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Abstract

Background: Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of
acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and
may be superior for outcome prediction.

Methodology/Principal Findings: A training group of patients suffering from ALI/ARDS was compiled from equal numbers
of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray’s lung injury severity score (Murray’s LISS) and
interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of
hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS). Receiver operating characteristic
(ROC) analysis for each clinical and cytokine parameter revealed interleukin-6.interleukin-8.diabetes mellitus.Murray’s
LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4%
accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and
cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree
(CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray’s LISS, interleukin-6 and
interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable
biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern
analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross
validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown
prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity.

Conclusions/Significance: MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can
be of value in predicting outcome in pneumonia induced ALI/ARDS.
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Introduction

Patients with acute lung injury (ALI) and acute respiratory

distress syndrome (ARDS) are at increased risk of death within 28

days [1–3]. A systematic analysis of the ALI/ARDS literature,

including 72 studies with more than 30 patients, yielded an overall

pooled mortality rate of 43% [4,5]. In patient series that do not

include trauma patients pneumonia and sepsis are the major

causes of ALI/ARDS and these patients appear to do worse than

trauma patients [3]. Early indicators of prognosis may help to

select appropriate treatment strategies. Indeed the treatment of

ALI/ARDS is based on clinical severity and tailored to ventilatory

parameters, key organ function and the evolution of oxygenation

eventually requiring increasingly specialized management options

[6].

Clinical predictors of adverse clinical outcome in ALI/ARDS

are age greater 70, comorbidities including chronic liver disease

and prior immunosuppression as well as the degree of multisystem

organ failure. An elevated McCabe score for underlying disease,

higher values of the acute physiology and chronic health

evaluation score (APACHE III), the sequential organ failure

assessment score (SOFA) and indications of fibroproliferative

activity in the lung have been associated with poor outcome

[1,2,7] (see [8] for a brief summary). Murray’s lung injury severity

score (Murray’s LISS) which consists of three distinct clinical

parameters still represents one accepted means of severity

estimation [9]. Recently, predicted extravascular lung water

(ELW) and the oxygenation index (OI) have also been shown to

be independent predictors of mortality in ALI [2,10,11]. Several

biological markers have been described and among those were
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Figure 1. Data mining from the patients. Processing of generally clinical data and interleukins and peptide pattern from BALF. The diagram
illustrates sample preparation, data processing and analysis by statistics and different mathematical algorithms. Best results were obtained by
applying a support vector machine (SVM) to peptide patterns. The SVM classifier was optimized with the patterns from the patients of the training
group. The performance of the classifier was then validated by patterns of the patients from a subsequently recruited test group. BAL,
bronchoalveolar lavage; BALF, bronchoalveolar lavage fluid; ROC, receiver operating characteristic curve.
doi:10.1371/journal.pone.0025544.g001

Table 1. Statistical analysis of clinical parameters and cytokines of the patients of the training group.

Parameter Measure Correct rate (%)1 AUC Parameter value2 Mean Std.dev Mean Std.dev Significance3

Survivors Nonsurvivors

IL-6 pg/ml 79.4 0.853 62.4 95 223 782 1202 *

IL-8 pg/ml 76.7 0.813 1290.2 780 867 3213 2704 *

Age years 76.7 0.633 72.1 62.1 7.1 64.4 21.0

Diabetes mell. 73.3 0 0.07 0.26 0.53 0.52 *

Murray’s LISS 70.0 0.733 2.7 2.0 0.9 2.7 0.7 *

PIP mbar 70.0 0.753 23.2 20.2 3.9 25.0 5.6 *

Smoking 70.0 0 0.40 0.51 0.80 0.41 *

PEEP mbar 66.7 0.742 8.0 9.0 2.7 12.4 5.3 *

IL-1b pg/ml 66.7 0.800 42.5 33 48 332 1020

IL-12 pg/ml 66.7 0.696 4.3 3.5 2.8 5.5 5.3

TNF-a pg/ml 66.7 0.616 2.8 7.4 12.2 12.1 28.1

BMI kg/m2 63.3 0.504 27.9 24.98 2.45 25.69 5.10

IL-10 pg/ml 63.3 0.427 2.4 3.0 4.0 2.9 2.0

Tidal volume ml/kg BW 36.7 0.509 4.5 5.72 0.69 5.62 1.38

PIP indicates peak inspiratory airway pressure, BMI indicates body mass index.
1accuracy without cross validation at optimum discrimination value.
2optimum discrimination value.
3comparison of nonsurvivors versus survivors: P,0.05.
doi:10.1371/journal.pone.0025544.t001
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markers of inflammation (IL-6, IL-8, IL-10, TNF-a, soluble TNF

receptors I and II), lung epithelial injury (surfactant protein D,

receptor for advanced glycation end products, RAGE), adhesion

molecules (intercellular adhesion molecule 1, ICAM-1), activation

of coagulation and inhibition of fibrinolysis (protein C, plasmin-

ogen activator inhibitor-1, PAI-1), von Willebrand factor,

procollagen peptide III (P3NP) and brain natriuretic peptide

(BNP) [7,12–14] (see [2] for review).

