activation of the non-canonical Wnt5/Calmodulin

signalling pathway. The specificity of the pathway, subsequently

silenced during differentiation into mature multipotent SSEA-4neg

MSCs, was confirmed by culturing MPCs in the presence of

inhibitors. The inhibition of non-canonical Wnt5/Calmodulin

signalling impaired MSC differentiation leaving endothelial

induction unaffected.

Materials and Methods

Ethical statement
The study protocol was approved by the ethical committee of

the Azienda Ospedaliera Universitaria Pisana. The fundamental

principles of ethics in research on human participants were

maintained throughout the study period according to the

principles expressed in the Declaration of Helsinki. The research

procedures were disclosed to all participants and written informed

consent was obtained for sample collection.

Primary cell cultures
Bone marrow samples were obtained from 4 patients (2M/2F,

median age 69 years) undergoing cardiac surgery. MSC cultures

were obtained from bone marrow mononuclear cells (BMMNCs)

grown under standard conditions, using DMEM (Invitrogen,

Carlsband CA-USA) supplemented with 10% FBS (Invitrogen).

MPCs were isolated from BMMNCs cultured in DMEM

supplemented with 10% pooled human AB serum, obtained from

male donors only (PhABS, Lonza, Walkersville MD-USA), as

previously described [23]. Media were changed every 48 h and

cultures maintained at 37uC and 5% CO2 for 10–12 days, then

detached by TrypLE SelectH (Invitrogen) digestion and processed

for characterization and mRNA extraction.

Cytofluorimetric characterization and validation of
primary cultures

Aliquots of the detached cells were washed in PBS/0.5% BSA

and stained with anti-SSEA-4 AlexaFluor 488-conjugated (Biole-

gend), anti-MSCA-1 PE-conjugated (Miltenyi Biotec, Gladbach

GER), and anti-CD90 PE/Cy5-conjugated (BectonDickinson, San

Jose CA-SA). Samples were acquired using FACSCanto IIH
(BectonDickinson) and analyzed by Diva SoftwareH. A mesenchy-

mal component (SSEA-4negMSCA-1+CD90+) lower than 2% was

the cut off point for MPCs samples to be selected for further

analysis.

Molecular characterization and Wnt signalling qPCRArray
Total RNA was extracted using RNeasy Mini Kit (Qiagen

GmbH, Hilden GER) as indicated by the manufacturer’s protocol.

On-column DNase I digestion was performed. 100 ng RNA

samples were retrotranscribed with QuantiTectH Whole Tran-

scriptome Kit (Qiagen). 50-fold cDNA dilutions were analyzed by

quantitative Real Time PCR, using an iCycler-iQ5 Optical

System (Bio-Rad Laboratories, Hercules, CA-USA) and iQ SYBR

Green SuperMix (Bio-Rad). All samples were run in duplicate.

Primers for OCT4, NANOG, SOX15, SOX9, NESTIN, SPP1,

FBX15, and RUNX2 genes were obtained as previously described

[24]. Relative quantitative analysis was carried out following the

22DDCt Livak method [27]. GAPDH and HPRT housekeeping

genes were used for normalization. Wnt related genes expression

profile analysis was performed using Wnt signalling pathway RT2

ProfilerTM PCR array kit from SABioscience (Quiagen) according

to manufacturer’s instructions. Data were analyzed by SA-

Bioscience web-base PCR Array Data Analysis tool and expressed

as 22DDCt. Gene expression was defined ‘‘consistent’’ for values over

0.01, ‘‘mild’’ for values between 0.01 and 0.001, while genes were

considered ‘‘not expressed’’ for values lower than 0.001.

MPC mesenchymal differentiation and Slot-Blot analysis
Five bone marrow samples (3M/2F, median age 64) were

cultured in PhABS to isolate MPCs, as described above. After

cytofluorimetrical validation, cells were detached and plated

(10’000 cells/cm2) in MesenPROTM RS (Invitrogen) tissue culture

treated (TC) 6-well plates, to induce mesenchymal differentiation.

