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Abstract

Aberrant topological properties of small-world human brain networks in patients with schizophrenia (SZ) have been
documented in previous neuroimaging studies. Aberrant functional network connectivity (FNC, temporal relationships
among independent component time courses) has also been found in SZ by a previous resting state functional magnetic
resonance imaging (fMRI) study. However, no study has yet determined if topological properties of FNC are also altered in
SZ. In this study, small-world network metrics of FNC during the resting state were examined in both healthy controls (HCs)
and SZ subjects. FMRI data were obtained from 19 HCs and 19 SZ. Brain images were decomposed into independent
components (ICs) by group independent component analysis (ICA). FNC maps were constructed via a partial correlation
analysis of ICA time courses. A set of undirected graphs were built by thresholding the FNC maps and the small-world
network metrics of these maps were evaluated. Our results demonstrated significantly altered topological properties of FNC
in SZ relative to controls. In addition, topological measures of many ICs involving frontal, parietal, occipital and cerebellar
areas were altered in SZ relative to controls. Specifically, topological measures of whole network and specific components in
SZ were correlated with scores on the negative symptom scale of the Positive and Negative Symptom Scale (PANSS). These
findings suggest that aberrant architecture of small-world brain topology in SZ consists of ICA temporally coherent brain
networks.
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Introduction

Cognitive dysfunction has been viewed as the core of

schizophrenia, a chronic psychotic disorder [1–5]. Functional

magnetic resonance imaging (fMRI) studies revealed abnormal

brain activity in patients with schizophrenia (SZ) during cognitive

tasks involving language, memory and attention [6–11]. Func-

tional brain disconnectivity has also been considered a hallmark of

SZ [12–15]. Recently, exploring brain activity in the absence of

explicit cognitive or emotional tasks has been a focus of fMRI

research. Aberrant resting state networks have become one of the

most robust schizophrenia biomarkers which is often revealed by

independent components analysis (ICA)[16–23].

ICA, which was developed to solve problems similar to the

‘‘cocktail party’’ scenario in which individual voices must be

resolved from microphone recordings of many people speaking

simultaneously [19,24], has typically been applied to fMRI data by

determining a set of maximally spatially independent brain

networks each with associated time courses [25–27]. This

approach is useful to examine brain activity during resting state

in both healthy controls (HCs) and various patient groups [28–32].

Jafri et al [33] evaluated functional temporal connectivity among

ICA component time courses of resting state fMRI data. The

interrelationship among multiple brain networks (components) was

defined as functional network connectivity (FNC). They examined

differences in FNC between HCs and SZ and found greater

occurrences of higher correlation among networks in SZ. However

the topological properties of these FNC relationships have not yet

been studied.

Studies implementing graph theory to neuroimaging data,

especially fMRI, are growing rapidly [31,34–38]. Small-world

properties are consistently revealed in human brain networks,

which may suggest that the brain generates and integrates

information with high efficiency [39–44]. Several studies docu-

ment aberrant small-world network metrics in SZ [45–47]. For

example, Yu et al [48] discovered altered topological measures in

auditory oddball task-related small-world brain networks in SZ.

Bloch et al [49] evaluated disrupted modularity in SZ. Several

other resting state fMRI studies revealed less hierarchy, less small-

world properties, less clustering and less efficiency in SZ
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[34,50,51]. However, all these results were obtained from

networks constructed based on brain voxels- or regions-of-interest

[52]. The topological properties of brain networks consisting of

spatial components in SZ versus HC are yet not known.

The aim of the present study was to identify such differences of

small-world network measures in FNC between fMRI data

acquired in HCs and SZ during the resting state. We hypothesized

that SZ would show abnormal topological properties in this kind of

small-world brain networks based on previous studies [33,53–55].

Materials and Methods

1. Ethics Statement
This study has been approved by Hartford Hospital and Yale

ethics committee. All subjects gave their written informed consent.