Diagnostic information may also be obtained from analysis of

the bronchoalveolar lavage fluid (BALF) recovered during

bronchoscopy indicated e.g. for microbiological reasons. BALF

represents greatly diluted airway/alveolar epithelial lining fluid

and contains cells, lipids, nucleic acids and peptides/proteins.

BALF most faithfully reflects the peptide/protein composition in

the airways and alveoli [15,16]. These peptides arise either directly

from the airways/alveoli or from serum via translocation. Some of

these molecules may be markers of lung disease. Recently, flow

cytometry, gene expression arrays, and proteomics were all

applied to BALF, pulmonary edema fluid and serum in order to

identify peptides or proteins which are up- or downregulated

significantly in various pulmonary diseases [17,18]. Proteomic

approaches to lung diseases typically have applied two-dimen-

sional electrophoresis for protein separation followed by identifi-

cation of differentially expressed proteins by mass spectrometry

(MS) [19]. Healthy individuals [15,18–21] and patients with

asthma [22], chronic obstructive pulmonary disease (COPD)

[23,24], cystic fibrosis, sarcoidosis [25] and sepsis/ARDS

[18,19,26–28] were investigated. In some studies MS spectra of

complex samples from lung patients were recorded and the

peptide/protein patterns were analyzed by means of mathematical

algorithms without peak identification. These techniques are

termed ‘peptide/protein profiling’ [15]. Profiling of plasma

proteins successfully distinguished patients with COPD [29] and

lung cancer [30] from healthy volunteers. Protein patterns from 15

distinct MS peaks were recognized to identify different types of

non-small-cell lung cancer and groups with differing prognosis

[31,32]. Differences in the relative abundance of proteins in

survivors versus nonsurvivors in ALI/ARDS were expected to be

subtle.and peptide profiling via MS was thought to be a method

particularly suitable for that purpose.

We started with predicting outcome of pneumonia induced

ALI/ARDS patients on the basis of clinical data including

Murray’s LIS score, ventilation parameters, i.e. peak inspiratory

pressure (PIP), positive end-expiratory airway pressure (PEEP), risk

factors (diabetes mellitus, smoking habit) and BALF interleukins. A

new approach was then developed to predict outcome of patients

from BALF peptide patterns captured by mass spectrometric

determination and analyzed by sophisticated mathematical

methods. This peptide profiling approach is fast and proved

superior following cross validation, calculation of receiver

Figure 2. Receiver operating characteristic curve for interleukin-6. The receiver operating characteristic (ROC) curve for IL-6 as an important
clinical parameter of outcome prognosis was computed from the raw data of the 30 patients of the training group. The closed symbol indicates the
point at IL-6, 62.4 pg/ml which classifies best. Insert: ROC curves for accuracy (solid line), sensitivity (dashed line) and specificity (dotted line) in
dependence on the IL-6 concentration in the BALF. The vertical dashed line indicates best separation at optimum discrimination value of IL-6 with an
accuracy of 83.3%. Accuracy defines the percentage of true positives and true negatives related to all patients.
doi:10.1371/journal.pone.0025544.g002
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operating characteristic (ROC) curves and the area under the

ROC curve (AUC) and validation by analyzing a test group of

patients [7,33–35].

Results

Outcome Prediction Based on Clinical Features
Individual risk factors, Murray’s LIS score, ventilatory variables

and inflammatory parameters in BALF were gathered from 30

patients with pneumonia induced ALI/ARDS. This training group

was compiled from 15 survivors and 15 nonsurvivors on the basis of

28 day outcome. The design of the study is shown in Figure 1.

To identify powerful binary classifiers for outcome receiver

operating characteristic (ROC) analysis was performed for each

clinical and cytokine parameter. (Table 1). Interleukin-6 (IL-6) was

found to be the best single parameter for outcome prediction.

Figure 2 demonstrates accuracy, sensitivity and specificity over the

entire range of IL-6 concentrations. The vertical dashed line

defines the optimum predictive value of all these qualities with

82.7% sensitivity, 76.1% specificity and 79.4% accuracy. The area

under the ROC curve (AUC) was 0.853. At the onset of ARDS

levels of IL-6 were significantly increased in the 15 nonsurvivors

(median: 246, range: 8–1250 pg/ml) compared with those in the

15 survivors (median: 20, range: 6–56 pg/ml). Table 1 depicts

BALF and clinical parameters and the statistical significance

between survivors and nonsurvivors of each of these parameters.