After 7 days (T1) conditioned medium was collected, high speed

centrifuged and processed for Slot-Blot analysis. The procedure

was repeated after further 7 days (T2).

T1 and T2 conditioned media were microfiltrated in quadru-

plicate, using Bio-DotH Microfiltration Apparatus (BioRad,

Hercules CA-USA) and blotted onto nitrocellulose membranes.

Membranes were processed to evaluate secreted proteins using

anti-Wnt5a, anti-Wnt5b, and anti-Dkk1 (all antibodies from

ABCam, Cambridge UK). Briefly, membranes were blocked in

0.05% Tween20–5% BSA TBS, incubated for 2 hs with 1 mg/ml

purified primary antibody, washed three times in 0.05% Tween20

TBS and then incubated with HRP conjugated secondary

Wnt Signalling and MSC Differentiation
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antibody (ABCam) for 1 h. After three washings, membranes were

incubated with chemoluminescent ECL reagent (ABCam) and

images immediately acquired by ChemiDoc digital imaging system

(Biorad). Densitometric evaluations were performed using Leica

QWin image analysis software (Leica, Wetzlar Germany). Data

were presented as Net Pixel Density, calculated by subtracting

median grey levels of bands. T1 and T2 cultures were also

processed for anti-SSEA-4 and CD90 immunofluorescence

staining and citofluorimetric characterization for CD105, CD90,

and SSEA-4 expression.

Inhibition of MPC mesenchymal differentiation
Mesenchymal differentiation was inhibited by culturing MPCs

in the presence of anti-Wnt5a antibody, anti-Wnt5b antibody

(ABCam), or a combination of anti-Wnt5a/anti-Wnt5b at 0.5 mg/

ml and 2.0 mg/ml respectively. IgG isotype antibody (BectonDick-

inson) was used as a control. In parallel, inhibitors of downstream

phosphokinases in the non-canonical Ca2+-dependent signalling

pathways were used. In detail, PKC and CaMK-II were inhibited

by adding different doses (5 ml, 10 ml and 50 ml) of the inhibitor

cocktail from Millipore (Billerica, MA-USA). Autocamtide-2-

related inhibitory peptide (AIP) at 0.5 mM, 3.0 mM, and 5.0 mM

concentrations, or calmidazolium chloride (CLMDZ) at 0.5 mM,

1.0 mM, and 2.0 mM concentrations were also used. Differentia-

tion was measured by percentage of reduced AlamarBlue

(%ABred). At day 7 of culture 10% v/v AlamarBlueH (Invitrogen)

was added to the culture medium and 6 hs after treatment 100 ml

samples were photometrically assayed at 570 nm/600 nm,

following manufacturer’s instructions.

Inhibition of Calmudulin activity in MPC-derived MSC
expansion

MPCs from five bone marrow samples (3M/2F, median age 66)

were induced to differentiate into MSCs by culturing in

MesenPROTM RS for 7 days in duplicate (T1). MSCs were

cultured for further 7 days (T2) in the presence (0.5 mM and

1.0 mM) or absence of CLMDZ and proliferation was assayed.

Cells from untreated cultures were detached and replated at 5,000

cells/cm2 with or without CLMDZ. After 7 days of culture (T3)

the AlamarBlueH assay was performed. Data were expressed as

Inhibition Index calculated according to the formula:

%ABredCTRL{%ABredSample

� �
|100

� ��
100{%ABredCTRLð Þ:

Inhibition of Ca2+-dependent signalling pathways by
CLMDZ in MPC endothelial differentiation

Detached MPCs were induced to differentiate toward the

endothelial lineage as previously reported [24,25], in the presence

(1.0 mM and 2.0 mM) and absence of CLMDZ. Briefly, MPCs

were plated at a density of 10,000 cells/cm2 in fibronectin coated

12-well plates (BectonDickinson) and cultured for 7 days in

EndoCultH medium (StemCell, Vancouver Canada). Evaluation of

differentiation and the consequent pre-endothelial cell prolifera-

tion was performed using AlamarBlueH assay, as reported above.