2. Participants
Subjects consisted of 19 (7 females) HCs (mean age: 33.969.1;

range: 24–50) and 19 (4 females) SZ (mean age: 36.5611.1; range:

21–50). Age showed no significant group difference (P = 0.44). But

HCs (15.662.2; range: 12–20) have more education years than SZ

(12.662.6; range: 7–18) (P,0.001). Schizophrenia was diagnosed

according to DSM-IV TR criteria on the basis of a structured

clinical interview [56] administered by a research nurse and by

review of the medical records. All patients had chronic schizophre-

nia (positive and negative syndrome scale (PANSS) [57]: positive

score 1665; negative score 1565) and all were taking medication

(including the atypical antipsychotic medications aripiprazole,

clozapine, risperidone, quetiapine and olanzapine, first-generation

antipsychotics including fluphenazine, and miscellaneous mood-

stabilizing, hypnotic and anti-cholinergic medications including

zolpidem, zaleplon, lorazepam, benztropine, divalproex, trazodone,

clonazepam). All participants except 1 healthy control and 2

patients were right-handed. Exclusion criteria included auditory or

visual impairment, mental retardation (full scale IQ,70), traumatic

brain injury with loss of consciousness greater than 15 min, and

presence or history of any central nervous system (CNS)

neurological illness. Participants were also excluded if they met

criteria for alcohol or drug dependence within the past 6 months or

showed a positive urine toxicology screen (screening was for

cocaine, opioids including methadone, cannabis, amphetamine,

barbiturates, PCP, propoxyphene, and benzodiazepines) on the day

of scanning. Healthy participants were free of any DSM-IV TR

Axis I disorder or psychotropic medication and had no family

histories of Axis I disorders.

3. Image acquisition
One 5-min resting state run for each subject was acquired at the

Olin Neuropsychiatry Research Center at the Institute of Living/

Hartford Hospital on a Siemens Allegra 3T dedicated head scanner

equipped with 40 mT/m gradients and a standard quadrature head

coil. The functional scans were acquired transaxially using gradient-

echo echo-planar-imaging with the following parameters: repeat

time (TR) 1.50 s, echo time (TE) 27 ms, field of view 24 cm,

acquisition matrix 64664, flip angle 70u, voxel size 3.756
3.7564 mm3, slice thickness 4 mm, gap 1 mm, 29 slices, ascending

acquisition. Six ‘‘dummy’’ scans were acquired at the beginning to

allow for longitudinal equilibrium, after which the paradigm was

automatically triggered to start by the scanner.

4. Preprocessing
FMRI Data were preprocessed using the SPM5 (http://www.fil.

ion.ucl.ac.uk/spm/software/spm5/) software package. Data were

motion corrected using INRIalign—a motion correction algorithm

unbiased by local signal changes [58], spatially normalized into the

standard Montreal Neurological Institute (MNI) space, and

spatially smoothed with a 10610610 mm3 full width at half-

maximum Gaussian kernel. Following spatial normalization, the

data (originally acquired at 3.7563.7564 mm3) were resliced to

36363 mm3, resulting in 53663646 voxels.

5. Group ICA
Group spatial ICA [55] was conducted for all the data using the

infomax algorithm [24]. Data of all 38 participants were

decomposed into 75 components using the GIFT software

(http://icatb.sourceforge.net/). Single subject time courses and

spatial maps were then back-reconstructed [59,60]. We chose the

relatively high model order ICA as previous studies demonstrated

that such models yield refined components which correspond to

known anatomical and functional segmentations [61–64]. The

Infomax ICA algorithm was repeated 10 times in ICASSO

(http://www.cis.hut.fi/projects/ica/icasso) and resulting compo-

nents were clustered to estimate the reliability of the decompo-

sition. Fifty-seven components that did not contain large edge

effects or ventricles by visual inspection were selected for further

analysis. Temporal band-pass filtering (0.01,f,0.10 Hz) [65,66]

was performed for component time courses of each subject before

computing partial correlations.

6. Estimation of inter-component partial correlations
Partial correlation are useful as a measure of connectivity

between a given pair of brain regions because they attenuate the

contribution of other sources of covariance [67,68]. Given a set of

N random variables, the partial correlation matrix is symmetric,

where each off-diagonal element is the correlation coefficient

between a pair of variables after filtering out the contributions of

all other variables included in the dataset [50]. In this study, we

evaluated temporal connectivity between each pair of ICs using

partial correlation of ICA time courses to reduce the effects of the

other 55 brain networks [69], and built undirected graphs

respectively for each subject.