While IL-6, IL-8, Murray’s LISS, peak inspiratory pressure (PIP),

positive end-expiratory airway pressure (PEEP), the presence/

absence of a concomitant diabetes mellitus and smoking history

were significantly different between nonsurvivors and survivors,

age, BMI, IL-1b, IL-10, IL-12 and TNF-a were not different

among the two groups.

A classification tree including IL-6, IL-8 and Murray’s LISS

yielded an accuracy of 93,3%. The calculated ROC curve is

shown in Figure S1. To refine the performance estimation and to

consider the risk of overfitting cross validation was applied.

Following a 10-fold cross validation, accuracy decreased to 79.3%.

Alternatively, a random forest classification or a support vector

machine (SVM) algorithm using the clinical features both led to

81% accuracy. In order to facilitate the comparison of our results

with those of other authors we also calculated the areas under the

receiver operating characteristic (ROC) curves (AUC). AUC may

represent the most popular measure for the performance of binary

classifiers [7,33–35]. AUC values of at least 0.8–0.85 without cross

validation identify predictors with high prognostic potential [7,14].

Outcome Prediction by Means of the Mass Spectrometric
Approach

Mass spectra were acquired from BALF of the training group

detailed above. Concentrated BALF was used both with and

without subsequent purification using hydrophobic interaction

chromatography. Mass spectra obtained from raw and purified

BALF were essentially similar, but the latter showed additional

peaks between m/z 5,500 and 8,000 Da and overall improved

signal to noise ratio as well as peak width in half-height. The

Figure 3. Presentation of typical mass spectra of BALF from patients of the training group. (A) Three examples of nonsurvivors and three
examples of survivors are depicted. Peaks indicated by arrows at m/z, 2740.0 and 10049.9 are the most typical spectral features (cluster masses plus
intensities) for survivors while m/z, 4121.6/4135.6 are most typical spectral features for nonsurvivors. (B) All spectral features in the mass spectra of the
training group calculated by the clustering procedure and the spider algorithm. The lines running downwards (blue) are representative for the class
nonsurvivors (NS), whereas the lines running upwards (red) are characteristic for the class survivors (S).
doi:10.1371/journal.pone.0025544.g003
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spectra from purified BALF were clearly better for subsequent

evaluation.

Figure 3A shows three examples of spectra from nonsurvivors

(upper part) and from survivors (lower part). Numbers represent

masses of peptides in BALF. Individual BALF spectra differed

remarkably from each other, even within the survivor or

nonsurvivor groups. Classification by mere visual inspection of

spectra therefore was found to be not possible. Instead, spectra

were analyzed and grouped by various mathematical algorithms

(see below). First peak lists of all spectra were generated and peaks

were assigned to clusters as described in ‘‘Materials and Methods’’.

Mathematical Analysis of Peptide Patterns in BALF
No exclusive cluster masses were identified in the nonsurvivor as

well as the survivor groups. Figure 4 shows a classification tree

obtained by classification and regression tree (CART) analysis. It

was constructed from four cluster masses and led to zero

misclassifications. However, accuracy decreased to 76.7% follow-

ing 10-fold cross validation. Application of a nearest-neighbors

classifier resulted in 73.3% correctness (Table 2). Finally, a support

vector machine was trained with all cluster masses together with

their intensities. It revealed spectral features (selected cluster

masses plus intensities) suited for classification (Figure 3B). SVM

proved to be superior to CART analysis. Following 10-fold cross

validation, 90% accuracy, 93% sensitivity and 87% specificity

(AUC, 0.953, Tables 2 and 3 and Figure 5) were achieved. Also for

the classification tree shown in Figure 4 and for classification by

SVM ROC curves were calculated which are presented in Figure

S1. More data are summarized in Table S1.

The SVM algorithm also provided a ranking order of the

spectral features (Figure 3B). The peaks at m/z, 9167.6, 4468.6,

6433.8, 2304.8, 1830.0, 4515.9, 2740.5, 4355.1, 10048.4 were

more likely to be present in survivors while m/z, 5576.1, 4122.4,

2940.6, 2901.8, 6924.1, 4255.8, 3371.8, 4135.6, 4515.9 were

preferentially found in nonsurvivors. However, these few peaks are

not sufficient for an accurate outcome prediction in the ALI/

ARDS training cohort (73.0% accuracy, compare Figure 5).