After pre-differentiation, cells were detached by trypsin digestion

(Invitrogen) and 50,000 cells seeded on MatrigelTM (BectonDick-

inson) to perform the tube-like formation assay as previously

described [25]. After 24 h of culture in EGM-2 medium (Lonza)

supplemented with 50 ng/ml VEGF, phase contrast images of the

tube-like network were acquired and 30–50 capillary-like tubes per

sample were measured using Qwin software.

Statistical analysis
Statistical analysis was performed using two tailed t-student test.

In alternative, for non-parametric series of data, Mann-Whitney

test was also performed, p,0.05 was considered to be significant.

Results

We used two culture settings (PhABS vs FBS) that allowed us to

specifically separate MPCs from MSCs in primary cultures from

whole bone marrow samples. Under those conditions over 98%

purity for either population was obtained (Figure 1A). Molecular

characterization revealed a distinctive profile for MPCs charac-

terized by the expression of functional pluripotency-associated

genes, including OCT4 (isoform A) and NANOG (Figure 1B).

SOX15, NESTIN, FBX15 and SPP1, this latest reported as

functional Oct-4 homodimer target genes [28], were also

expressed at significant levels (p,0.01, Figure 1B) confirming the

activation of the peculiar adult Oct-4 circuit, previously reported

[25]. MSCs expressed mesenchymal associated genes, including

SOX9 and RUNX2 while lacking pluripotency markers

(Figure 1B).

RT2 ProfileTM PCR arrays revealed 16 different Wnt mRNAs

(Figure 2A). MPCs showed mild expression (0.001,22DDCt#0.01)

of WNT11 only that was not expressed in MSCs (p,0.05). MSCs

showed consistent expression (22DDCt.0.01) of WNT5A and

WNT5B and mild expression of WNT3 and WNT7B. Porcupine

homolog Drosophila gene (PORCN) was expressed at different

levels in both MPCs and MSCs (p,0.01), suggesting that

translated Wnt proteins are processed for secretion. Surface

receptor Fzd profiles (Figure 2B) were characterized by consistent

expression of FZD1 in both MPCs and MSCs. However, MSCs

expressed 10 times higher levels of the FZD1 transcript as

compared to MPCs (p,0.001) and revealed positive amplification,

at different levels, for any of the other FZD receptors investigated.

Interestingly, we detected transcripts for LRP-5 and KREMEN1

co-receptors both in MSCs and MPCs, but only MSCs showed

consistent expression of dickkopf homolog 1 (DKK1). Our data

suggest that Wnt signalling in MPCs was allowed by the expression

of FZD1, which binds at high affinity the canonical pathway

effectors Wnt3a and b1-catenin as well as the non-canonical ligands

Wnt5a, Wnt5b, and Wnt7b [29] (Table S1).

To investigate the role of Wnt5, MPCs were induced to

differentiate to either MSCs by culturing in MesenPROTM RS or

to endothelial cells by culturing in Endo-CultTM media. We

identified two distinct phases in MPC mesenchymal differentia-

tion: early and late. After seven days of mesenchymal induction (T1)

(Figure 3A), cultures revealed a small population of flat multi-

branched cells reactive to CD90 and SSEA-4. Flow cytometry

confirmed the presence of two distinct cell populations on the basis

of CD105 and CD90 expression. Most cells at T1 were MPCs

(SSEA-4+CD105dimCD90neg, 76.8%66.8, n = 3) with a minor

population of MSCs (CD105brightCD90bright, 24.3%63.6, n = 3)

(Figure 3A). About 50% percent of the MSCs were SSEA-4

positive (early MSCs) while the remaining MSCs were SSEA-4

negative (late MSCs). After a further 7 days of culture (T2)

(Figure 3B) MPCs were fewer than 15% (12.3%65.6, n = 3) and

most of the cells were early MSCs (61.3%64.7, n = 3) with a few

late MSCs (9.3%62.6, n = 3). At 21 days (T3), more than 95% of

the cells were late MSCs (SSEA-4negCD105brightCD90bright,

95.3%66.6 n = 3, Figure 3C).