The first step was to estimate the sample covariance matrix S

from the data matrix Y = (xi), i = 1,…,57, of observations for each

individual. Here xi was the time courses of each ith component. If

we introduce X = (xj, xk) to denote the observations in the jth and kth

components, Z = Y\X denotes the other 55 time courses matrices.

Each component of S contains the sample covariance value

between two components (say j and k). If the covariance matrix of

[X, Z] was

S~
S11 S12

ST
12 S22

� �
, ð1Þ

in which S11 was the covariance matrix of X, S12 was the

covariance matrix of X and Z and S22 was the covariance matrix of

Z, then the partial correlation matrix of X, controlling for Z, could

be defined formally as a normalized version of the covariance

matrix [50],

Sxy~S11{S12S{1
22 ST

12: ð2Þ

Finally, a Fisher’s r-to-z transformation [50,70,71] was applied to

the partial correlation matrix in order to induce normality on the

partial correlation coefficients. Connectivity strength [45,50] of

network was computed by absolute z values. Two sample two-
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tailed t-test was performed to test for group difference in the

strength of functional connectivity.

7. Graph analysis
An N6N (N = 57 in the present study) binary graph brain

network, G, consisting of nodes (brain components) and undirected

edges (connectivity) between nodes, could be constructed by

applying a correlation threshold T (Fisher’s r-to-z) to the partial

correlation coefficients:

eij~
1 if z i,jð Þj j§T

0 otherwise

n
ð3Þ

That is, if the absolute z(i, j) (Fisher r-to-z of the partial correlation

coefficient) of a pair of components, i and j, exceeds a given

threshold T, an edge is said to exist; otherwise it does not exist. We

defined the sub-graph Gi as the set of nodes that were the direct

neighbors of the ith node, i.e. directly connected to the ith node

with an edge [50]. The degree of each node, Ki, i = 1,2,…,57, was

defined as the number of nodes in the sub-graph Gi. The degree
of connectivity, Knet, of a graph is the average of the degrees of all

the nodes in the graph:

Knet~
1

N

X
i[G

Ki, ð4Þ

which is a measure to evaluate the degree of sparsity of a network.

The total number of edges in a graph, divided by the maximum

possible number of edges N(N-1)/2:

Kcos t~
1

N N{1ð Þ
X
i[G

Ki, ð5Þ

is called the cost (connection density) of the network.

The clustering coefficient of a node was the ratio of the

number of existing connections to the number of all possible

connections in the subgraph Gi is:

Ci~
Ei

Ki Ki{1ð Þ=2
, ð6Þ

where Ei is the number of edges in the sub-graph Gi [72,73]. The

clustering coefficient of a network is the average of the clustering

coefficients of all nodes:

Cnet~
1

N

X
i[G

Ci, ð7Þ

where Cnet is a measure of the extent of the local density or

cliquishness of the network.

The mean shortest path length of a node was:

Li~
1

N{1

X
i=j[G

min Li,j

� �
, ð8Þ

in which min{Li,j} is the shortest path length between the ith node

and the jth node, and the path length was the number of edges

included in the path connecting two nodes. The characteristic
path length of a network is the average of the shortest path

lengths between the nodes:

Lnet~
1

N

X
i[G

Li, ð9Þ

Lnet is a measure of the extent of average connectivity of the

network.

Eglobal, a measure of the global efficiency of parallel

information transfer in the network, is defined as the inverse of

the harmonic mean of the minimum path length between each

Figure 1. Mean absolute z-score matrices for HCs and SZ. Each figure shows a 57657 square matrix, where each entry indicates the mean
strength of the connectivity between each pair of components which were organized in the same sequence as in supplemental material. The
diagonal running from the upper left to the lower right is intentionally set to zero.
doi:10.1371/journal.pone.0025423.g001
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pair of nodes [43,74,75]:

Eglobal~
1

N N{1ð Þ
X

i=j[G

1

Li,j
: ð10Þ

The local efficiency of the ith node can be calculated as follows:

Ei local~
1

NGi
NGi

{1
� � X

j,k[Gi

1

Lj,k
: ð11Þ

In fact, since the ith node is not an element of the subgraph Gi, the

local efficiency can also be understood as a measure of the fault

tolerance of the network, indicating how well each subgraph

exchanges information when the index node was eliminated [43].