Validation of the SVM Algorithm
The performance of the SVM classifier was evaluated by

applying it to a test group of 16 additional patients with unknown

outcome. All samples were prepared in a single batch. 14 samples

Figure 4. Best classification tree for the training group using MALDI-ToF MS data from BALF. Four cluster masses (mass peaks) were used
to construct the tree (m/z, 4468.6, 2719.8, 2052.1 and 2334.9). The nodes were sequentially labelled on the basis of the branching level and show
splitting criteria. As an example, m/z 4468.6,0.230 means that BALF with peak intensities lower than 0.230 at m/z, 4468.6 are allocated to the left
branch and all other BALF to the right branch. BALF continue down the tree until they reach a terminal node depicted as ellipses. Ellipses with full
lines denote terminal nodes of nonsurvivors. The number of BALF at each node are given for both survivors (S) and nonsurvivors (NS). The tree
classifies all patients correctly, however, accuracy decreased to 76.7% after 10-fold cross validation.
doi:10.1371/journal.pone.0025544.g004
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of the test group were correctly predicted. One survivor and one

nonsurvivor were misclassified. For illustration, typical spectra

from a survivor and a nonsurvivor are shown in Figure 6, parts A

and E. In parts B and D the 20 most important spectral features

identified by the SVM algorithm are depicted. The lines running

downwards (blue) represent characteristic features of the non-

survivor class, whereas the lines running upwards (red) indicate

features of the survivor class. For comparison, part C comprises all

spectral features derived from the training group. It should be

noted that for classification of a sample the SVM algorithm

considers not only the occurrence but also the absence of a feature.

As in the training group, outcome prediction of the test group

based on clinical features was less precise than that achieved by the

approach with matrix-assisted laser-desorption ionization time of

flight mass spectrometry (MALDI-ToF MS, Figure 7).

Discussion

Despite a decreasing mortality in recent years [4], ALI/ARDS

is still a deadly disease and the early knowledge of a patient’s

prognosis from readily available clinical or laboratory data may be

helpful in considering other options often termed ‘‘rescue

therapies’’ or ‘‘unproven therapies’’ in ALI/ARDS [2,6]. So far

these therapies are employed as judged by the treating physician if

standard therapies have failed. Prone position, high-frequency

oscillatory ventilation, inhaled nitric oxide, extra corporal lung

support and others tend to be used late in the process of ARDS

and lack objective criteria for their use [6]. Although clinical

features may distinguish some groups of patients with respect to

age, body weight, ARDS pathophysiology or even lung injury

score etc., this obviously has not led to criteria favouring one

‘‘rescue therapy’’ over another. A lung injury score $3 has been

used to recommend the consideration of ‘‘rescue therapies’’. More

powerful and physician independent indices such as the mathe-

matical evaluation of a complex pattern suggested in this study

may provide better means for an early decision of the escalation

pathway in patients with a poor prognosis and at the same time

spare adverse effects in the rest. In addition, the classification of

patterns of patients with retrospective benefit of a certain type of

‘‘rescue therapy’’ may in the future allow to predict which ‘‘rescue

therapy’’ may have the greatest impact on survival.

Numerous studies of outcome predictors in ALI/ARDS in the

past have involved one or more of the following: (i) calculations of

the predictive power of single clinical risk factors alone or (ii) of

single biological markers alone, (iii) combinations of clinical risk

factors and biological markers, (iv) ‘peptide/protein profiling’

without peak identification, elements of proteomics, focused on

estimating the severity of the disease and (v) complete proteomic

approaches. In general, clinical risk factors, severity of illness

scoring and diagnosis of sepsis have a moderate predictive value

for death [7]. Predicted extravascular lung water (EVLW) was

found to be a decent predictor for mortality in ALI [10]. The

discriminatory power described by AUC was 0.8.

In our study ROC analysis of clinical parameters and cytokines

revealed the Murray’s LIS score as a good single clinical outcome

predictor in ALI/ARDS. Murray’s LISS has been recognized to

be a useful indicator for morbidity in acute lung injury and

following blunt thoracic trauma [36]. ROC analysis revealed a

critical Murray’s LISS of 2.5–2.7 (AUC = 0.733) as a predictor of

fatal outcome similar to published values of 2.38 also analyzed by

ROC [37] and of 2.76 obtained by logistic regression analysis [38].

The use of biological markers greatly improved the correctness

of the outcome prognosis in ARDS. We found IL-6 and IL-8 in

BALF to be the best outcome predictors by ROC analysis in ALI/

ARDS (see Table 1). Similar findings have been reported in

previous studies both in BALF [12,37] and in plasma [7,39] with

regard to the interleukins. One advantage of plasma markers is

that they are routinely determined. Seven plasma biomarkers

(RAGE, P3NP, BNP, Ang-2, IL-10, TNF-a, and IL-8) possessed

great diagnostic accuracy (AUC of 0.86) in distinguishing trauma-

induced ALI from controls [14].

The NHLBI ARDS Network study, demonstrated that the

combination of clinical risk factors and eight biological plasma

markers (VWFAg, SP-D, TNFR1, IL-6, IL-8, ICAM-1, protein C,

PAI-1) resulted in a prognostic index for mortality in patients with

ALI/ARDS superior to clinical or biological risk factors alone [7].