At T1, intense secretion of Wnt5a (p,0.01 vs unconditioned

media) and Wnt5b (p,0.01) was detected. Interestingly, at T2

Wnt5a (p,0.01) and Wnt5b (p,0.05) secretion was reduced

despite the increased cellular density of mesenchymal cells. In

Wnt Signalling and MSC Differentiation
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parallel, Dkk1 secretion was higher at T1 (p,0.01) as compared to

T2 (p,0.01) (Figure 3D). Mesenchymal differentiation of MPCs

was completely abolished by treatment with anti-Wnt5a in

combination with anti-Wnt5b (2.0 mg/ml) antibodies. The per-

centage of reduced Alamar BlueH was similar to unstimulated

MPCs (PhABS, see materials and methods) and significantly lower

when compared to MesenPROTM RS cultures (p,0.05)

(Figure 3E). Differentiation was not significantly inhibited when

a single antibody was added to the culture, regardless of its

concentration. Treatment with IgG isotype control antibody had

no effect on differentiation (data not shown). These results suggest

a redundant role for Wnt5a and Wnt5b in the autocrine/

paracrine activation of Wnt signalling pathway, while binding of

Wnt5a or Wnt5b on surface receptors was required during the

induction of MPC mesenchymal differentiation (T1). Further-

more, morphological and phenotypical studies on mesenchymal

differentiation cultures of MPCs (performed in presence of 2.0 mg/

ml of both antibodies; anti-Wnt5a and anti-Wnt5b), confirmed

that the inhibition of proliferation reported was effectively

associated with a block of the mesenchymal differentiation. In

fact, after 7 days of culture more than 95% of treated cells retained

the expression of MPC phenotype (95.6%64.1 n = 3, Figure 3F),

alongside very low percentage of early MSCs (1.7%61.5). Phase

contrast and fluorescence microscopy revealed the almost

exclusive presence of highly rifrangent rounded cells, stained

brightly with anti SSEA-4 and negative to CD90 (respectively

green and red in Figure 3F).

We also assayed the downstream involvement of PCK, CaMK-

II, and Calmodulin. Inhibition of PKC and CaMK-II proved to

be toxic both on resting (PhABS) and differentiating MPCs

(MesenPROTM RS) in a dose independent fashion (Figure 4A).

On the other hand, highly specific inhibition of CaMK-II with

AIP did not interfere with MPC survival or differentiation.

Interestingly, blocking Calmodulin specific enzyme activity with

calmidazolium chloride (CLMDZ) resulted in a dose dependent

inhibition of differentiation (ID50 = 0.5 mM), but had no effect on

resting MPCs. Cell vitality and ability to subsequently differen-

tiate toward MSCs were conserved after removing CLMDZ (data

not shown). The inhibition by CLMDZ, registered at T1 was

significantly reduced at T2 and T3 (Table 1 and Figure 4B).

Figure 1. Characterization of MPC and MSC primary cultures. Culturing BMMNCs in PhABS or FBS resulted in two highly monomorphic
cultures of MPCs and MSCs, respectively. (A) MPCs were rounded and highly rifrangent (Leica DM-IRB 100X, phase contrast) expressing SSEA-4, low
levels of CD105, and no CD90 and MSCA-1 MSC markers. Cytofluorimetric analysis showed high purity for both cultures. (B) Gene expression profiling
confirmed the peculiar molecular signature of MCPs (red dots) characterized by the expression of pluripotency-associated genes. MSC (black squares)
profile was significantly different from that of MPC (p,0.01), with the high expression of RUNX2 and SOX9.
doi:10.1371/journal.pone.0025600.g001

Wnt Signalling and MSC Differentiation
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CLMDZ was unable to inhibit MPC endothelial differentiation,

even at higher concentrations (46ID50), as shown by close

percentages of reduced AlamarBlueH in control cultures

(61.1564.17, n = 8) vs CLMDZ at 1.0 mM (49,0564.30, n = 8)

and 2.0 mM (49,9063.34, n = 8) (Figure 5A). Furthermore,

endothelial induced cells retained the ability to form tube-like

structures in MatrigelH, independently of the treatment and with

mild differences in capillary-like tube length (Figure 5B). This set

of data confirmed that Wnt5/Calmodulin activation is restricted

to the mesenchymal lineage.