In addition, based on its definition, it is a measure of the global

efficiency of the subgraph Gi. The mean local efficiency of a graph,

Elocal~ 1=Nð Þ
X

i[GEi local , ð12Þ

is the mean of all the local efficiencies of the nodes in the graph.

For more information about the uses and interpretations of the

complex brain network measures to see Rubinov and Sporns [35].

8. Small-Worldness
Compared with random networks, small-world networks have

similar path lengths but higher clustering coefficients, that is

c = Cnet/Crandom.1, l = Lnet/Lrandom<1 [73]. These two conditions

can also be summarized into a scalar quantitative measurement,

small-worldness, s = c/l, which is typically .1 for small-world

networks [41,76,77]. To examine the small-world properties, the

Figure 2. Network metrics of each group. Mean clustering coefficient (B), local efficiency (C), characteristic path length (E) and global efficiency
(F) of the FNC for HCs (blue circles) and SZ (red squares) as a function of cost Kcost. For comparison, Crandom (A) and Lrandom (D) are also shown. Error
bars correspond to standard error of the mean (across 19 subjects of each group). Black triangles indicate where the group difference is significant
(two sample t-test, P,0.05, uncorrected).
doi:10.1371/journal.pone.0025423.g002
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values of Cnet and Lnet of the functional brain network need to be

compared with those of random networks. The theoretical values of

these two measures for random networks are Crandom = K/N, and

Lrandom<ln(N)/ln(K) [42,76,78]. However, as suggested by Stam et al

[78], statistical comparisons should generally be performed between

networks that have equal (or at least similar) degree sequences;

whereas theoretical random networks have Gaussian degree

distributions that may differ from the degree distribution of the

brain networks that we discovered in this study. To obtain a better

control for the functional brain networks, we generated 100 random

networks for each degree K of each individual network by the same

Markov-chain algorithm [44,79,80] used in previous studies

[50,81]. And averaged across all 100 generated random networks

to obtain a mean Crandom and a mean Lrandom for each cost Kcost.

9. Small-World Regime
Since the topological indices of the FNC are computed as a

function of threshold, the results can be influenced by differences

in the number of edges between the two groups [50,78]. In this

study, we chose thresholds to keep the same number of edges in

networks of all participants and investigated the topological

properties of the FNC as a function of cost, Kcost_min#Kcost#Kcost_max.

The range was determined following Liu et al [50] and Liao et al

[50,81]: (1) the minimum cost assures that each network was fully

connected with N = 57 nodes. This allowed us to compare the

topological properties between the two groups in a way that was

relatively independent of the size of the network. (2) the maximum

cost was selected to ensure that the brain networks have a lower

global efficiency and a larger local efficiency compared to random

networks with relatively the same distribution of the degree of

connectivity [43]. We selected the small-world regime as

0.351#Kcost#0.417 and repeated the full analysis for each value

of Kcost with increments of 0.004 (the corresponding number of

edges was 560–665 with steps of 7 and the corresponding degree

was 19.649–23.333 with steps of 0.246). The range of Kcost was

higher than prior studies might indicate standard deviation of

partial correlation among brain ICs is higher than among brain

regions. The corresponding z-score threshold value range for all of

the subjects was 0.244–0.513.

10. Statistical Analysis
Following Liu et al [50], two sample two-tailed t-tests were

performed to test for group differences in Cnet, Lnet, Eglobal, Elocal, c, l
and s at each of the 16 selected Kcost values. A statistical

significance level of P,0.05 was used. 1660.05 = 0.80,1 which

means there was less than one false-positive result at this [45]. If a

significant difference was found, Pearson linear correlation

coefficients were used to evaluate the relationship between

topological indices and PANSS for each selected cost point in

the SZ group. In addition, as each node of the network had its own

value of degree (Knode), cluster coefficient (Cnode), shortest path

length (Lnode), global efficiency (Enode_global), and local efficiency

(Enode_local), the distribution of components which showed signifi-

cant differences in these measures were investigated by post-hoc

two sample t-tests (P,0.05). If significant difference was found for

any brain component, Pearson linear correlation coefficients were

used to examine the relationship between topological properties of

that brain component and PANSS scores in the SZ group.