Model performance was assessed by AUC. AUC increased from

0.815 for clinical predictors and 0.756 for biological markers to

0.85 for the two in combination. A reduced model for mortality

that contained APACHE III score, age, SP-D and IL-8 yielded an

AUC of 0.834. Data for accuracy, sensitivity and specificity at the

optimum discrimination value were not indicated. The great

prognostic value of IL-6, IL-8 and SP-D, a surfactant protein and

product of alveolar epithelial type II cells for ALI/ARDS outcome

demonstrates the significance of alveolar epithelial injury and

acute inflammation in the pathogenesis of human ALI/ARDS

[7,12,38,39] (this work). Therefore, we examined clinical data and

cytokines with CART analysis, since CART analysis is able to

handle binary and categorical as well as numeric parameters

within one set of data. However, the initially impressive accuracy

of a tree including IL-6, IL-8 and Murray’s LISS was not stable

against cross validation, which demonstrates the need for cross

validation for each of the models employed.

In the majority of studies a combination of clinical risk factors

and biological markers improved outcome prediction in ALI/

ARDS with regard to AUC [7,14]. In the NHLBI ARDS Network

study the additional predictive value of the plasma biomarkers

increased AUC moderately from 0.815 for the clinical predictors

Table 2. Classifications of the training group based on analysis of peptide pattern of BALF mass spectra with different
mathematical methods.

Classification algorithm Accuracy1 (%) Sensitivity1 (%) Specificity1 (%)

CART analysis 70.0 67.0 67.0

Nearest-neighbors classifier (kNN; k = 3) 73.3 73.3 73.3

Support vector machine (linear kernel) 90.0 93.3 86.7

1following 10-fold cross validation.
P,0.05.
doi:10.1371/journal.pone.0025544.t002
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alone to 0.85 for the combination with plasma biomarkers [7]. As

an alternative, we sought to develop a method of outcome

prediction which is independent of clinical parameters. This

method is based on an acquisition of MALDI-ToF mass spectra of

BALF peptides and subsequent mathematical analysis. BALF was

chosen because it provides material directly from the alveolar

region in the lung where ALI/ARDS takes place [17]. BALF is

also a well studied method and is used in the clinical setting of

ALI/ARDS for diagnostic purposes in a number of patients. The

application of proteomics techniques to BALF has been shown to

Table 3. Measures of outcome prediction in ALI/ARDS and other lung diseases.

Lung disease

Predictors Selected predictors Algorithm Accuracy (%) AUC Reference

ALI/ARDS

Clin. data, BALF cytokines IL-6 (Training group) ROC 79.41 0.8531 This study

IL 6 (Test group) 75.01 n.a.

IL-6, IL-8, Murray’s LISS CART 89.02 0.9132

(Training group) CART 79.3 0.873

(Training group) SVM 81.0 0.840

BALF peptide patterns Spectral features, CART 1002 0.9912

(MALDI-ToF MS) (Training group) CART 70.0 0.864

(Training group) SVM 90.0 0.953

(Test group) 87.5 n.a.

Clin. Data Organ failure, age, … ROC – 0.815 Ware [7]

Plasma biol. markers SP-D, IL6, IL-8, … – 0.756

Clin. data/Biol. markers – 0.850

Reduced model – 0.811

Clin. data Predicted EVLW ROC – 0.8001 Craig [10]

Plasma biol. markers RAGE receptor, IL-8, … ROC – 0.8601 Fremont [14]

BALF cytokines IL-6 LRA 78.51 0.7301 Lin [37]

IL-8 75.51 0.7901

Murray’s LISS 79.01 0.7001

Asthma, Obstructive lung disease, COPD

19 Predictors Ever/current asthma, CART 87.51 – Grassi [42]

shortness of breath, … Neuro. net 92.51 –

HRCT Severe/mild centrilobular Bayesian 81.25C – Lee [44]

emphysema, bronchiolitis
obliterans, normal lung

SVM 83.15C –

Plasma protein profiles m/z and intensity CART 90.01 0.9321

(SELDI-ToF MS) 81.7 – Bowler [29]

Lung cancer, NSCLC

Blood serum proteins (MALDI-ToF MS) m/z and intensity CART ROC 90.0 0.800 Markey [30]

Pept. profiling of lung Top peaks, CART Gamez-Pozo

tissue (MALDI MS) m/z and intensity plus [35]