Discussion

We recently isolated from MSC cultures a population of MPCs

that exhibited mesenchymal and endothelial differentiation

potential under defined culture conditions [24]. The present

report shows evidence of a multi-step model of mesenchymal

differentiation. We identified a specific phenotype associated to an

intermediate state between MPCs and MSCs (early MSCs). These

cells revealed unique morphology (flat multi-branched cells) and

distinctive immunophenotype (SSEA-4+CD105brightCD90bright),

Figure 2. Quantitative RT-PCR assay for Wnts, Fzd receptors, co-receptors and inhibitors. (A) No Wnts mRNA were detected in MPCs (red
bars) except for WNT11 that showed mild expression. MSCs (black bars) showed consistent expression of WNT5A and WNT5B and mild expression of
WNT3 and WNT7B. PORCN was expressed in both populations. (B) MPCs showed consistent expression of FZD1 only, while MSCs expressed a number
of FZD receptors and Wnt signalling inhibitors. (* p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.pone.0025600.g002

Wnt Signalling and MSC Differentiation
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Figure 3. Mesenchymal differentiation of MPCs and Wnt signalling. (A) After 7 days of culture (T1) in differentiating medium some spindle-
shaped cells were detectable (Leica DM-RB, HBO-50W Fluorescence 400X, merging by Leica CW4000 software). SSEA-4 (green) and CD90 (red, blue
stain for DAPI) immunofluorescence and flow cytometry allowed the identification of a portion of MSCs as early MSCs (SSEA-4 and CD90 positive). (B)
After a further 7 days (T2) cultures showed a reduced population of MPCs alongside an increased population of early MSCs. (C) Confluence of spindle-
shaped cells was obtained after 3 weeks of differentiation (T3). Immunofluorescence showed that cells were completely negative for SSEA-4 while
expressing CD90. Flow cytometry confirmed the unique phenotype of late MSCs (SSEA-4negCD105brightCD90bright). (D) Slot-Blot of conditioned media
revealed intense secretion of Wnt5a and Wnt5b at T1 and very low secretion at T2. Similarly, Dkk1 was highly secreted at T1 and reduced at T2. (E)
Autocrine/paracrine actions of Wnt5a and Wnt5b were redundant and differentiation was significantly inhibited with high doses (expressed in mg/ml)
of specific antibodies (* p,0.05, ** p,0.01). (F) Immunoblocking of Wnt5a and Wnt5b activity, during differentiation, resulted in the retention of MPC
phenotype in about 95% of the cells, after 7 days of induction.
doi:10.1371/journal.pone.0025600.g003

Wnt Signalling and MSC Differentiation
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Figure 4. Calmodulin activation during mesenchymal differentiation of MPCs and its involvement restricted to the MPC-early MSC
phase. (A) Treatment with inhibitors of PKC and CaMK-II resulted in a toxic effect both on differentiating (MesenPRO RSTM) and resting (PhABS
medium) MPCs. Specific inhibition of CaMK-II had no effects on mesenchymal differentiation while CLMDZ exerted a dose-dependent inhibiting
effect. (B) The inhibition index measured in the first week of differentiation (T1) was considerably reduced when treatment with CLMDZ at 0.5 mM
(ID50, black dots) and 1.0 mM (26ID50, red dots) were performed from day 7 (T2) or 14 (T3) of differentiation (* p,0.05, ** p,0.01).
doi:10.1371/journal.pone.0025600.g004

Table 1. Inhibition of mesenchymal differentiation by Calmidazolium Chloride (CLMDZ).