11. Effect of number of components on small-world
results

To explore the effect of ICs’ number on results of small-world

networks, Cnet, Lnet, Elocal, and Eglobal were computed in HCs and SZ

after building networks by changing the number of components as

follow. Three more times of group ICA were performed by

splitting the fMRI data into 65, 80, 85 ICs. 52, 56, 59 components

of interest were selected to build small-world networks respectively.

Small-world regimes were 0.324#Kcost#0.392 with steps of 0.004;

0.364#Kcost#0.432 with steps of 0.004; and 0.317#Kcost#0.396

with steps of 0.005. Corresponding number of edges in the

networks were 430–520 with steps of 6; 560–665 with steps of 7;

and 542–677 with steps of 9.

Results

1. Group ICA and Partial Correlation
Activation of brain regions for each of the selected 57 ICs are

shown in supplemental Figures S1, S2, S3, S4, S5, S6, S7, S8, S9,

S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,

S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35,

S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46, S47, S48,

S49, S50, S51, S52, S53, S54, S55, S56, S57. Figure 1 shows the

mean connectivity matrix which was calculated by averaging the

N6N (N = 57 in this study) absolute partial correlation matrix of all

the subjects within each group. Group difference of connectivity

strength was not significant which means we did not repeat the

finding of Jafri et al [33] which found higher correlations in SZ

than controls in some of the component pairs. However, Jafri et al

Figure 3.Scatter plots of path length and global efficiency in
SZ. Scatter plots with trend line showing characteristic path length
(Lnet) (A) and global efficiency (Eglobal) (B) of the FNC as a function of
PANSS negative scale at a selected cost (Kcost = 0.390) in SZ. Pearson
correlation coefficient for Lnet (R = 0.513, P = 0.025, uncorrected), Eglobal

(R = 20.515, P = 0.024, uncorrected).
doi:10.1371/journal.pone.0025423.g003
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used 7 components of interest from all 30 components, and

statistical analysis was performed on a constrained maximal lagged

correlation between components. In this study, 57 components

were selected from all 75 components. In addition, connectivity

was computed by partial correlation. Both of the different methods

may play a role to cause the inconsistent results.

2. Small-world network metrics
For topological indices as a function of cost, as cost increases,

the clustering coefficient, local efficiency and global efficiency also

increase whereas the characteristic path length decreases because

more and more edges are added into the network. As shown in

Figure 2, two sample t-tests indicated that clustering coefficients

were higher (P,0.05, uncorrected) in SZ at most of the cost points;

local efficiencies were higher in SZ only at higher cost values (7

highest values of the selected cost); whereas the character path

length and global efficiency showed significant group difference at

lower cost values (4 lowest values of the selected cost), SZ had

higher characteristic path length and lower global efficiency. After

changing the number of components (52, 56, 59 ICs from total of

65, 80, 85), SZ were showing the same trend for all the network

properties. And the group differences of Cnet and Elocal at some Kcost

points were significant (P,0.05, uncorrected) or marginally

significant (P,0.1, uncorrected).

The small-world attribute was evident in the FNC of both

groups. c was significantly greater than 1 while l was near to 1

over the whole range of Kcost. Because Crandom and Lrandom show

similar group differences as Cnet and Lnet (see Figure 2), no

statistical significant differences in the values of c, l or s between

the two groups were found when the same cost was used.

3. Relationships between network measures and PANSS
scores in SZ

Significant (P,0.05, uncorrected) correlations between topo-

logical metrics and PANSS values in SZ were only found between

characteristic path length (Lnet), global efficiency (Eglobal) and

negative scale score by Pearson correlation analysis. Lnet was

positively correlated with negative scale of PANSS whereas Eglobal

was negatively correlated with the PANSS negative scale. Figure 3

shows the patterns at a typical cost point (Kcost = 0.390).