(All three diseases) AdaBoost 93.9LC –

(AC) – 0.982LC

(LC) – 0.991LC

(SC) – 1.000LC

Lung cancer tissue, CD34MVD, TIMP-2, Zhu [47]

cytokeratins,…

(All patients) SVM 87.2

(Validation cohort) 76.0

HRCT, texture analysis at high-resolution computerized tomography; LRA, logistic regression analysis. AC, LC, SC, adenocarcinoma, large and squamous cell carcinoma;
n.a., not applicable.
Accuracies and AUC; values include 10-fold.5C 5-fold.LC leave-one-out cross validation.
1without cross validation (Simple ROC analysis comprises no cross validation.),
2Cross validation was used to find out the optimal number of nodes.
doi:10.1371/journal.pone.0025544.t003
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yield proteins associated with ALI/ARDS [18,19,26–28]. How-

ever, BAL is not without risk. In our study bronchoalveolar lavage

was necessary for the diagnosis of bacterial, fungal or viral disease

and remaining aliquots were taken for MALDI-ToF MS. Exhaled

breath condensate, a possible alternative was also investigated by

MALDI-ToF MS [13,19,40]. However, the peptide patterns of

breath condensate with a limited number of peaks allowed no

satisfying outcome prediction.

Patients fulfilling the criteria of ALI/ARDS [41] of the AECC are

heterogeneous with respect to the initiating disease entity, age,

comorbidity etc. [7]. We were therefore not surprised to learn, that

visual inspection of mass spectra did not allow classification of

outcome groups (Figure 3). However, mathematical analysis of the

spectra did reveal differences in peak patterns. CART analysis

predicted outcome with a primary accuracy of 93,7%. However,

this number decreased to 76.7% following a 10-fold cross validation.

Similar approaches have been reported to identify patients suffering

from various lung diseases [18,25–29]. By applying CART analysis

to five peptides COPD patients were distinguished from controls

with 81.7% accuracy following 10-fold cross validation [29]. The

same algorithm used in an analysis of seven predictors in asthma

identified these patients with 87.5% accuracy [42]. A CART model

of 26 serum proteins (m/z and peak intensities) helped to classify

healthy controls and patients with lung cancer reaching 90%

accuracy [30]. This result however has to be regarded with caution

since no cross validation has been applied.

Exclusive peptide biomarkers have not been identified in the

BALF of patients with ARDS in contrast to healthy individuals

[19]. Instead transient concentration changes of BALF proteins

were described at the onset of ARDS. Among those were gelsolin,

apolipoprotein A1, the calciumbinding proteins S100A8 and

S100A9, complement proteins and antiproteases which all

increased whereas surfactant protein-A and fibrinogen were

decreased [19,26–28]. This is in agreement with several studies

of other respiratory diseases in which peptides exhibited

concentration differences in patients when compared to healthy

individuals [25,29,30].

Recognizing these concentration changes, mathematical algo-

rithms for pattern analysis were applied in order to describe and

quantify BALF peptides. SVM algorithm appeared well suited for

classification with a limited number of training samples. SVM

minimizes training errors and will find a global optimal decision

function with maximizing margin which guarantees a minimum

test error [43,44].

Employing SVM based pattern analysis of MALDI-ToF mass

spectra in this study resulted in an accuracy of 90% (AUC, 0.953)

following 10-fold cross validation with the training group. The

quality of this outcome prediction is substantially higher than that

based on clinical parameters alone and exceeds that based on

clinical parameters plus cytokines (Figure 7, Table 3). Application

of this method to a small test group with unknown outcome

confirmed the great performance of this test (87.5% accuracy).

SVM has demonstrated its potential in several clinical studies

such as the differentiation of phenotypically closely related

bacterial species [45,46]. SVM classifiers were also applied to

estimate the prognosis of non-small-cell lung cancer from age,

cancer cell type and nine immunomarkers with 76 to 90.5%

accuracy [47]. Table 3 summarizes results of analyses with disease

markers using SVM algorithms. These results are detailed as

accuracies together with area under the curve (AUC) values. AUC

represents an accepted measure of the performance of binary

classifiers [7,33–35].

One might argue, that performing a MALDI-ToF analysis

from bronchial lavage fluid proteins is tedious and expensive.

However, once the MALDI-ToF analysis is established, it is very

comparable to the determination of cytokines in terms of time

and expenses.

This study reveals that the pattern of peptides and proteins in

the alveolar lavage fluid by itself includes important information

regarding the severity of the disease and the future outcome. Our

findings are limited to some extend by the relatively small group

size. Apart from larger confirmatory studies faster and more

practical techniques might be developed in the future which are

based on the combined pattern of mass spectrometry or related

methods with clinical data. Another potential benefit might be

the identification of patterns and peptides with high prognostic

impact and a possible new insight into the pathophysiology of

ARDS.

Materials and Methods

Patients and Ethics Statement
A total of 46 patients were included in this study. All were

mechanically ventilated through an endotracheal tube. Of those

21 did not survive, 25 survived, 28 were male and 18 were female.