T1 T2 T3

CMLDZ Inhibition Index(1) Inhibition Index p value(2) Inhibition Index p value

0.5 mM 47.7610.8 9.764.8 0.025 6.761.5 0.008

1.0 mM 68.4615.5 20.767.5 0.038 13.467.2 0.040

(1)[(%ABredCTRL2%ABredSample)6100]/(1002%ABredCTRL).
(2)Significant differences to T1 for p,0.05, evaluated by Mann-Whitney test (n = 5).
doi:10.1371/journal.pone.0025600.t001

Wnt Signalling and MSC Differentiation

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e25600



different from MPCs and from widely accepted MSCs. Higher

clonogenic potential of SSEA-4+ MSCs had already been reported

in adult mesenchymal stem cell populations [19]. We recognized

SSEA-4, a marker previously thought to be specific to very early

embryonic development and to hES cells, as a tracer of

mesenchymal differentiation. It was highly expressed in MPCs

while progressively decreasing during differentiation toward

mesenchymal lineage, and it is not expressed by proliferating late

Figure 5. CLMDZ treatment did not affect MPC endothelial differentiation. (A) Induction toward the endothelial lineage was not inhibited
by CLMDZ even at a high concentration. (B) Computer assisted measurement (24 h in MatrigelH 3D-cultures) of distances between cell bodies (red
lines) revealed only a mild increase in tube length for CLMDZ treated cultures (Leica DM-IRB 100X, phase contrast, Leica QWin V3 software).
doi:10.1371/journal.pone.0025600.g005

Wnt Signalling and MSC Differentiation
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MSCs. In parallel, cell expansion rates were very low in the first

seven days of MPC differentiation. A second week of culture led to

the expansion phase associated to typical MSC cultures with only

a homogeneous population of late mature MSCs detectable.

In order to further characterize the multi-step model of MPC

differentiation we investigated the possible role of Wnt signalling

pathways. Our data showed that at the first step of induction in

vitro mesenchymal differentiation of MPCs was regulated by non-

canonical pathways through Wnt5a and Wnt5b, with a possible

concomitant inhibition of Dkk-1 canonical pathway. Interestingly,

Wnt5a and Wnt5b secretion paralleled the differentiation steps,

appearing very high when the proliferation rate was low and

becoming significantly reduced during the exponential cell growth.

Previous studies on MSC biology led to inconsistent results that

may originate from heterogeneity in culture cell populations,

characterized by asynchronous steps of differentiation. A decade

ago some authors identified significant growing differences within

MSC cultures for the presence of cell populations with distinct

morphologies and proliferation capacities (RS1 and RS2) and

described a lag phase and a log phase of growth [30,31]. Gregory et

al. [32] found that in the early log phase MSCs synthesize and

secrete Dkk-1, an inhibitor of the canonical Wnt pathway.

Proliferation of undifferentiated and pre-differentiated MSCs

appeared to be predominantly regulated by the canonical Wnt3

pathway [10,11,13]. A more recent report [33] showed an

increased number of CFU-F in MSC cultures exposed to Wnt3

and revealed a significant increase in population doubling time

when MSCs were cultured in presence of Wnt5 and Wnt3. The

Authors suggested a competitive interaction between canonical

Wnt3a and non-canonical Wnt5a in mesenchymal colony formation

from BMMNCs, with Wnt3a affecting self-renewal and prolifer-

ation while Wnt5a maintained MSC steady-state. In the light of

our results the reported Wnt5-mediated increase in the population

doubling time may be related to the recruitment of early MSCs,

whereas Wnt3 directly stimulates the proliferation of late MSCs.

According with this scenario, we reported apparently controversial

results in standard primary MSC cultures performed using FBS-

containing medium, where canonical (Wnt3) and non-canonical

(Wnt5a, Wnt5b) proteins were concomitantly expressed. We

hypothesize that the heterogeneity of the MSCs in these kinds of

cultures [14,16,26], leads to the activation of different signalling

pathways in different co-cultured cell populations undergoing

asynchronous steps of differentiation. Conversely, the more

controlled and less variable MPC differentiation protocol allows

us deeply investigating the Wnt signalling activation, resolving the

process in its single steps.