4. Distribution of components in which topological
metrics are altered in SZ

When using two sample t-tests to explore statistical differences

in the topological properties including degree, clustering coeffi-

cient, local efficiency, shortest path length and global efficiency

between SZ and HC for each of the 57 components at each

selected cost, we found significant differences (P,0.05, uncorrect-

ed) in eleven components (IC6, IC8, IC14, IC25, IC28, IC29,

IC32, IC40, IC45, IC46 and IC52) which involve frontal, parietal,

occipital and cerebellar brain areas (Figure 4 shows the activation

of these components). Although the results do not pass false

discovery rate (FDR) correction (P,0.05) for multiple comparisons

of 57 nodes, these tests are implemented after finding significant

group differences in the metrics of the whole network. Thus the

node specific comparisons are useful to report as post-hoc tests.

Figure 4. Activation z-maps of the brain components in which graph metrics are altered significantly in SZ (group ICA result).
doi:10.1371/journal.pone.0025423.g004
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Figure 5 displays the trends of relative parameters for those

individual components at a typical cost (Kcost = 0.382). For an

example of network connection patterns in HC and SZ see

Figure 6 (edges which were connected to any of the eleven nodes

are shown).

5. Relationships between network properties of
individual components and PANSS scores in SZ

Based on Pearson correlation coefficients, shortest path length

and local efficiency of IC14, shortest path length of IC32 were

significantly (P,0.05, uncorrected) positively correlated with

negative scale of PANSS. Patterns at a typical cost point

(Kcost = 0.351) were shown in Figure 7.

Discussion

In the present study, resting state fMRI data for both HC and

SZ were decomposed into spatially independent components by

group ICA. Undirected graphs were built based on partial

correlation matrices which were computed using ICA time

courses. The brain networks showed ‘‘small-world’’ patterns in

the selected range of cost in both groups that was consistent with

previous studies that found small-world features in complex brain

networks consisting of brain regions [36,44]. The finding that

topological properties were altered in SZ and that several metrics

were significantly correlated with negative PANSS scores in SZ

provides further evidence for aberrant FNC associated with this

disease [33]. One novel aspect of this study is that all results were

obtained from brain topology consisting of ICA temporally

coherent brain networks.

1. Altered topological metrics in patients
Short characteristic path lengths and high global efficiencies have

been demonstrated to promote effective interactions between and

across different cortical regions [42,43,50]. In our study, charac-

teristic path length showed significant higher value and global

efficiency showed lower value only at lower cost points (see Figure 2),

possibly indicating that information interactions between tempo-

rally interconnected brain components were slower and less efficient

in SZ when the whole network of FNC was sparse.

Figure 5. Mean value of topological properties which showed group difference. Values of Knode, Cnode, Enode_local, Lnode, Enode_global altered
significantly (P,0.05, uncorrected) in SZ at a selected cost (Kcost = 0.382) are shown. The color of the bar indicates the group and the height of the bar
indicates the mean value of the relative measurement for the two groups. Error bars correspond to standard deviation.
doi:10.1371/journal.pone.0025423.g005
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Clustering coefficients were significantly increased at most of the

selected cost points and local efficiencies were increased only at the

higher cost points in SZ (see Figure 2) in the networks constructed

based on brain components in this study. This finding implied

relatively dense local connectedness and robust local information

processing of the brain networks in SZ [50,74,82] suggesting

abnormal FNC in schizophrenia. The findings that clustering

coefficients and local efficiencies were higher in SZ are consistent

with previous studies which involved patients with other brain

disorders. For example, Wang et al [83] found increased local

efficiency in children with ADHD (attention-deficit/hyperactivity

disorder); He et al [84] revealed increased clustering coefficient in

Alzheimer’s disease. However, as far as we know, all prior studies

involving schizophrenia in which networks were constructed based

on brain regions found less clustering coefficient and less local

efficiency in SZ [34,45,50,51]. It is notable that this is the first

work which finds increased clustering coefficient and local

efficiency in schizophrenia. Moreover, that HCs and SZ showed

similar small-worldness values distinguished our results from prior

brain region-based graph studies [45,50]. Reasons for getting the

distinct results are not clear, but the different graph building

method (ICs-based graphs) of this study may play a role.