The mean age was 62615 years. All patients suffered from severe

pneumonia and acute respiratory failure. See Table 4 for ALI/

ARDS extent [9,41] and ventilatory parameters.

Approval (No. 167/2001) for this investigation was received

from the ethics committee of the Medical Faculty of the University

of Leipzig. Written informed consent was provided by the patients

legal representatives. Bronchoalveolar lavage was used in all

patients for cytologic, microbiologic and virologic examination on

ICU physicians request. For this study an aliquot of the BALF was

measured in addition to routine determinations, using flow

cytometry and MALDI-ToF MS. All data were processed

following anonymization.

Figure 5. Effect of the spectral features on the accuracy of
prognosis. Dependence of accuracy, sensitivity and specificity on the
number of spectral features used by the SVM algorithm for classification
of the individual patients of the training group on the basis of the BALF
mass spectra. Accuracy, sensitivity and specificity have been obtained
after 10-fold cross validation.
doi:10.1371/journal.pone.0025544.g005
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Bronchoalveolar Lavage Protocol
Bronchoalveolar lavage (BAL) was performed in the right

middle lobe or lingula between 24 and 96 h following the onset of

ventilation. BAL was done according to guidelines [48]. Five

20 ml aliquots of 0.9% NaCl at 21uC were instilled through a

fiberbronchoscope and recovered by gentle aspiration [12,40].

Cells were removed by centrifugation at 4506 g for 4 min at 8uC.

1 ml aliquots of the supernatant BALF were stored in 1.5 ml

Eppendorf tubes at 280uC before use.

Cytokine Detection in BALF by Flow Cytometry
50 ml BALF were incubated for double determinations with a

mixture of six bead populations with distinct fluorescence intensities

and coated with capture antibodies specific for IL-1b, IL-6, IL-8,

IL-10, IL-12 and TNF-a. We used the cytometric bead array from

Becton Dickinson (San Jose, CA, USA). Cytokines were determined

by Phycoerythrin(PE)-conjugated detection antibodies with a flow

cytometer (FC500, Beckman Coulter). Calibration was performed

with standards ranging from 2.5 to 312 pg/ml.

Evaluation of Clinical Data
The power of clinical features as binary classifiers for out-

come was estimated by receiver operating characteristic (ROC)

curves. Discrimination power, optimal threshold value, accuracy,

sensitivity and specificity were obtained. A P-value was calculated

which tests the hypothesis that the area under the curve equals 0.5.

If P,0.05, the corresponding parameter significantly discriminates

between survivors and nonsurvivors. A classification and regression

tree (CART) analysis identified patients with fatal outcome. Trees

were constructed from the training group (n = 30) and applied to

both the test group (n = 16) and all patients (n = 46). The tree bagger

algorithm of the Matlab statistics toolbox and a random forest

algorithm [49] were applied. For calculating ROC curves the

training cohort was randomly split into 70% patients in training and

the remaining 30% to assess the training performance of the model

[50]. This procedure was repeated 50 times to calculate accurately

the mean AUC after 10-fold cross validation.

Peptide Patterns of BALF by Mass Spectrometry
Careful sample preparation is indispensable for the application

of matrix-assisted laser-desorption ionization time of flight mass

spectrometry (MALDI-ToF MS) to biological materials. Low

protein content in BALF, substantial concentrations of surfactant

lipids and finally salt from phosphate-buffered saline are all

important factors. An overabundance of blood born proteins like

albumin and immunoglobulins can also hamper measurements of

alveolar lining fluid proteins [15–17,51].

In this study BALF was concentrated approximately 10-fold in a

vacuum centrifuge prior to purification by hydrophobic chroma-

tography with a MB-HIC 8-kit (Bruker Daltonics, Germany).

Figure 6. BALF mass spectra from two patients and calculated spectral features for outcome prediction. (A, E) Mass spectra of the BALF
from a nonsurvivor and from a survivor. (B, D) The 20 most important spectral features found in (A) and (E). The lines running downwards (blue) are
representative for the class nonsurvivors (NS), whereas the lines running upwards (red) are characteristic for the class survivors (S). (C) For comparison,
all spectral features in the mass spectra of the training group calculated by the clustering procedure and the spider algorithm. Downward lines (blue)
are representative for nonsurvivors (NS), upward lines (red) for survivors (S). The SVM algorithm considers both the occurrence and the absence of a
spectral feature.
doi:10.1371/journal.pone.0025544.g006
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Purified peptides were dissolved in 50% acetonitril in 0.1%

trifluoroacetic acid and spotted with the matrix a-cyano-4-

hydroxy-cinnamic acid (4 mg/ml 50% acetonitril in 0.1%

trifluoroacetic acid) on a ground steel target.