MPC fate could be mediated by Fzd1, which was the only Wnt

receptor we found consistently expressed. Fzd1 is predicted to bind at

high affinity canonical pathway effectors Wnt3a and b-catenin as well

as non-canonical ligands Wnt5a, Wnt5b, and Wnt7b (Table S1). Our

quantitative analysis for cytoplasmatic Wnt signalling related proteins

and nuclear effectors revealed that steady state MPCs are fully

equipped with the molecular machinery needed for signal transduc-

tion (Figure S1A, Text S1). They seem able to activate different

signalling pathways in response to different ligands in a similar fashion

to MSCs. We did not detect any expression of Wnt inhibitors in

MPCs. Thus, we suggest that no specific Wnt signalling pathway is

precluded to this cell population. In contrast, the activation of Wnt5-

mediated mesenchymal differentiation parallels the expression of

canonical pathway inhibitors as Dkk-1 (or presumably SFRPs)

preventing activation of b-catenin in the early phase.

As summerized in Figure 6, we identify MPCs as the

hypothetical mesenchymal precursors. Activation of Wnt5/

Calmodulin signalling finely tunes Fzd1 mediated induction of

Figure 6. MPC mesenchymal differentiation hierarchy. Homogenous MPC populations can be induced to differentiate to early MSCs by
activating the Wnt5/Calmodulin pathway via Fzd1. Terminal differentiation to late MSCs is related to down-regulation of either Wnt5/Calmodulin
pathway or Dkk1-mediated inhibition of canonical signalling. Plastic adherence in different culture conditions and timing could lead to the isolation
of the three different populations easily distinguishable by morphology, phenotype and proliferation rate.
doi:10.1371/journal.pone.0025600.g006

Wnt Signalling and MSC Differentiation

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e25600



MPCs into a newly described intermediate differentiation stage,

low proliferating early MSCs. Subsequent maturation to late MSCs

(SSEA-4neg) gives rise to exponentially growing cultures possibly

regulated by other Wnt signalling pathways.

Interestingly, under appropriate culture conditions MPCs were

able to differentiate to endothelial cells giving rise to tube-like

structures in MatrigelH. The inhibition of non-canonical Wnt5/

Calmodulin pathway did not affect endothelial differentiation, thus

underlining the specificity of different Wnt pathways in ruling

MPC fate.

Understanding the mechanisms of MPC differentiation and self-

renewal in vitro is crucial for future clinical applications of this

promising bone marrow derived progenitor cell population. MPCs

could sustain both tissue regeneration, by undergoing mesenchy-

mal differentiation, and neo-vascolarization by undergoing

endothelial differentiation.

We believe, based on the studies described above, that future

studies on multipotent bone marrow stromal cells require careful

revision of the widely accepted nomenclature [34], taking into

account the discovery of novel phenotypes like early and late MSCs.

This is easily achievable introducing routinely the SSEA-4 antigen

detection into the MSC characterization panels. Moreover, we

previously reported that different MSC culture conditions could

lead to different percentages of co-isolated MPCs in low-passaged

cells, which are not evaluated by current data analysis methods

focused on CD90-positive elements. Thus, evaluation of SSEA-

4+CD105+CD90neg cells is also required for a complete interpre-

tation of the results.

Lastly, we believe that many of the unresolved controversies in

the field of bone marrow-derived multipotent cells could be

overcame using defined number of pure MPCs and chemically

defined media (MesenPROTM RS), providing a novel and highly

reproducible mesenchymal culture method, which could be useful

to obtain homogeneous and synchronized cell preparations.

Supporting Information

Text S1 MPCs are fully equipped with the molecular
machinery needed for Wnt signal transduction, as well
as MSCs.

(RTF)

Figure S1 Quantitative RT-PCR assay for cytoplasmatic
Wnt signalling related proteins and nuclear effectors. (A)

No significant difference was reported in the expression of the

main phosphokinases involved in Wnt signalling between MPCs

(red bars) and MSCs (black bars). (B) Only some canonical nuclear

effectors resulted significantly more expressed on MSCs (* p,0.05,

** p,0.01).

(TIF)

Table S1 STRING Scores of predicted protein-protein
interactions. STRING scores for predicted interactions between

different Wnts (columns) and Fzd receptors, expressed at consistent

(grey filled rows) or mild (unfilled rows) levels, are reported in

MPCs and MSCs, respectively. Figures in bold indicate experi-

mentally verified interactions (Source: STRING Database http://

string81.embl.de).

(TIF)
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