2. Distribution of altered brain components
Consistent with previous findings [45,50], only some nodes were

altered in SZ. The network metrics of some components involving

frontal, parietal, occipital and cerebellar brain areas were

significantly altered in SZ (see Figure 4, 5). For example, the

degree of connectivity for IC8 (occipital region) was smaller in SZ

indicating a lower connectivity between this component and other

brain components. Our findings that SZ show aberrant connec-

tivity in vision (IC6, IC8, IC14), motor (IC28, IC32, IC46),

attention (IC25) and default (IC40, IC45, IC52) networks are

consistent with previous studies which reported abnormal

activation [85,86] or disturbed connectivity in those brain regions

in SZ [33,87–89].

3. Relationship between topological measurements and
PANSS scores in SZ

Interestingly, we found characteristic path length and global

efficiency of the whole brain network were correlated with PANSS

negative scale values in SZ. Higher negative scale scores were

associated with longer character path length and lower global

efficiency (Figure 3). These might indicate the more severe these

symptoms, the lower information interactions among brain

components. In addition, clustering coefficient, local efficiency of

IC14 (occipital region) and shortest path length of IC32 (parietal

region) were correlated with negative PANSS scores in SZ (see

Figure 7). Higher negative scale scores were associated with a

higher clustering coefficient, higher local efficiency of IC14

(occipital region) and longer shortest path length of IC32 (parietal

region). These findings are in line with studies which found

psychopathology is associated with aberrant intrinsic organization

of functional brain networks in schizophrenia [21] and provide

further evidence for this illness as a disconnection syndrome

[50,90–93].

4. Methodological limitations
The main limitation of this study is our use of a statistical

significance level of P,0.05 (uncorrected). We did not use any

stringent type I error control such as Bonferroni or false discovery

rate correction especially for the results of nodal level analysis.

Further studies could increase the statistical power by increasing

the sample of subjects. The second possible confound is

medication use in patients. It is not clear if medication in SZ

alters graph parameters. In addition, this study examined the

Figure 6. Examples of network connection patterns for HCs and SZ. The networks were built from mean absolute z-score (partial correlation)
matrices (Figure 1) at a typical cost (Kcost = 0.382, corresponding z-score threshold values: HCs 0.318; SZ 0.336). Red named nodes indicates graph
indices were altered in SZ for those components. Only edges which were connected to any of those eleven nodes are shown.
doi:10.1371/journal.pone.0025423.g006
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measures of not weighted but only binarised networks. Further

studies are required to address these considerations.

For nodal definition, compared with previous studies which

used a predefined anatomical template, ICA-based nodes are data-

driven. Each IC consisted of intrinsic connected brain voxels

which share the same time course. By using this kind of graphs,

altered topological metrics among intrinsic connected brain

networks (but not predefined brain regions which are not intrinsic

connected) were revealed. However, there are also some

disadvantages by using ICs as graph nodes. For example, the

potential for artificial splitting of a network into spurious sub-

networks when the ICA dimensionality is highly chosen (here is 75

components based on 5 minutes of resting state data); the potential

for lack of coverage of certain cortical regions or over-

representation (spatial overlap) of certain other cortical regions;

57 non-artifactual components were selected arbitrarily. The effect

of specified number of components on small-world results should

be further studied by recruiting larger sample of subjects in future.

5. Conclusions
To our knowledge, this is the first study using ICA and graph

theory methods to explore abnormal small-world brain network

properties in SZ during the resting state. Small-world topological

metrics including clustering coefficient, local efficiency, character-

istic path length and global efficiency of the graph built based on

FNC were altered in SZ. Characteristic path length and global

efficiency measures were correlated with negative scale scores on

the PANSS. The network parameters of some individual brain

components involving frontal, parietal and occipital areas were

disturbed in SZ. These findings provide further evidence for

aberrant FNC in SZ and expand our understanding of brain

disconnection in schizophrenia.
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