Mass spectra were recorded by MALDI-ToF MS from 1,500 to

16,600 mass over charge ratio (m/z) using an Autoflex II spectrometer

(Bruker Daltonics). 1000 shots were accumulated per spectrum. A

mixture of six peptides was utilized for external calibration covering a

mass range from 1620.86 to 12360.97 m/z. For internal calibration,

representative samples were mixed with the peptides and measured

again. The raw spectra were processed by baseline subtraction and a

slight smoothing with Flex analysis 2.4 (Bruker Daltonics). For peak

detection the centroid algorithm with a threshold of signal to noise

ratio of 6 was used. For re-calibration of spectra suitable sample

peaks were selected as ‘‘calibrants’’. From each spectrum up to 80

peaks were extracted. Peaks with very low relative intensities

(,0.01) were omitted. The peaklists (m/z with relative intensity)

obtained by this procedure formed the database which was further

evaluated by computational analysis.

Cluster Formation of the Mass Peaks
To refine spectra accuracy all peak lists were aligned for mass

drift adjustment [45,52]. Briefly, a mass-dependent size of the

mass window was used according to window size, sizeabs+(sizerel *

Figure 7. Prognosis by MALDI-ToF MS approach and clinical features for the training group. Accuracy, sensitivity and specificity of
outcome prediction by pattern analysis of MALDI-ToF mass spectra of BALF in comparison to the results obtained on the basis of the interleukin-6
concentration and a classification tree of clinical features (IL-6, IL-8 and Murray’s LISS). In addition, the accuracy (*) of outcome prediction of the test
group is given. The error bars indicate SD after 10-fold cross validation.
doi:10.1371/journal.pone.0025544.g007

Table 4. Ventilatory parameters of all patients classified according to both AECC and Murray’s LISS definitions.

Criteria Number of patients PEEP (mbar) PIP (mbar) BF (/min) Tv (ml/kg Bw)

Classification of ALI and ARDS of the American-European consensus conference [41]

Horowitz index $300 n, 5 7.762.1 20.064.4 23.062.8 6.061.1

ALI criteria n, 20 11.262.5 23.264.4 24.565.5 5.660.9

ARDS criteria n, 21 11.265.7 23.065.8 27.467.8 5.761.2

Murray’s lung injury severity score [9]

None-to-moderate lung injury (score: 0.1–2.5) n, 27 10.063.4 22.064.5 24.465.7 5.861.0

Severe lung injury (score . 2.5) n, 19 12.265.2 23.965.6 27.467.6 5.661.2

PEEP indicates positive end-expiratory airway pressure, PIP indicates peak inspiratory airway pressure, BF indicates breathing frequency,
Tv indicates tidal volume adapted to body weight.
doi:10.1371/journal.pone.0025544.t004
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peak mass) with sizeabs, 0.8 m/z and sizerel, 0.001. Thus we arrived

at a mean spectrum containing common m/z values. All spectra

were aligned individually to the peaks of the mean spectrum by

linear mass adjustment of the peaks [53]. Subsequently, peak

clusters were formed which contained all peaks originating from

different individual spectra, however, occurring in the same

window. All peaks assigned to one cluster are represented by the

respective mean cluster mass. This procedure represents the basis

of the mass spectrometric approach.

Mathematical Analysis of Peptide Pattern of BALF
MALDI-ToF MS data were analyzed by CART and nearest-

neighbors classifiers (kNN, k, 1–3) and evaluated by 5-fold cross

validation. Finally, classification of the mass spectrometric data

and selection of predictive spectral features (candidate peaks) were

performed applying a support vector machine (SVM) with a small

soft margin parameter. For feature selection, a recursive feature

elimination procedure [54,55] and the shrunken centroid

algorithm were used [56]. Matlab 7.8 (The MathWorks, Inc.,

Natick, MA) including bioinformatics and statistics toolbox was

used. Calculations were carried out with the free Spider Matlab

machine learning package and the procedure implemented in the

Matlab bioinformatic toolbox [54].

Supporting Information

Figure S1 Presentation of receiver operating character-
istic curves for clinical data and cytokines and spectral
features from MALDI-ToF MS. Receiver operating charac-

teristic (ROC) curves were calculated for classification and

regression trees (CART) of both IL-6, IL-8 and Murray’s LISS

as well as the cluster masses used in Figure 4 (m/z, 4468.6, 2719.8,

2052.1 and 2334.9) and support vector machine (SVM) algo-

rithms. The symbols (x, clinical data/cytokines, D, spectral

features) represent the nodes of the trees. The ROC curve for

the SVM algorithm was calculated as described in ‘‘Materials and

Methods’’ with an AUC of 0.953 following 10-fold cross validation

(CV). The closed circle (N) indicates the point of best classification.

(TIF)

Table S1 Outcome prediction of ALI/ARDS patients based on

clinical features/cytokines and spectral features.

(DOC)
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